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Abstract. A criterion is proposed for judging when different consumers
have similar (transitive, locally nonsatiated) preferences. This criterion is
less restrictive than others that have been studied, so consumers will more
often be classified as similar. However similar consumers will still have
similar demands. The space of preference relations is shown to be separable
and metrizable, and a compactification is obtained without relaxing the
requirements of local nonsatiation and transitive indifference.



1. TIntroduction

The purpose of this paper is to describe a criterion of similarity for
consumers' preferences.1 Beginning with Kannai (1970), such criteria have
been used to determine when different consumers have similar demands and when
different economies have similar equilibrium sets or cores. Kannai studied
the convergence of the core, assuming consumers to have transitive, locally
nonsatiated preferences. That class of preferences is also the focus of this
paper. The criterion to be given here is less stringent than Kannai's, but it
is still sufficiently restrictive that consumers will be counted as
"neighboring™ only if they would behave similarly in similar budget
situations. Thus the new criterion allows one to deduce the proximity of
consumers' demands in more general circumstances. The space of preference
relations also has the same mathematical properties (separability,
metrizability) under this criterion as under Kannai's.

Debreu (1969) gave a modification of Kannai's concept which is suitable
even for nontransitive and satiated preference relations. Mertens (1970)
suggested a weaker criterion for such relations, one which coincides with
Kannai's when the relations to be compared are transitive and locally
nonsatiated. This criterion is now a standard tool for equilibrium analysis;
it counts as neighboring agents those agents whose preference relations,
{(X,y)lx > v}, are similar in the topology of closed convergence of sets. The
usefulness of this extension of Kannai's criterion stems in part from the fact
that one thereby obtains a compact space of preference relations (of course
this is not the only reason for considering a more general class; the need for
a framework including satiated relations is discussed by Mount and Reiter
(1976). This point is made, e.g., by Grodal (1974, Remark 6). It is not

necessary to make the same extension in order to obtain a compact space



here. Compactness is obtained without dropping the conditions of local
nonsatiation and transitive indifference. What i1s necessary is that one admit
preference relations which are not lower-semicontinuous. Thus one may say
that local nonsatiation and transitive indifference, but not lower-
semicontinuity, are preserved in the limit under this convergence criterion,
while the reverse is true under closed convergence.

Kannai (1970) established that closed convergence of locally nonsatiated
transitive preferences is equivalent to uniform convergence on compacta of
utility functions, in the sense that one can choose a utility function for
each such preference relation in a homeomorphic way. A similar result is
established in the author's paper (1986) for the criterion to be studied
here. Of course the requisite topology for utility functions is coarser in
this case (it is the topology of "subgraph convergence”).

In contrast to the weakening proposed here, Chichilnisky (1977) has
introduced a strengthening of the closed convergence topology. This was in
response to the observation of Mount and Reiter (1976) that the closed
convergence topology counts as neighboring agents some agents who are vastly
dissimilar with respect to other natural criteria, criteria based for example
on measurements of upper and lower contour sets. This objection applies only
when one admits locally satiated agents, since locally insatiable agents who
are counted as neighboring in the closed convergence topology will have
similar upper-contour sets [see Mount and Reiter (1974)]. Thus the problem
with which Chichilnisky was concerned will not be an issue in this paper.

Locally satiated agents are excluded here because the criterion cannot be
extended in a fully satisfactory way to encompass them., This circumstance 1is
discussed at the end of section 2.

The plan of the paper is as follows. 1In section 2 the criterion of



similarity is defined, and an example is given to show that it is strictly
less stringent than Kannai's. The example also illustrates how transitive
indifference may not be preserved in the limit under the closed convergence
topology. In section 3, demands are shown to vary in an upper-hemicontinuous
way with changes in preferences, endowments and prices, just as they do when
Kannai's criterion is used. In section 4, the space of preference relations
is shown to be separable and metrizable. It also is shown that the space can
be compactified by admitting preference relations which are not lower-
semicontinuous, and an example is given to demonstrate the necessity of

including such relations.

