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1 Introduction

In many examples of the monopolist’s selling problem (optimal auctions),1 the seller has

considerable control over the accuracy of the buyers’ information concerning their own

valuations. Very often, the seller can decide whether the buyers can access information

that refines their valuations; however, she either cannot observe these signals, or at

least, she is unaware of their significance to the buyers. For example, the seller of an

oil field or a painting can determine the number and nature of the tests the buyers can

carry out privately (without the seller observing the results). Another example (due

to Bergemann and Pesendorfer, 2002) is where the seller of a company has detailed

information regarding the company’s assets (e.g., its client list), but does not know

how well these assets complement the assets of the potential buyers. Here, the seller

can choose the extent to which she will disclose information about the firm’s assets

to the buyers. Sometimes, the buyers’ valuations become naturally more precise over

time as the uncertainty of the good’s value resolves, and the seller can decide how long

to wait with the sale.

When the buyers’ information acquisition is controlled by the seller, that process

can also be optimized by the mechanism designer. In this paper, we explore the revenue

maximizing mechanism for the sale of an indivisible good in a model where the buyers

initially only have an estimate of their private valuations. The valuation estimates

are refined by signals (added to the initial estimates) that the seller can costlessly

release but cannot directly observe. This model captures the common theme of the

motivating examples: the seller controls, although cannot learn, private information

that the buyers care about.

Our main result is that in the revenue-maximizing mechanism, the seller will allow

the buyers to learn their valuations as precisely as possible, and that her expected

revenue will be as high as if she could observe the additional signals.2 That is, the

buyers will not enjoy additional informational rents from learning their valuations

more accurately when the access to additional information is controlled by the seller.

Besides these surprising findings, an added theoretical interest of our model is that the

1Early seminal contributions include Myerson (1981), Harris and Raviv (1981), Riley and Samuel-
son (1981), and Maskin and Riley (1984).

2In this hypothetical situation the buyers may or may not observe (but in either case can ex post
verify) the additional signals.
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standard revelation principle cannot be applied, yet we are able to characterize the

optimal mechanism.

We also exhibit a simple mechanism, dubbed the handicap auction, which imple-

ments the revenue-maximizing outcome. This auction consists of two rounds. In the

first round, each buyer buys a price premium from a menu provided by the seller (a

smaller premium costs more). Then the seller releases, without observing, as much

information as she can. In the second round, the buyers bid in a second-price auction,

where the winner is required to pay his premium over the second highest non-negative

bid. We call the whole mechanism a handicap auction because buyers compete under

unequal conditions in the second round: a bidder with a smaller premium has a clear

advantage.3

For a single buyer, the handicap auction simplifies to a menu of buy-options (a

schedule consisting of option fees as a function of the strike price), where the buyer

gets to observe the additional signal after paying for the option of his choice.

Our model also nests the classical (independent private values) auction design prob-

lem as a special case, where the additional signals are identically zero. In this case, the

handicap auction implements the outcome of the optimal auction of Myerson (1981)

and Riley and Samuelson (1981).

Several papers have studied issues related to how buyers learn their valuations in

auctions, and what consequences that bears on the seller’s revenue, both from a positive

and a normative point of view. One strand of the literature, see Persico (2000), Compte

and Jehiel (2001) and the references therein, focuses on the buyers’ incentives to acquire

information in different auction formats. Our approach is different in that we want to

design a revenue-maximizing mechanism in which the seller has the opportunity to

costlessly release (without observing) information to the buyers. In our model, it is

the seller (not the buyers) who controls how much information the buyers acquire.

Information disclosure by the seller has been studied in the context of the winner’s

curse and the linkage principle byMilgrom andWeber (1982). They investigate whether

in traditional auctions the seller should commit to disclose public signals that are

affiliated with the buyers’ valuations. They find that the seller gains from committing to

3The handicap auction can also be implemented as a mechanism where, in the first round, each
bidder buys a discount (larger discounts cost more), and then participates in a second price auction
with a positive reservation price, where the winner’s discount is applied towards his payment.
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full disclosure, because that reduces the buyers’ fear of overbidding, thereby increasing

their bids and hence the seller’s revenue. Our problem differs from this classic one in

many aspects. Most importantly, in our setting, the signals that the seller can release

are private (not public) signals, in the sense that each signal affects the valuation of

a single buyer and can be disclosed to that buyer only. The seller will gain from the

release of information (which she does not even observe) not because of the linkage

principle, but because the information can potentially improve efficiency, and she can

charge for the access.

