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1. Introduction

The purpose of this paper is to develop a new model for the arbitration
of cooperative games in normal form. We take it for granted that the purpose
of arbitration is to select a single Pareto-optimal outcome which,
in some sense, reflects the relative strengths of the players in the under-
lying cooperative game. The novel feature of our approach is the method by
which these strengths are measured.

For two-person games, Zeuthen proposed in [14] and Nash proposed and axiomatized
. 1a [6) the same solution for the special éasé of bargaining with a fixed threat point.
Nash '1$téf‘éxtended this in [7] to twc-person games in normal form; The .
quthen-Nash bargaining model and Nash's extended bargaining model have been
the major focus of interest in the two person case.’:(Sindéwbargainers presumably
take advantage of their relative strengths, we assume that arbitrators could
make use of bargaining solutions,) In [9] Raiffa introduced a different solution
for the fixed-threat case which has recently been axiomatizedrbyvKalai-and
Smorodinsky [4].

For n-person games the major arbitration-type solution concepts are all
derived from the Shapley value, proposed and axiomatized in [12] for n-person
characteristic-function games with side payments. This has been extended to
normal-form games with side payments by Harsanyi [2] and Selten [11]. The
Harsanyi-Selten concept also generalizes Nash's extended bargaining solution.

A further extension to characteristic-function and normal-form games without
side payments has been indicated by Shapley in [13]. (Although the references
in the above discussion do not exhaust the important work done-on models of
arbitration and bargaining, they should be sufficient for purposes of comparison
with what we will propose. Some other arbitration schemes are described, for

example, in [5] and [9].)
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Differing from all of these, our approach focuses on what each player
can gain by committing himself to a course of action before his opponent does.
It is perhaps ﬁost easily seen in contrast with Nash's extended bargaining
model for the case of two-person games with side payments. For this reason
we begin by developing this case in Section 2, although our solution coincides
with the Shapley value of the characteristic-function form in tﬁis;égtting. In
Section 3, we.extend our idea to.the twosperson no-side-payment cas@=Im=Section
% we indicate the relationship with the Raiffa-Kalai-Smorodinskj £RES) .uodel.and
the-Zeuthen=Nash ‘model forcthe special case of fixed threats. in Section 5,

extensions to n-person games are proposed.

2., Two-Person Games With Side Payments

In this section we begin with the problem of how to arbitrate a cooperative
two-person game in normal form when unrestricted side payments in a.transferable
~at;11ty medium are possible. For this-class of games, Nash's extended bargaining
model involves constructing a zero-sum "threat game"” from the given nQrmal-form
game bfAreplacing the payoff pairs (aij,bij) for each pure strategy comb?nation_
(1,j) by (aij';bij)'" The extended bargaining solution to ‘the cooperétiveigamé :
is then that Pareto optimal point (x,¥) for which x -y equals fhe equilibrium
value of the threat game. Usage of équilibria in the threat game, however,
reveals a particular point of view about which threats are believable; namely,
that a threat is believable or not according to the relative severity of damage
which is done to the opponent vs. damage to the threatener. "This will huft
you more than me' is acceptable reasoning. |

Consider the following three examples, all normal-form games played

cooperatively and with side payments.

Example 1:

10,0 1-10,-30




Example 2:

10,0  {-20,-30

Example 3:

10,0 . |-30,-30

The extended bargaining solutions are, respectively, (10,0), (10,0) anq

(5,5). In the first two examples, player 2's threat to ?lay his second

strategy is ignored by the solution; while in the third example, it is evidently a

reasonable enough threat to warrant a sidé payment of 5. To us the relative

damage kind of argument and the consequent solution seem to be somewhat arbitrary.
It seems to us that whether or not player 2's threat in each of tﬁe above

games is believable depends upon whether or not he can convince player 1 that

he is irrevocably committed to the threat before player 1i$ last chance to

agree to a side payment. If player 2 desires only to maximize his own utility

and if he has left himself the choice, then when it comes time actually to play

the game, he will not use his threat. Thus it seems to us that threats are in-

extricably tied up with the idea of self-commitment-to various strategies. In

example 1, if player 2 is able to commit himself irrevocably to the following

policy "play strategy 2 unless player 1 agrees to a side payment of (20 - €)

utility units (where ¢ is a small positive number)", then player 1's only

‘rational action is to agree. The outcome is then (-10+-€, 20 -¢€).