2. Definition of the Criterion

The commodity space will be a locally compact, second countable space

E. A preference order is a pair (X,>) where > is a complete preorder on X < E

and X is closed. A preference order (X,z) is upper-semicontinuous if

{x € X|x > y} is closed for each y € X, lower-semicontinuous if {x € X|y > x}

is closed for each y € X, continuous if it is both upper and lower-

semicontinuous, and locally nonsatiated if for each x € X and each open G ¢ E

such that x € G, there exists y € G such that y > x (as usual "x > y" means
that (x,y) € > and "y > x" means that x,y € X and (x,y) ¢ >).

Denote by P (resp. Q) the class of continuous (resp. upper-
semicontinuous) locally nonsatiated preference orders.

Kannai suggests (1970, p. 797) that a "plausible requirement"” for a
topology on a class of preorders is that convergence of a sequence (in) to a
preorder > entail the following: for each x > y and each pair of sequences x

n

> x and y, > ¥, one eventually has X, > Yy Without pretending that it is

any more reasonable (but arguing that it may be useful simply because it is



weaker) I propose the requirement that convergence imply: for each x > y and

each sequence y_ > y, there exists a sequence x, > X such that eventually x
q n y q n Yy Xp

Proceeding more formally, choose a family of open, relatively compact

sets B;, 1 = 1,2,..., which is a basis for the topology of E. Set

Qs = (X, ») € Q3 xeB, s.t. x> Bj}

where the upper bar denotes closure and where "x > Ej" means that x € X and
X >y, ¥y € Bj n X. Set QOj = {(x,») € QX n Ej = p}. The family of sets
{Qij|i =0,1,2,40.; j = 1,2,3,...} is a subbase for a topology on Q. This
topology will be denoted by <t.

The relative T topology on P will be denoted by the same symbol. It has
as a subbase the family of sets Pij = Pn Qij'

One corollary of the following is that the topology T obtained would be

the same for any choice of the basis {Bi} for E, subject of course to the

qualification that each B; be relatively compact.

PROPOSITION 1. For each open G ¢ E and compact K ¢ E, the set
{(x,>) € Q|3 x € G s.t. x> K} is T-open, as is the set

{(x,>) € Q[x n K = p}.

Proof. Fix (X,i) € Q and x € G satisfying x > K. Since X is closed and > is
upper-semicontinuous, there exists for each y € X some index i such that y €
B, and x > B,. Since E is regular [Engelking (1968, Thm. 3.6.1)] there is for
each such i an index j such that y € Bj c gj c Bi [Engelking (1968, Thm.

1.5.3)]. Choose a finite subfamily of the collection of sets Bj whose union



contains K, say {lej = 1,.e.,n}. Let B/Q be an element of the given basis

such that x € B2 € G. Then

o3

(X,i) € ij c {(X,i) € QIH X € G sete x> K}

j=1

Thus the first type of set is open, and the same argument shows that the

second type is as well. Q.E.D.

Since the collection of sets Qij is countable, the topological spaces
(Q,t) and (P,t) are second countable. Convergence of sequences is

characterized by closed convergence of consumption sets and the property

previously stated. The notation "X = Lim X" used below means that X is the

closed limit of the Xn; see Hildenbrand (1974). Hildenbrand's notation

"Li Xn" and "Ls Xn" will also be followed.

PROPOSITION 2. A sequence ((Xn,:)) from Q is tT-convergent to a preference

order (X,») € Q iff each of the following hold:

]

(a) X Lim Xr1

(b) For each x,y such that x > y and each sequence Yo7 v satisfying

Y, € Xn’ ¥n, there exists a sequence xn-? x such that eventually

n n Yn*

Proof. <T~convergence => (a): Let G € E be any open set such that

X0 G# @. Choose x € X n G. By local nonsatiation there exists z € G such

that z > x. According to Proposition 1, there eventually exists X € G



satisfying x> {x}. 1In particular X N G# @. This shows that X ¢ Li X e
The condition Ls X < X follows immediately from the second part of
Proposition 1.

