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Abstract

We consider equilibrium selection in 2x2 bimatrix games with two strict Nash
equilibria in a random matching framework. The players seek to maximize the
discounted payoffs, but are restricted to make a short run commitment.
Modelling the friction this way yields equilibrium dynamics of the behavior
patterns in the society.

We define and characterize an absorbing and globally attractive state in this
dynamics. It is shown that, as friction becomes arbitrarily small, a strict
Nash equilibrium outcome becomes uniquely absorbing and globally attractive if
and only if it satisfies the Harsanyi/Selten notion of risk-dominance criterion.
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1. Introduction

We approach the problem of equilibrium selection in 2x2 bimatrix games
with two strict Nash equilibria. This class of games, which contains pure
coordination games and the battle of the sexes as special cases, is not only
important in its own right, but also captures a variety of economic problems
in their essentials. Examples include adoption of new technologies (Farrell
and Saloner [1985]), choice among alternative media of exchange (Matsuyama,
Kiyotaki, and Matsul [1991]), geographical distribution of cities (Krugman
[1991a, 1991b]), Keynesian macroeconomics (Cooper and John [1988]), and
economic development (Murphy, Shleifer and Vishny [1989] and Matsuyama [1991a,
1991c]). In spite of its central role in game theory and economics, the
literature offers very few formal approaches to the problem of equilibrium
selection. For instance, the most solution concepts proposed in the
literature on refinements of Nash equilibria, such as the strategic stability
of Kohlberg and Mertens (1986), have nothing to say about selection among
strict Nash equilibria.

Our apprecach to this problem is to examine the stability of strict Nash
equilibria in an explicitly dynamic context. To this end, we consider the
society consisting of a continuum of anonymous agents and each agent plays the
game repeatedly with an opponent randomly chosen from the population. All
players maximize the expected discounted payoffs with one restriction; they
need to make a short-run commitment to the action they chose. The opportunity
to switch actions arrives stochastically; it follows a Poisson process, which
is identical and independent across players. By modelling some friction this
way, this dynamic game generates nontrivial equilibrium paths of the behavior
patterns in the society, whose stationary states correspond to the Nash

equilibria of the original game. We define and characterize the stationary



states of this dynamic game.

For example, suppose that the initial behavior patterns are in the
neighborhood of a strict Nash equilibrium of the original game, say (L,L) in
Figure 1. One can show that, in the presence of large friction, an
equilibrium path is unique and the behavior patterns always converge to (L,L).
In this sense, any strict Nash equilibrium is an absorbing state with
sufficiently large friction. When friction is small, however, (L,L) may be
fragile in that another equilibrium path exists, along which the behavior
patterns move away from (L,L) and converge to (R,R). In other words, beliefs
that the "band wagon" effects will induce all players to switch from L to R in
the future may be consistent, thereby upsetting (L,L).

Our selection criterion is based on the following two observations.
First, one can show for generic games that, as friction becomes arbitrarily
small, the only one strict Nash equilibrium remains absorbing, while all other

states become fragile. Second, the unique absorbing state has additional

stability property, which we call globally attractive; that is, for any
initial behavior patterns, there exists an equilibrium path along which the
behavior patterns converge to the unique absorbing state. We view that these
properties make the unique absorbing state a natural choice among strict Nash
equilibria.

Interestingly enough, our selection criterion turns out to be equivalent
to the Harsanyi and Selten (1988) notion of the risk dominance criterion; in
any 2x2 bimatrixrgame with two strict Nash equilibria, a strict Nash
equilibrium is uniquely absorbing (and globally attractive) if and only if it
is risk dominant. Thus, our approach can be viewed as a dynamic justification

of the Harsanyi/Selten risk-dominance criterion.



Some recent studies on learning and evolution have also addressed the
question of how a particular equilibrium will emerge in a dynamic context. A
very partial list of this literature includes Boylan (1990), Camning (1989),
Friedman (1991), Fudenberg and Kreps (1988), Gilboa and Matsui (1991a), Matsui
(1990), Matsuyama (1991b), Milgrom and Roberts (1990, 1991), Swinkels (1991),
and Taylor and Jonker (1978). Although some convergence results are obtained,
these studies do not offer an equilibrium selection criterion, since all
strict Nash equilibria share the same dynamic properties in their models.