The concept of.irrevocable sel f-commitment has been discussed in the
bargaining literature (see, for example, [3] and [10]). but never; previocasly
incorporated into a formal model to our knowledge. In other game-theoretic
settings it has been the subject of some controversy (see, for exagple, [1]).
We shall avoid the controversy for the present by stating that our proposed
solution is meant to apply to situations in which irrevocable self-commitments
are possible, but the arbitrator is unable to know which player is in a better

position to commit first. TFor eituations in which this is not a valid assumption,



our solution is certainly based on somewhat arbitrary considerations. (With
unspecified preplay negotiation rules, however, some arbitrariness is probably
unavoidable.)

We propose that the arbitrator consider the commitment statement for each
player which is best for him along with the opponent's Beét'responsé and then
treat the resulting iwo points symmetrically; i.e.; split the‘difference.

»
(This assumes an absence of any information for the arbitrator about which player
is in a better position to commit first. In practice, such information may
be available and perhaps should be taken into accountf as sﬁ%uld any other un-
modelled information.) 1In the examples, 1's best alternaﬁivg is to commit him-
s2lf to no side payment, thus insuring the outcome (10,0). G;od alternatives
for 2 are to commit himself to his second strategy unless 1 agrees to pay
(20 -¢), (30 -¢), and (40 -€), respectively (where € is a small positive number).
Treating the commitment points symmetrically and letting ¢ to go to zero, the
arbitrated outcomes in the three cases are (0,10), (-5,15), and (-10,20),
respectively.

More generally; let (aij’bij) be the respective payoffs (in transferable
von Negmann-Mbrgenstern utility) to 1 and 2 for strategy combination (i,j) EI{xJ,
whgre I and J are the finite pure strategy sets for 1 and 2,“respecti§e¥¥%? Since

‘unrestricted side payments are assumed, the Pareto optimal surface for: thi"s;s:’game

. i
is {(x,y) : x+y= max (a,,+b,,)}. Let I*={p=(Dyyese, :p=20, 2p, =1}
a,perxy 3 1] 1 A g=1 *

be the set of mixed strategies for player 1, where |I| and }J] ars-theucaraiégiities

° .
af I and J, respectively.. If 1l were to play mixed'strépegy P, the payoff to 2's¥Pest
. I B ) . L o
response would be max Z)pibij‘ 1 can therefore guarantee that 2 receives igfmoret
: JEJ i=1.0. 7 : o : i R

L iTl - - ‘
. than:nug: “mAX lZBpibij. This is simply the value of the zerdo-sum game definad
CpEI* T i=1"" = : S : C L CEL il

ﬂby thgimatrfx_BTfﬁ(bij)ff;,By comyitting first, player. 1 can_thexéfore~éffect the

payoff (x,y) in the cooperative game such that



x+y = max (a ,4+b,.)
W,jperxg 13 1

y =val (B") +¢,

where' ¢ is any positive number (monnegative if 2's best réply to 1's threatened
strategy i..s Pareto optimal). Letting € go to zero we obtain player 1's "commits=
ment point ®: Reasoning akalogously for player 2 and averaging, the arbitrated
outcome of the cooperative game is (x,y) where (setting A= (aij))

x+y = max (a,.+b,.)
A, perxg 4

x-y = val (A) -val (BT)

The Nash extended b‘arlga;'.n'fn‘g’sc;luf:ién is, by contrast, the point (x,y) where:

x+y = max (a,,+b,,)
(1,j) €1xJ i34
x-y = val (A-B)

YT Before leaving this section, let us consider another example,

Example 4:

1,4 -1,-4

~4,-1 4,1

In Example 4, Nash's extended bargaining solution is (1,4), whereas our

solution is (%,%) It is argued in [5] that in this game, player 2 is in a

stronger bargaining position than player 1 and that the symmetric Pareto

optimum (arrived at there from other considerations) is therefore imappropriate.