T-convergence => (b): By upper—-semicontinuity there exists some B, such
that y € Bj and x > Bj' As noted in the proof of Proposition 1, E is regular
so0 we can assume that x > ﬁj. The tT-convergence implies that for each B; such
that x € Bi there eventually exists X € Bi satisfying xn >n Bj. Hence

eventually X, > Since the basis {Bi} is countable, one can certainly

n Yn°
construct a sequencé x, > X such that eventually X7 Yo
(a) + (b) => t=convergence: The condition Ls Xn € X implies that, for
any j such that (x,i) € on, one eventually has (Xn,in) € on. Now consider
any i,j » 1 such that (X,n) € Qij' Since X ¢ Li X there exists N such that
X, N By # @ for n » N. Let I denote the set of integers n such
that (Xn’in) ¢ Qij’ If n € I and n » N, then it must be that X 0 Ej £ 0.
For each such n, choose Y, € Xn n ﬁj satisfying Ya zn z, ¥z € Xn n Ej (by
upper-semicontinuity such a choice is possible). Suppose I is an infinite
set. Then the sequence (y,, n € I) has a subsequence (yn, n € I”) which has a
limit y € Ej (since compactness is equivalent to sequential compactness in
regular, second countable spaces [Engelking (1968, Thm. 4.2.4 (Urysohn
Metrization Theorem) and Exercise 4.3.E)]. By (a), y € X and moreover there
exists a sequence z >y such that z € Xn for each integer n. Take wo= Y,
for n € 1”7 and w, =2, for each integer n ¢ I”. Since (X,i) € Qij there
exists x € B such that x > y. Hence by (b) there is a sequence X, > X such
B

that eventually x > w . For n € 17 this implies that X, > Since the

n “°j°

x ~are eventually in Bi this contradicts the definition of I. Hence I must be

a finite set, i.e., the (Xn,in) are eventually in Qij' Q.E.D.



The concept of T-convergence is evidently at least as weak as the

criterion proposed by Kannai. Tt will now be seen that it is strictly weaker.

EXAMPLE 1. Let E = RZ and X, = X Ri. Take >n to be the preorder

represented by the utility function un(a,b) = min{(n+l)a + %', a + b} and take
> to be represented by u(a,b) = a + b. See Figure 1.

To show that the preference orders are T-convergent to (X,i), choose any
x = (a,b) and y = (c,d) in RE such that u(x) > u(y). Let (yn) be any sequence
from RE converging to y. Certainly u(y) = lim u(yn) > limsup un(yn). If
a > 0 then eventually un(x) = u(x) > u(y), so Proposition 2 (b) is established
by taking x_ = X. If a = 0, then we will obtain un(xn) = u(x) and hence the
desired result if we set X = (an’bn) where a, = b-(2n+1)_1 and
b, = 2nebe(2n+1)7L,

However the preference orders are not convergent to (X,~) under Kannai's
criterion since, e.g., if a = 0, b =3, ¢ =d = 1, then u(a,b) > u(c,d) but
un(a,b) < un(c,d), ¥n.

The sequence does converge in the closed convergence topology to a
continuous, reflexive, negatively transitive relation on R%, say io [the
existence of a subsequence convergent in this sense is demonstrated by
Hildenbrand (1974, Thm. 1.2.1))}. This is the relation defined by x io y iff
either u(x) > u(y) or u(x) > %u(y) and y = (0,d) for some d. This relation
does not belong to Q since the indifference relation ~o (defined as usual by
x ~_ y iff x io y and y io x) is not transitive. For example, (0,1) ~o (0,2)

(¢]

and (0,2) ~5 (0,4) but (0,1) *o (0,4).