Foster and Young (1990) and Kandori, Mailath and Rob (1991) consider
evolutionary models with constant flow of mutations, which generate Markov
processes in the behavior patterns. It turns out that the stationary
distribution of the Markov processes attaches probability one to the risk
dominant outcome in the limit as the rate of mutation goes to zero. Another
related work is Matsui (1991a), which considers a model with pre-play
communication and shows that a Pareto inefficient strict Nash equilibrium is
upset through the best response dynamics in a class of games called games of
common interest. In these studies, the convergence to Nash equilibria are
studied in the context of repeated play by myopic players. To be perfectly
clear, we emphasize that our approach assumes that players form their beliefs
in a highly rational manner; to use Binmore’s (1990) terminology, we remain in

the eductive context.'

'Some mention should be made of Kalai and Lehrer (1991). They consider
an infinite repetition of a stage game between fixed players. Players have
some priors over the opponents’ repeated game strategies and try to maximize
their expected discounted payoffs. They show that in spite of discrepancy in
their initial beliefs, the actual sequence of actions converges to that of
Nash equilibrium. Any Nash equilibrium appears as an outcome; their
motivation is not to tell a story of equilibrium selection.



2. Symmetric Games

In this section, we restrict our attention to the symmetric game given
in Figure 1. This game has two strict Nash equilibria, (L,L) and (R,R), as
well as one mixed strategy equilibrium in which each player chooses L with
probability 4 = (d-c)/{(a-b)+(d-c)}. Instead of analyzing this game in
isolation, we envision that this game is played repeatedly in a society with a
continuum of identical players. At every point in time, each player is
matched to form a pair with another player, randomly drawn from the
population, and they play the game anonymously. All players are highly
rational and choose a strategy to maximize the expected discounted payoffs.
Because of the anonymity, they are engaged in this maximization without taking
into account strategic considerations such as reputation and retaliation.

The key assumption is that no player can switch actions at every point
in time. Every player needs to make a commitment to a particular action in
the short run. Following Matsuyama (199la,b,c,d), we assume that the
opportunity to switch actions arrives randomly; it follows the Poisson process
with p being the mean arrival rate. Furthermore, it is assumed that the
process i1s independent across the players and there is no aggregate
uncertainty.? The strategy distribution in the society as of time t can be
thus described as xt[L] + (l—xt)[R], where X, is the fraction of the players

that are committed to action L as of time t. We simply call x, the behavior

t

pattern in the society. Because of the restriction imposed above, x, changes

continuously over time and the rate of change in x, belongs to {-px,,

2There are some technical problems concerning the law of large numbers
with a continuum of i.i.d. random variables, as first pcinted out by Feldman
and Gilles (1985) and Judd (1985). Boylan (199la,b) and Gilboa and Matsui
(1991b) discuss these issues in the context of random matching games and offer
some possible solutions.
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p(1-x,)]. Furthermore, any feasible path necessarily satisfies xp e < x <1

t
- (l—xo)éTt, where the initial condition, Xg; i1s given exogenously, or "by
history."

When the opportunity to switch arrives, players choose the action which
results in the higher expected discounted payoffs, knowing the future path of
x as well as their own inability of switching actions continuously. Since the

strategy distribution as of time t is x,[L] + (1-x,)[R], the value of playing

t

action L instead of R as of time t is equal to
tax tc(l-x) ) - (bx +d(l-x)} = {(a-b)+(d-c)} (x—4) ,

and thus players, given the opportunity, commit to play L if V. > 0 and to

play R if V. < 0 and are indifferent if V. = 0, where
v, = (p+e>f;<xt+s—u)e'“’*°’5ds : (1)

with & > O being the discount rate. Therefore, {x,}:., is an equilibrium path

from x, if its right-hand derivative exists and satisfies

(p(l-x¢)) if V¢ >0,
d*xt e [_th , P(l‘xt)] if Vt = 0, (2)
dc
{~-px¢) if v, <0,

for all t € [0,0). Equation (2) states that all players currently playing
action R (resp. L), if given the opportunity, switch to L (resp. R), when v, >
(resp. <) 0.