In that argument it is player 2's threat to play his first pure strategy which

is so strong. In our minds, however, player l's threat to play his second

e — e E——— . G e



pure strategy is equally viable as long as commitments are possible.

3. Two-Person Games Without Side Payments

For two-person games with no side payments possible, the feasible set of
utility pairs, achievable by correlating strategies in the given normal-form
game, is the convex hull of the set of payoffs in the normal-form game. The
solution proposed in Section 2 for the side-payment case is not applicable for
the no-side-payment case for two reasons: 1) the commitment points assuming
side payments may not be attainable without side payments, and 2) the average
of two Pareto optimal commitment points may no longer be Pareto optimal, We
shall extend the notion of commitment point to the no-side-payment case and
then provide a natural method for selecting an arbitrated Pareto optimal
outcome on the basis of the commitment points.

The rationale behind commitment points remains the same. Whatever strategy
player 1 conditionally commits himself to, player 2 can consider his best
response. Thus player 1 can hold player 2 to val (B"). If C is the convex hull of

[(aij,bij) :1€1, jE.J}, then 1's commitment point is (il;yl) where:

El = max x
subject to (x,y) €C

y 2val (B")

7, €Y, ={y: &,y €c)

The set Y1 consists of a single point whenever the weak Pareto boundary of -
C contains no vertical line segments. (A .point (x,y) €C is weakly Pareto optimal
if B(u,v) €C with u>x and v>y. (x,y) is strongly Pareto optimal in C if
(u,v) €¢C, (u,v) 2 (x,y) implies (u,v) = (x,y).) In this case, 1's commitment point

is uniquely determined. Otherwise, player 1 (who is in control) is indifferent



over {(il,y) :y‘EYl] and 1's commitment point may not be uniquely determined
(see Figure 1).

Player 2's commitment point is similarly defined as (_-:"2252) vhere:

¥, = maxy

subject to (x,y) €C
x=val (A)

%, €X, = {x: (x,7,) €C}
Notice that both commitment points are continuous functions of the pair (A,B)
except at some games in which the weak Pareto boundary of C does notéédigéfde:&ith
the strong Pareto boundary. Since the solution we shall propose depends con- .
tinuously on the commitment points, this solution may in turn be discontinuous
in (A,B) at such games.

The problem remains for the arbitfator to select a single Pareto optimal
point reflecting the strengths of the respective commitment points. Weléra-
pose the following functién f:of that part P of the weak Pareto boundéry lying
bet&één the commitment points: 1if L is the line segment joining (i;;ﬁ%)ﬁto-

-

(3‘:1,?2) then F chooses the unique {whenever §1>§2 and 37'2>'}'r'1) point common

‘to L and P (see Figure 2). (If %, "%, orA§1==§2, there is a unique outcome

which is strongly Pareto optimal. This is the value of F in such cases. .

RE

Ncéﬁi,;c;:éffhat %, 2%, and 7, 27, alvays hold.)
Before proceeding.to justify this choice of F, we note the following
1. If P consists of a single line segment with slope strictly
between zero and -w, then F selects the midpoint of the line
segment. Thus F generalizes our solution for the side~payment
case.

2. The domain of F may be extended to include any closed con-
nected subset of the weak Pareto boundary of any compact
convex set inﬁRz. The set of all such sets will be referred

to as dom F.
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3., F is continuous on dom F (for example, with the Hausdorff .
distance on closed subsets of RZ). The solution is there-
fore continuous in the game matrices except at those games
mentioned previously.
We shall now attempt to justify F by showing that it is the only function from dom F
to 1{2 which satisfies t‘_f}e _for__lélow_‘i..»hn_g axiomé. (Oi course, by ;restritlzti:ngi matters

to dom F, a considerable simplification of the problem has already been made.)