[INSERT FIGURE 1 HERE]



The example illustrates a general principle: 1if a sequence ((Xn’in)) has
a t-limit (X,~) € P and a different limit (Xo,io) in the closed convergence
topology (in which case it is necessarily true that (Xo,zo) ¢ P) then X = X,

follows from Proposition 2 and Appendix

and > < io' The fact that X = XO

A(II) of Hildenbrand (1970). The inclusion > c :o follows from the fact that
T-convergence implies > < Li in (to see this use local nonsatiation and
Proposition 2). The condition > < :o means that if x >/ y then x> y; on the
other hand we may have x ~, y but not x ~ y. There will be more (too much?)
indifference under the relation io’ as the example also demonstrates.

The claim that io is the limit in the closed convergence topology but not
in t deserves some clarification. Of course it could not be the limit in =1
since it is not in the space on which T was defined. We could just as easily
arrange matters so that it is not the limit in the closed convergence topology
either, simply by restricting that topology to the space P. 1In that case we
are back to Kannai's criterion. But then the sequence would not have any
limit, nor even a cluster point. To obtain a compact space under Kannai's
criterion, we need to count io as the limit; this is not necessary under the
criterion defined by T (see section 4).

The existence of the limit io # > suggests there would be difficulty in
extending the criterion given here to the entire space of continuous,
reflexive, negatively transitive relations. 1If we were to attempt to do so in
a way which would preserve the relation between this criterion and the Kannai-
Mertens criterion —— namely the fact that this criterion is less restrictive
—— then we would have to admit both io and > as limits of the sequence, i.e.,
the space would not be Hausdorff. This is a well-known corollary of the fact
that the space is compact in the closed convergence topology, Hildenbrand

(1974, Thm. 1.2.1).



There are Hausdorff extensions of this criterion to the space studied by
Hildenbrand. For example one can take a metric p for (P,7) and a metric & for
the closed convergence topology, each bounded by 1, and define
d((X,=), (X',>')) to equal p((X,>), (X',>')) if both (X,>) and (X',=') belong
to P, to equal 6((X,>), (X',>")) if neither belongs to P, and to equal 1 if
one belongs to P and the other does not. This defines a metric on
Hildenbrand's space [see, e.g., Engelking (1968, Thm. 4.2.1)] for which the
relative topology on P obviously coincides with t. This metric topology is
neither weaker nor stronger than that of closed convergence —— the sequence
furnished in the example is convergent in both topologies, but to the
different limits already noted. Observe that the metric space is not

connected, the subset P being both open and closed.

3. Upper-hemicontinuity of Demands

Here it will be shown that "similar agents behave similarly” when
similarity of agents' preferences is understood as in the preceding section.
Demands vary continuously with changes in preferences, endowments and prices
in exactly the manner in which they do when the Kannai-Mertens criterion is
used to define similarity of preferences [see Hildenbrand (1970, Appendix A)].

In the following we give the set M the relative product topology,
equipping P with the topology T and Kl X ]1/Q with the usual topology.

2 2
RX and let the subset M of P X K X K be such that for

THEOREM 1. Let E
every ((X,i),w,p) € M the consumption set X is convex, the budget set
y((X,:),w,p) = {x € le-x < pew} is compact and inf p*X < pew. Then the
demand correspondence £ of M into RX is upper-~hemicontinuous ——

E((X,>),w,p) is the set of >»-maximal elements in y((X,>),w,p).
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Proof. Since tT-convergence implies closed convergence of consumption sets,
Hildenbrand's proof (1970, Appendix A (III)) applies to show that the budget
set correspondence is upper-hemicontinuous. Therefore, as in Hildenbrand
(1970, Appendix A (IV)), we need only show that £ has a closed graph
. 2
in M x R .