It is straightforward to show that x = 0, i, and 1 are the only
stationary states of the dynamics (1) and (2); that is, x € [0,1] is a

stationary state if and only if it is a Nash equilibrium of the original game.



We use (1) and (2) to study the stability of the Nash equilibria.
Since there are generally multiple equilibrium paths from a given

initial condition, one need be specific about what the stability means. It is

thus necessary to introduce some terminologies.3
Definitions:
i) x € [0,1] is accessible from x' € [0,1], if there exists an equilibrium

path from x' that reaches or converges to Xx.

ii) x € [0,1] is absorbing if there is a neighborhood of x, U, such that any
equilibrium path from U converges to x.

iii) =x € [0,1] is fragile if it is not absorbing, that is, if there is a
neighborhood of x, U, such that there exists an equilibrium path from x
that leaves U after a finite time.

iv) x € [0,1] is globally attractive if it is accessible from any x' €

(0,1].

By definition, if an absorbing state, x, is globally attractive, then it is a
unique absorbing state in [0,1] and any state in [0,1]\(x) is fragile. (The
definitions do not rule out the possibility that a state may be both fragile
and globally attractive, or that a state may be uniquely absorbing but not
globally attractive. As will be shown below, however, these situations never
exist and a state is uniquely absorbing if and only if it is globally
attractive in the dynamics considered in this paper.) Finally, define the

degree of friction by 6 = 6/p, the expected duration of the commitment (with

3Alternatively, we could have borrowed a variety of stability concepts in
the set-valued differential equations, such as "Absorbent Stable Sets (ASS)"
of Gilboa and Samet (1991). We have chosen to avoid introducing such a
formality, however, given the simple structure of our dynamics. One can show
that any absorbing point, taken as a singleton set, is an ASS.



the unit of time is normalized so that the discount rate is equal to one).

Lemma 1.

a) X = 0 is globally attractive if and only if (1+8)/(2+§) € u < 1,
b) x = 1 is globally attractive if and only if 0 < u < 1/(2+68),

c) x = 0 is absorbing if and only if 1/(2+8) < u < 1,

d) x = 1 is absorbing if and only if 0 < u < (1+6)/(2+46).

Proof. See the appendix.

Lemma 1 implies that there exists at least one and at most two absorbing
states. Furthermore, a strict Nash equilibrium is globally attractive if and
only if it is uniquely absorbing.®* 1In other words, if x = 1 is accessible
from x = 0, then x = 0 is not accessible from x = 1, and vice versa. Thus,
Lemma 1 can be rephrased as:

Proposition 1.

a) (R,R) is uniquely absorbing and globally attractive if (1+8)/(246) £ U <
1; (L,L) is uniquely absorbing and globally attractive if 0 < u <
1/(2+46); both (L,L) and (R,R) are absorbing if 1/(2+8) < i <
(1+8) /(2+6) .

b) For any ¢ € (0,1), both (L,L) and (R,R) are absorbing for a sufficiently
large 6 > 0.

c) If u € (1/2, 1), (R,R) is uniquely absorbing and globally attractive for
a sufficiently small § > 0; If u € (0,1/2), (L,L) is uniquely absorbing

and globally attractive for a sufficiently small § > 0.

“The assumption of a strictly positive discount rate is crucial for these
results. As long as -1 < 6 £ 0, (1) and (2) give a well defined dynamics, 1In
this case, every state in [0,1] becomes both fragile and globally attractive,
if (1+68)/(2+8) £ u £ 1/(2+8). (In the terminology of Gilboa and Samet, the
entire space, {0,1], becomes an Absorbent Stable Set.)