Al: (Pareto optimality) F(P) is strongly Pareto optimal in P.
A2: (gymmetry) Suppose P is symmetric (i.e., (x,y) €P«{y,x) €P), then the com-
ponents of F(P) are equal.

A3: (independence of affine utility transformations) If P’ ={arx*1'5§iy_;t& X

g @d if F(B)-= ,7°), then F(@') = (ofx'O*‘B,yy +8). o 7o

A4: (monotonicity) Suppose that P and P' are elements Gf dom F-with identical

'
endpoints, and that coP (the convex‘hyll' of P)TeanEafns.coP’, then F(F) ?F(P )

Theorem: F is the only function from dom F to R2 which satisfies Al-A4.

ProGf: That F satisfies Al-A4 is immediate. Let P be any set in dom F with
more than one strongly Pareto optimal point. By A3, we may assume that the
commi tment points of P are at (1,0) and (0,1), respectively. 1In this case,

F selects the symmetric point p in P. Let P' € dom F be the union of the line
segments [(0,1),p] and [p,(1,0)]. By A2, our function must map P' into p.
coPscoP';,hence our function must map P into that part of P which is at least

as large as p. Thus our function must be F,

The axioms, theorem, and proof are all closely related to their analggues
in [4].
We shall not go into the details of Nash's extended bargaining model for

the no-side-payment case (see [8] for a clear discussion). As in the side-



payment case, those threats which in some sense harm che opponent more than the
threatener are viable for the threatener in Nash's solution. - This is in sharp
contrast to our solution in which the harm to the threatener is never taken into
account. Our model is therefore responsive to what may seem to be extremely

. irrational threats. On the other hand, our arbitrator need never consider whether
it makes sense to carry out any threats at a11, only commitments. Another dif-
ference between the two models {a that: Nash 8 solut:..on is !:elativelyv mor:a; sensieive

Vto small changes. in the- Pareto curve near the solution and. completely insensitive

to- sgta117.-change3' in the.Pareto~curve near the‘ commitment points.

4, Fixed-Threat Games

Let C be a compact, convex set in ]R2 and let q=(q1,q2). be a point in C.
The fixed threat bargaining game (C,q) may be simply described as follows: if
the two players can agree on a utility pair in C, then they receive that point;
Af they cannot agree, they receive utility pair q. By reasoning as in .the

previous sections, we can define commitment points €§1,=$"1), (ﬁz,'j'fz) as follows:

X, = max x
1

subject to (x,y) €C

(st) 2q

F, €Y, = {y: Gy ech

72 = max y
subject to (x,y)€C
(st) 2q

€X, = {x:(x,'}?z)EC],

where Y. and X, are singletons except possibly when the weak and strong Pareto

1 2

boundaries of C are not identical: F is then defined as in Section .3.
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The solution just defined bears a close relatiénship with thé RKS“solﬁéiég
for fixed-threat games. Instead of selecting the point which P anﬁ L have in
common, the RKS solution'$ selects the point which P and L' (the line segment
[(ql,qz),-€§1.§z)] have in common (see Figure 3), 4 has been shown to be the
only solution which satisfies certain reasonable axioms which are closely
related tq?Al -Ad}? Our-solution agrees with | whenever the respective commit-
_ment_pdinfs 1ie-on the horizontal and vertical lines, respectively, .through"

q. ‘When neither of these is true, our solution is insensitive to movements arim

in q; while ¥ is sensitive to such movementg..™ =%

The Nash-Zeuthen solufibﬁ, by way of contrést, selects the point n:IEwP
at which there exists a line supporting C with slope equal to the negative of
the slope of the line from q to m. m has been sho@n tb be the only solution
which satisfies another set of reasonable axioms. Unlike § and F, .n depends
on the local behavior of P and is insensitive to changes in commitment points.

Both ¥ and n select unique outcomes for all fixed threat bargaining games
and are continuous functions of C and q. Our solution, once again, is either not
uniquely defined for certain games or, if a somewhat arbitrary choice is made '.
from Y, or X,, is discontinuous.