Let ((Xn,:n),wn,pn)-* ((X,-),w,p) in M. Suppose X € E((Xn,:n),wn,pn)

2
and xn-* x € R+« Then x € X and p*x < p*w. Consider y € X such
that pey € p*w. By the definition of M there is some z € X such
1

that p*z < p*w. Let Y, = (ﬁﬁz + (1 - %ﬁy. By the definition of M, y, € X.
Suppose y ~ X. Then by the T-convergence there is a sequence Yyn> Yg @8 07

= guch that eventually Yin >n X_. But eventually pn°ykn < pn.wn’ which would

n
contradict x € E((Xn,in),wn,pn). Hence X > Y+ BY the lower-semicontinuity
of >, x> y. Q.E.D.

~

4, Properties of the Spaces of Preference Orders

The main result of this section is:

THEOREM 2. The space (P,tT) is separable and metrizable, and the space (Q,7)

is o-compact, separable and metrizable.

The concept of o-compactness is defined by Dugundji (1966, p. 240). It
will actually be shown here that for any compact K¢ E, the set
QK = {(X,=) € QX n K # 0} is compact in the subspace topology. There is
little loss in fixing some large K and taking QK rather than Q as the basic
space of preferences. Hildenbrand (1974) follows this procedure to obtain a

compactness result.
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Before the theorem is proven, an example will be given to show that P
does not have a compactness property. Compactness fails for P because it is
not closed in Q. It seems reasonable to conjecture that it is a Gg subset of
Q. If so, then it would have the important property of being metrizable in a

complete manner, Dugundji (1966, IX.7.2, XIV.2.4, XIV.8.3). However I have

been unable to ascertain whether this is true.

EXAMPLE 2. Let E = Rz and X, = X = Ri. Let :n be the preorder represented by
the utility function
-n
ez farh) ifa+b <l
1-a+2
un(a,b) =
a+b if a+b>1
Let > be the preorder represented by
l—b— if a+ b <1
-a
u(a,b) =
a+b if a+b> 1

The indifference curves for these functions are shown in Figure 2. It is

2

straightforward to check that u, is continuous and strictly monotone on Ri.

n

Thus (X ,~ ) € P. Similarly one can verify that u is upper-semicontinuous and
n’~n
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monotone; however u fails lower-semicontinuity at (1,0) since u(l-¢,0) = 0 for
every 0 < £< 1. Hence (X,>) € Q\P. Yet the sequence ((Xn’in)) is 1-
convergent to (X,>). In fact a strong form of Proposition 2(b) is
satisfied: if x> y and y, > y in Ri then eventually x > Vo This is true
because the u, are pointwise convergent to u and satisfy a one-sided form of
continuous convergence —— we have u(y) > limsup un(yn) for every sequence
Yo+ ¥e The failure of the opposite condition, u(y) < liminf u,(y,),
¥y, Y is obviously related to the failure of lower-semicontinuity of u.

In the closed convergence topology the preference orders (Xn,:n) converge
to the relation io on Ri defined by: if x,y # (1,0) then x io y iff
u(x) > u(y); if x = (a,b) such that a + b > 1 then x >0(l,0); and if x = (a,b)
such that a + b € 1 then x ~O(1,O). Lower—semicontinuity of the limit
relation at (1,0) is obtained, very roughly speaking, by assigning each point
in the interval {0,1] as its utility level. Again we note the extent and

nontransitivity of indifference under >O.
{INSERT FIGURE 2 HERE]

Proof of the Theorem. By construction the spaces are second countable and

therefore separable. The space (P,t) will inherit the metrizability of (Q,t),

so it is enough to show that (Q,T) is o-compact and metrizable. First we
prove the metrizability.

Since (Q,T) 1s second countable, the Urysohn Metrization Theorem
[Engelking (1968, Thm. 4.2.4)] can be applied once we show that (Q,7) is
regular. The first step will be to prove that it is a Tl—space.

Let (X,>) and (X',>") be distinct elements of Q. In view of Proposition

2(a) — and the second countability of (Q,t) —— the map (X,i)-* X from Q to
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the class of closed subsets of E, equipped with the closed convergence
topology, is T—-continuous (see Hildenbrand (1974) for the definition of the

closed convergence topology). The closed convergence topology is T Hence

1
if X # X' there exists a t-open set which contains (X,>) but not (X',=").