Figure 2 illustrates Proposition 1. What b) states is that any strict Nash

5 More

equilibrium is absorbing in the presence of large friction.
interestingly, unless g = 1/2, one strict Nash equilibrium becomes fragile,
while the other becomes globally attractive, as friction goes to zero. If u >
1/2, there is an equilibrium path that traverses from (L,L) to (R,R); that is,
even if (L,L) is the initial behavior patterns in this society, there exist
consistent beliefs, with which the behavior patterns converge to (R,R) and
thereby upsetting (L,L). On the other hand, if the initial behavior patterns
are given by (R,R), no consistent beliefs can upset this behavior patterns.
In this sense, (R,R) dominates (L,L) if g > 1/2., Likewise, (L,L) dominates
(R,R) if p < 1/2.

It should be noted that the condition, u > 1/2, is equivalent to d - ¢ >
a — b; the deviation loss associated with (R,R) is larger than the deviation
loss at (L,L). That is, in the terminology of Harsanyi/Selten, (R,R) risk
dominates (L,L). Similarly, (L,L) risk-dominates (R,R) if 4 < 1/2. 1In sum, a
Nash equilibrium of the symmetric game given in Figure 1 is a unique absorbing
(and globally attractive) state in the presence of sufficiently small
friction, if and only if it satisfies the risk-dominant notion of
Harsanyi/Selten.

To grasp the intuition behind these results, it is useful to consider a
slightly more general game in which the payoff difference of playing L instead

of R is given by 7(x,), where 7 is a strictly increasing function and

satisfies m(0) < 0 and (1) > 0. (The pairwise random matching game is a

>In the limit as § goes to infinity, the dynamics (1) and (2) are
equivalent to the best response dynamics proposed in Gilboa and Matsui (1991);
see also Matsui (1960) and Matsuyama (19%1c). Every strict Nash equilibrium
is absorbing in the best response dynamics.



special case in which m(x) = x — 4.) The outcome (L,L) can be upset when the
players have an incentive to deviate for a feasible path from x = 1. Because

of the monotonicity of m, the incentive to deviate is the strongest if all

players are anticipated to switch from L to R in the future, or X, = ePt,
Thus, the condition for x = 1 being fragile is
Vo = (p+e)f;n(e'pt)e'<we>tdt <0 . (3)

As seen from this expression, an increase in the expected duration of the
commitment (a small p) has the two opposite effects. On one hand, it reduces
the effective discount rate; the players are more concerned about the future
when making decisions. On the other hand, it reduces the rate of change in
the behavior patterns so that the current strategy distribution becomes more
important in calculating the expected discounted payoffs. The strictly
positive discount rate, 6 > 0, implies that the second effect always dominates

the first, since (3) can be rewritten to:

Vo = (1+6)ﬁ:‘rr(x)x5dx <0, (4)

by letting x = e™P'. Condition (4) means that the expected discounted payoff
of choosing action L when all other players are anticipated to swicth from L
to R is given by the weighted average of 7. Note that, as x moves from 1 to
0, the players attach more weight to a higher value of x with a large degree
of friction, § = 8/p. In the limit as § goes to infinity, Vo = (1) > 0 so
that (4) is violated; or (L,L) becomes absorbing with a sufficiently large
friction.
Similarly, starting from x = 0, the incentive to deviate is the

strongest when all players are anticipated to switch from R to L in the
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future, or x, = 1 - eP', so that the condition for x = O being fragile is

given by

Vg = <p+e)j;n(l-e'pt)e'wf’"dt >0,

or

Vg = (1+6)f011r(x)(1—x)'5dx 20 . (5)

Thus, as x moves from 0 to 1, the players attach more weight to a lower value
of x with a large degree of friction, 6 = 6/p. In the limit as & goes to
infinity, V0 = 7(0) < 0 so that (5) is violated; or (R,R) becomes absorbing
with a sufficiently large friction.