1

5. n-Person Games

In this section we will indicate briefly how one might extend our two=-
person solution to an n-person normal-form game ' No attempt will be made té
Justify this extension except by analogy to existing models.

First let ' be a side payment game. We begin by recalling the Harsaﬁyi-
Selten value [2,11]. Given a coalition S, define a 2-player side payment:game
Fs in normal form as follows: The players are S and its complement N\S, the

pure strategies of S (or N\S) are the |S|-tuples (or |N\S|-tuples) ©f pure
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strategies of its members, and the payoff to S (or N\S) is the total payoff

to its members. Let v'(s) be the payoff to S when the Nash arbitration

scheme 1s used in FS. Then the Harsanyi-Selten value of I' is the Shapley value
ov' of the characteristic function v',

Rather than applying the Nash arbitration schéme to FS’ we may apply our
scheme. Let v'" be the resulting arbitrated payoff to S, and let gv'" be the
corresponding Shapley value. ov" is the arbitrated solution we suggest-forI.
Interestingly, this arbitrated solution coincides with the Shapley value gpv
when v is the VYon Neumann-Morgenstern characteristic. function, 1.e. v(8) is

the maxmin of the payoff to S in Ts. To see this, note that
v (5) =3(v(S) +v (M) - v(\S)) .

For games without side payments, we can use the method of [13] to show
that for some choices of weight-vectors A, the arbitrated value mv; obtained
by weighting each player i's utility by Ai’ allowing side payments, and then
using the above arbitration scheme, results in a payoff attainable without

side payments in '« Such outcomes become candidates~for the-grbitrated solution

te I'.



1,

12,

13.

'14.

-12-
References

AUMANN, R., and MASCHLER, M., "Some Thoughts on the Minimax Principle",
Management Science Vol. 18 (1972), pp. 54-63.

HARSANYI, J., "A Bargaining Model for the Cooperative n-Person Game",
Annals of Mathematics Studies 40 (Tucker and Luce, eds.) Princeton
University Press, 1959, pp. 325-355.

HARSANYI, J., "On the Rationality Postulates Underlying the Theory of .
Cooperative Games'", Journal of Conflict Resolution Vol. 5 (1961), pp. 179-196.

KALAI, E., and SMORODINSKY, M., '"Other Solutions to Nash's Bargaining Pro-
blem", Econometrica Vol, 43 (1975), pp.513-518.

LUCE, D., and RAIFFA, H., Games and Decisions, John Wiley and Sons, New York,
1957, Chapter 6.

NASH, J., "The Bargaining Problem", Econometrica Vel, 18 (1950), pp. 155-162.

NASH, J., '"Two-Person Cooperative Games'", Econometrica Vel. 21 (1953), pp.
128-140.

OWEN, . G., Game Theory, W.B. Saunders Co., Philadelphia, 1968, Chapter 7.

RAIFFA, H., "Arbitration Schemes for Generalized Two-Person Games", Annals
of Mathematics Studies 28 (Kuhn and Tucker, eds.), Princeton University Press,
1953, pp. 361-387.

-

s T., "An Essay on Bargaining", American Economic Review, Vol. 46

‘ (1956), op. 281-306.

SELTEN, R., "Valuation of n-Person Games" , Annals of Mathematics Studies 52
(Dresher,»Shapley, and Tucker, eds.) Princeton University Press, 1964, pp.
577-626.

SHAPLEY, L., "A Value for n-Person Games', Annals of Mathematics Studies 28
(Kuhn and Tucker, eds.), Princeton University‘Press, 1953, pp. 307-317.

SHAPLEY, L., "Utility Comparison and. the ‘Theory of Games"; ‘La Decision,
Editions du Centre National de la Recherche Scientifique, Paris, 1969, pp. -
251-262.

ZEUTHEN, F., Problems of Monopoly and Economic{Warfare, G. Routledge and
and Sons, London, 1930.



2's utility

CEAE, CEILT GEDED CEEEE LD GRS D o

1's utility

Figuré 1



- 2's utility

{'s utility
Figure 2



2's utility

~1's utility
Figure 3