Suppose X = X' but > # i'. Then there exists x, y € X such that either
(i) x>y and y>' x, or (ii) x >' y and y > x. 1In case (i) by upper-
semicontinuity there is an open set G such that x € G and y >' G. Taking
K = {y} we have that the set {(X“’i") € Q|3 x € G such that x >" K}. which by
Proposition 1 is T—-open, does not include (X',:‘). But in case (i) it does
include (X,i), by virtue of local nonsatiation. 1In case (ii) we rely on the
upper—semicontinuity of > and the local compactness of E to obtain an open
relatively compact set B such that x € B and y > B [see Engelking (1968, Thm.
3.6.2)]. By the local nonsatiation of :' there is some z € B such that z >'
y, and by the upper-semicontinuity of i' there is an open set H containing y
such that z >' H. 1In particular there does not exist w € H such that w >' B.
Since we have already observed that (X,i) belongs to the (tv—open) set
{(X",i") € Q|3 w € H such that w>" B}, the argument is complete.

Now to prove that (Q,t) is regular, it suffices to take an arbitrary
(X,i) € Q and a subbase element Qij containing (X,i), and to exhibit a
neighborhood U of (X,~) such that Qij contains the t-closure of U [Engelking
(1968, Thm. 1.5.3)].

Suppose first that 1 » 1, so (X,>) € Q,, means that there exists x € Bi

with x > §j. Since E is regular there is a By in the given basis such that

=N

X € B <

N e S Bi [Engelking (1968, Thm. 1.5.3)]. Also by upper-semicontinuity

we can cover Ej with open sets Ha such that x> H , ¥a. Again using the
Q

regularity of E we can take this covering to be by basis elements By, such

that x > Bl’ ¥4. Choose a finite subcovering, say {Bl|l=l,...,n}.
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n

Setting U = QQIQ , we certainly have that (X,>) € U. We claim moreover that

kR

the t-closure of U is contained in Qij' Clearly Uc Vc QiJ where

(o=}

B }.

V= {(X"',>") € Qlayeﬁk such that y >' )

2=1
Also the complement of V is the set of (X',>') for which either X' n Ek =@ or
(using the fact that there is a i'—maximal point in Ek) for which there is

n
some x' € U, B, such that x' >' Ek' Hence by Proposition 1, the set V is 1-

2=1 "R
closed.

Now if i = 0 then (X,:) € Qij means that X N Bj = @. Since X is closed
and Ej is compact, the local compactness of E implies that there is an open,
relatively compact set G such that Bj c Gand XN G = ¢ [Engelking (1968),
Thm. 3.6.2)]. Taking U = {(X',i')lX' ng-= P}, we have (X,i) € Uc Vc Qij
where V = {(X',:')|X' N G = p}. The continuity of the map (X,>) > X implies

that V is t-closed [see Hildenbrand (1974, p.18)].

It remains only to prove the o-compactness. First we note that E, being

second countable and locally compact, can be written as E = agl Ga where each
Gy is a relatively compact open set and where 6a<: Ga+1 for each a [Dugundji

oo

(1966, Thm. IX.7.2)]. Clearly Q = U Q where Q = {(X,») € Q|X n G # §}.
=l Ta a ~ a

Each Q4 is t-open (again use the continuity of the map ((X,-) > X). Moreover

Qa is contained in Q; = {(X,>)1X n Ea # 0} which in turn is contained in

Qg1+ Thus the result will follow from Dugundji (1966, Thm. IX.7.2) upon

proving that each Q& is T-compact. Since (Q&,T) is metrizable, compactness is

equivalent to sequential compactness [Engelking (1968, Exercise 4.3.E)].