The two conditions, (4) and (5), are mutually exclusive for any 6 > 0 so
that at least one of the two strict Nash outcomes is absorbing. Furthermore,

in the limit as 8 goes to zero, (4) and (5) become

J‘O’w(x)dx <0, (6)

and

ﬁ;‘ir(x)dx >0, (7)

respectively. For the pairwise random matching game, T(x) = x - 4 and (6) and
(7) are equal to u > 1/2 and p < 1/2, respectively. This shows why only one
strict Nash outcome remains absorbing as the friction goes to zero for generic
games. When the expected duration of the commitments becomes extremely small
and the behavior patterns can move between 0 and 1 arbitrarily fast (but are
not able to jump between them), all that matters is the average payoff
differences. If action L performs better than R on average, then (L,L) is

absorbing, while (R,R) is fragile. Note that the uniqueness of the absorbing
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state in the limit does not depend on the linearity of the payoff
differences.®

The above discussion also points out the significant difference between
the logic behind our result and that of Kandori, Mailath and Rob (1991).
Recall that their model is based on the repeated play by myopic players and
the constant flow of mutations, so that the stationary distribution of the
behavior patterns depends on the size of the basins of attraction. Their
selection criterion coincides with the Harsanyi/Selten risk-dominance
criterion, because the risk dominant outcome has a larger basin of attraction.
On the other hand, we rely on the rational calculations by players. Qur
selection criterion coincides with the Harsanyi/Selten criterion because
deviating from the risk dominant outcome always implies a payoff loss, whereas

there exist consistent conjectures with which deviating from the risk

dominated outcome leads to a gain in the expected payoffs.

3. Asymmetric Games

In this section, we extend our analysis to the class of asymmetric games
given in Figure 3. Again, there are two strict Nash equilibria, (L;,L;) and
(Ry,R;), and one mixed strategy Nash equilibrium in which player i plays L,
with probability pj = (dj—cj)/[(aj~bj)+(dj-cj)}, where i # j. As in the
previous section, we consider the random matching framework, but the players
are now divided into two groups of equal size, 1 and 2. Each player from

group 1 (player 1) is randomly matched with a player from group 2 (player 2)

to play the game under the same restriction with the previous case. Let x/

5The dynamics of the game with nonlinear payoff differences are
considered in Matsuyama (1991d).
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(i =1,2) denote the fractions of players i who play L; as of time t. Then,

the equilibrium dynamics of the behavior patterns {(x},x%)}5.c are described

by
, {p(1-x)1} ifFviso,
do 1 . . .
XL e | l-pxd, p(1-xd)) iPF V-0, (8)
{-px 1 ifvic<o,
where
Vti = (p+e),[0- (xt{s-u1)e_(mo)sds ’ (ir j1= 1, 2, i+ j) (9)

as well as the initial condition, (x¢,x%).

As before, the set of stationary states of (8) and (9) is {(0,0),
(uz,u1), (1,1)), which is identical to the set of Nash equilibria of the

original game. The definition of accessible, absorbing, fragile, and globally

attractive can be directly extended into the dynamics on [0,1])2.
To state the properties of (0,0) and (1,1), or equivalently (R1,R2) and
(L,,L,), let us define the following partition of (0,1)2 = A(E) + B(S) + C(&)

(see Figure 4):

AS) = ((By.hy) € (0,1)%: by 2 Fygly) 1},

B(8) = ((My,ky) € (0,1)%: 1 = py > Fe(l-py) ),

C(8) = ((hy.Hp) € (0,102 1 = Fe(loihy) < fhy < Fplis) ),
where
, 1+8
£, (X), ifoc<xs 2o,
Fﬂ(X) L
-1 L. 148
£y (X)), 1f2+6sX<1,

and
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Folx) =1 - (2+6)°( 11‘6)1"’,

Simple algebra shows that Fg(X) is strictly decreasing, strictly concave and

= -1,

lim,  Fp (X) = 1, lim, Fy(X) = 0, Fb(1+6) « 18 F’(l“'")

2+ 248" 8248

Lemma 2.

a) (0,0) is globally attractive if and only if (N1.ﬂ2) € A(S).

b) (1,1) is globally attractive if and only if (4,,u4,) € B(S).

c) (0,0) is absorbing if and only if (u,,u,) € (0,1)2\3(6) = A(8) + C(&).
d) (1,1) is absorbing if and only if (l,,u,) € (0,1)2\A(6) = B(8§) + C(&8).

Proof. See the appendix.

Again, Lemma 2 implies that there is at least one and at most two absorbing
state and that a state :1¢ uniquely absorbing if and only if it is globally
attractive. Thus, one can rephrase it as:

Proposition 2.

a) (Ry,Ry) is uniquely absorbing and globally attractive if (Hy.1y) € A(8);
(Ly,L,) is uniquely absorbing and globally attractive if (u1,u2) € B(é6);
Both (Ry,R,) and (L,,L,) are absorbing if (i,,4,) € C(é).

b) For any (u1,u2) € (0,1)2, both (R1,R2) and (L1,12) are absorbing for a
sufficiently large § > 0.

c) If uy + u, <1, (Ly,L;) is uniquely absorbing and globally attractive for
a sufficiently sma:1 § > 0. If By + py > 1, (R1,R2) is uniquely
absorbing and globally attractive for a sufficiently small & > O,

Proof:

a) This follows directly from Lemma 2.
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b) Note that lim, , Fsz(X) = 1 for 0 < X < 1 monotonically. Thus, C(®) =
(0,1)2, from which b) follows from a).

c) For any 6 > 0, Fg(X) 21 ~ X and lim Fe(X) =1 - X for 0 <X < 1.

-0
Therefore, (U,,4,) € A(§) for a sufficiently small 6§ >0 if yy + 4, > 1, and

(Ky,H,) € B(§) for a sufficiently small 6 > 0 if 4, + pu, < 1. Q.E.D.

Figure 4 illustrates Proposition 2a). It shows that, for a given 6§, if the
unique mixed strategy equilibrium is close to (L,,L?), then (R1,R2) is
absorbing. That is, for any initial behavior patterns, there is an
equilibrium path that converges to (R1,R2), and, if any initial behavior
patterns are in the neighborhood of (R,,R;), any equilibrium path converges to
(Ry,R;). Similarly, for a given 6§, if the unique mixed strategy equilibrium
is sufficiently close to (R1,R2), then (L1,L2) is absorbing. If the unique
mixed strategy equilibrium belongs to C(§), on the other hand, both strict
Nash equilibria are absorbing. These regions, A(6) and B(8) shrink as 6
becomes large, and, in the limit as friction goes to infinity, disappear.
Thus, as Proposition 2b) states, in the presence of large friction, both
strict Nash equilibria become absorbing. Proposition 2c¢), on the other hand,
states that, as friction goes to zero, one strict Nash equilibrium becomes
fragile and the other becomes globally attractive.

Proposition 2c¢) also states that (L,,L?) becomes absorbing if By + By <
1, which is equivalent to (l—p1)(1—u2) > Iy, or (a1—b1)(a2—b2) >
(d;—c;) (dy-c,); that is, the product of deviation losses associated with
(L;,Ly) 1is larger than the product of deviation losses at (R;,R,). That is,
(Ly,L,) is absorbing in the presence of small friction if and only if it is

risk-dominant in the sense of Harsanyi-Selten. The intuition behind these



15
results is analogous to the case of the symmetric case and therefore omitted

here.
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Appendix

Proof of Lemma 1. To prove the "if" part of a) and the "only if" part of &),

it suffices to demonstrate that, if (1+8)/(2+8) £ 4 < 1, a feasible path from

X =1 tox =0, x, = eP' satisfies the equilibrium condition, that is vV, =0

t

for all t along this path. This can be checked as follows:

v, = (p+6)J:{e'p(t"s)-u)e'(p*a)sds = e'pt[.zl%]—,u £0.

To prove the "if" part of d) and the "only if" part of a), it suffices to
prove that, if 0 < u < (1+:)/(2+8), the equilibrium path is unique and
converges to X = 1 for x, <ufficiently close to 1. Note that any feasible

path from x, satisfies x, 2 xoe*“. Therefore, if p(2+8)/(1+8) < x5 < 1,

VO 2 (P*e)I;,[Xoe_ps -ﬂ]e—(pm)sds = Xo[%%] - 4> 0 .