Fix an a and write K = Ga' Choose a sequence ((Xn,>n)) from Q such that

Xn N K # @, ¥n. We can extract a subsequence such that the X, have a closed

limit X ¢ E satisfying X N K # ¢ [Hildenbrand (1974, Thm. I.B.2)]. We will
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continue to write this subsequence as ((Xn,>n)).
For each Bj in the given basis for E, let S, = {x € X_{x>_ B.}. By
in n n i
local nonsatiation the complement in X, of Siy 18
{x ¢ Xn13y € Bi such that y >n x}, which by upper-semicontinuity is open in

X,+ Hence Sin is closed in Xn’ equivalently closed in E.

We can extract a subsequence from ((Xn’in)) such that for each i, the
sequence of sets S has a closed limit Si c E, as n» « (Si will possibly be
empty). We write this subsequence now as ((Xn,:n)).

Define a binary relation > on X by setting x > y iff, ¥i, x € By implies
y ¢ Sy- We will prove that (X,i) € Q and that it is the 1-limit of the

> -
(X2

REFLEXIVITY: If it were not the case that x > X then there would be some

i such that x € B; and x € S;. But B, n S, = #, ¥n, so B, n s, = a.

COMPLETENESS: Consider any x, v € X for which it is not the case that
x > y. Fix an index i such that x € B, and y € S,. For any neighborhood B,
~ i 1 J

of y we certainly have Bj n s, # ¢. This implies that eventually

. NS, . . ..o = 0.
BJ Sin # . By the definition of the S;, it must be that B, N SJn /) In

the limit we obtain Bs n Sj = . In particular x ¢ Sj. Since this holds for

each Bj containing y, we have y > X.

TRANSITIVITY: Consider any x,y,z € X satisfying y > z and z > Xx.
The latter condition means that there is some i such that x € Bi and z € Si'

To show that y > x it suffices to show that y € Si’ which is equivalent to the

condition that for each neighborhood Bj of y we eventually have

Bj n Sin # . Note that if y € Bj then the condition y > z implies that

z ¢ Sj' Since Sj is closed, and E is regular, there is an index k such that

1 N = . n = .
Bk includes z and Bk Sj ) Eventually we must have Bk Sjn 1)

Moreover since z € S, N Bk it must also eventually be true that B, N Sin +# 0,



16

i.e., that there exists v_ € B, satisfying v_ >_ B.. But the condition B, n
n k n n 1 k

Sjn = () implies that vy #n Bj; since v € Xn’ this is possible only if there

i € B. tisfyi > > B.,. W h B, n S,
is some w, i satisfying wn o Vo T By e now have 3 Sln # @, as
desired.

UPPER-SEMICONTINUITY: Consider any x,y € X and any sequence LSRR in X

for which X > y, ¥m. Choose any 1 such that x € Bi' Eventually we have

x, € B so it must be that y ¢ Si' Hence x > vy.

LOCAL NONSATIATION: Choose any x € X and any neighborhood G of x. By
the local compactness of E there are indices i,j such that

x € Bi c Ei c Bj c Bj ¢ G [Engelking (1968, Thm. 3.6.2)]. By the closed

convergence of the sets X,, we eventually have Xn n Bi # $. Since zn is

upper—semicontinuous there is a in—maximal point in X, n Bi' By the local

nonsatiation of in there must be some z, € Bj which is in—preferred to this

point. Therefore, for sufficiently large n, Bj n Sin # #. This implies

that gj ns, # . But if y € §j N S, then y € G and, by definition, y > x.
CONVERGENCE: We need only verify Proposition 2(b). Let x > y. This

means that there is some Bi such that y € Bi and x € S;j+ The latter condition

implies that there is a sequence X, 7 X such that, ¥n, X € Sin’ i.e.,

X >n Bi' If we choose any sequence y,7 ¥, we must eventually have

X > y . QQE.D.
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FOOTNOTES
1 This criterion was first mentioned in the author's 1986 paper in this
journal. The present paper supplies proofs of properties mentioned in that

paper as well as additional details.,
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