This implies %, £ x, < 1, and V, > 0 for all t. Thus, %, = 1 - (1-x5)e™P*, and

t t

lim__ x, = 1. This proves a) and d). The proof of b) and c¢) follows

Tt

similarly, due to the symmetry. Q.E.D.

Proof of Lemma 2. The proof is divided into three parts.

Part 1. Proof that (0.7) is globally attractive if (u1,p2) € A(S):
Without loss of geuerality, we assume U, < l,, which can be further
divided into the two cases- 1-A) (1+6)/(2+8) < T < Ky, and 1-B) fJ(u1) < s,

and (1+8)/(2+46) > My -
1-A) (1+8)/(2+48) <€y, € u,: it suffices to show (x!,x%) = (x}ePt,x2ePt) is an
equilibrium path for any (x}.x2) € [0,1]2, which can be checked as follows:

for i, j =1, 2, i *j,
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= (p+8)f:(x;e*“*s’-#i}e“P*"’Sds - xge'p‘[_z_sli6]—u,- <0.

i
Ve
1-B) f,(iy) € Wy, and (145)/(2+8) > p,: If xi < u,(2+8)/(1+8), one can show
(x:,x2) = (xgeP', xteP) is an equilibrium path converging to (0,0), as in 1-

A). Suppose x¢ > K (246)/(146). We show that a feasible path from {xg , x2)

to (0,0), defined by

) 1-(1-x3) et if t<T, R )
X, = X and X; = X5 ePt
[1 - (1-x,) e PT] g-Piz-T iftzT,
2+8

where T satisfies xiePT = pl( ) <1, is an equilibrium path. First,

1+8

1 _ Gre 2 p(tes) ~(p+8) _ w2 pt] 146
v, = (p+9)J0 (xge Py} e7P*8ds = xoe P ['ZTS] Hy o,

so that Vi > 0 if t < T; = 0 if t =T; <0 if t > T. Second, let y, be

defined by

Note that y, is nonincreasing and y, 2 xi for all t. Therefore,

Vt2 = (p+8)fg(x:+s - pye P Bsgs < (P*B)J‘:[}’us - fy) e PBsg

S(p+6)j;[ys - uz]e'(P’e)Sd_g =1-p - 1- e~ (p+T

146
_ 1| #1ff 248 i
-1—“2-m;é m] Sf&(#“) ]J.ZSO
0

Part 2. Proof that (1,1) is absorbing if (ly,1,) € B(S§) + C(8).
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Without loss of generality, we assume My S Ky, < fg(Hy), which implies Ly

< (1+8)/(2+8). First, note that, for any feasible path, if xi >

H(2+8)/(1+68), then x%, > x;e® , and

V: b (p+e)j:{xtze'p5_“1}e‘(P+6)Sds = th[%%g] - > 0.

This implies that, for x§ > w,(2+6)/(1+8), v: > 0 for all t < T, where T

satisfies xZe Pl = pl(i:g) < 1. Thus,

i 1-(1-x5) e7Ft if t< T,
Xy 2
[1 - (1-x;) e™PT) g-pPit-D ifta2T,

for all t > 0. Since the right hand side is continuous in x;, one can choose

x; sufficiently close to 1 so that, for any €, > O,

2 ° - 1 -
Vo 2 (p+e)f0 (75 - Hp)e P D%s - €y =1 - py - o PO ¢,
146
1 || Bl 2+6
=l—u2_ﬂ+ —z[ﬂi] —€1
%9

Therefore, for any €, > 0, by choosing x¢ sufficiently close to 1,

VZ 2 Fg(phy) - by - €1 - €3> 0,

This shows that there exists a neighborhood of (1,1) such that V&, v > 0,
thus (1,1) is absorbing.

Part 3.

From Part 1 and Part 2, a) and d) follow immediately. b) and ¢) can be proved

similarly, due to the symmetry. Q.E.D.
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