Our motivation is closer to that of Bergemann and Pesendorfer (2002). They con-

sider the task of designing an information disclosure policy for the seller that allows to

extract the most revenue in a subsequent auction. Their problem is very different from

ours in that the seller is not allowed to charge for the release of information. Their

model also differs from ours in that the buyers do not have private information at the

beginning of the game. Under these assumptions, Bergemann and Pesendorfer (2002)

show that the information structure that allows the seller to design the auction with

the largest expected revenue is necessarily imperfect: in this structure, buyers are only

allowed to learn which element of a finite partition their valuation falls into.

In contrast, in our paper, we design the expected revenue maximizing mechanism

where the information structure and the rules of transaction together are chosen op-

timally. The difference may first seem subtle, it is important nevertheless. What we

assume is that the seller can integrate the rules of information acquisition into the

mechanism used for the sale itself. For example, in our model, the seller can charge

the buyers for getting more and more accurate signals (perhaps in several rounds); the

buyers could even be asked to bid for obtaining more information.

The idea that “selling” the access to information may be advantageous for the seller

can be easily illustrated by an example. Suppose that there are two buyers who are

both unaware of their valuation (drawn independently from the same distribution),

which the seller can allow them to learn. Then consider the following mechanism. The

seller charges both buyers an entry fee, which equals half of the expected difference of

the maximum and minimum of two independent draws of the value-distribution. In

exchange, she allows the buyers to observe their valuations (after they have paid the

entry fee), and makes them play an ordinary second-price auction. The second-price

auction will be efficient, and the buyers’ ex-ante expected profit exactly equals the
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upfront entry fee. The seller ends up appropriating the entire surplus by charging the

buyers for observing their valuations.4

This simple solution – the seller committing to the efficient allocation, revealing

the additional signals, and charging an entry fee equal to the expected efficiency gains

– only works when the buyers do not have private information to start with. Otherwise

(for example, if the buyers privately observe signals, but their valuations also depend

on other signals that they may see at the seller’s discretion), the auctioneer, as we

will show, does not want to commit to an efficient auction in the continuation, so the

previously proposed mechanism does not work. We have to find a more sophisticated

auction, and this is exactly what we will do in the remainder of the paper.

The paper is structured as follows. In the next section, we outline the model and

introduce the necessary notation. In Section 3, we first derive the revenue maximizing

auction for the case when the seller can observe the additional signals that refine the

buyers’ valuations. Then, we show that the same allocation and expected revenue can

also be attained by a handicap auction, even if the seller cannot directly observe the

additional signals. The results are illustrated by a numerical example. We conclude

and remark on extensions in Section 4.

2 The Model

Assume that there are n potential buyers for an indivisible good. The seller’s valuation

for the good is zero. The valuation of buyer i ∈ {1, . . . , n} is the sum of two random

variables, vi (called “type”) and si (called “shock”), which are distributed indepen-

dently (of each other and across i) according to cumulative distribution functions Fi
and Gi, respectively.5 We assume that the support of Fi is [0, 1], on which fi = F 0i
exists, and that this distribution exhibits a monotone hazard rate, that is, (1− Fi)/fi
is weakly decreasing on [0, 1]. We also assume that the distribution of the shocks is

atomless, however, we do not make any restriction on the support of the Gi’s. We will

use v to denote the vector of types and s to denote the vector of shocks. We will also

4This example (when the buyers have no initial private information) has been studied independently
by Gershkov (2002), who also obtained the same result.

5The reader may find it helpful to think of the shock as a noise with zero mean, so the buyer’s
type is his expected valuation for the good. However, we will not make this assumption in the formal
model.
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use the usual shorthand notation for the vector of types of buyers other than i, v−i,

and let s−i denote (sj)j 6=i.

The realization of vi is observed by buyer i. Although neither the seller nor buyer i

can directly observe the shock, the seller has the ability to generate signals conditional

on s, which only buyer i will observe. In particular, we assume that the seller can allow

buyer i to observe his shock, si, without the seller learning its value.6

All parties are risk neutral. The seller’s objective is to maximize her (expected)

revenue. Buyer i’s utility is the negative of his payment to the seller, plus, in case he

wins, the value of the object, vi+si. Every buyer i has an outside option of zero utility.

The seller can design any (indirect) mechanism, which can consist of several rounds

of communication between the parties (i.e., sending of messages according to rules

specified by the seller). The seller can also release signals (without observing them).

Transfers of the good and money may also occur as a function of the history. The

set of all indirect mechanisms is rather complex, and the standard revelation principle

cannot be applied. However, this issue is avoided by the approach that we take in the

next section.

3 Results

Our main result is the characterization of the expected revenue maximizing mechanism

in the model introduced in Section 2. We will show that an optimal mechanism exists,

which can be practically implemented as a “handicap auction” (for a description, see

the Introduction or Subsection 3.2 below). We will also show that this mechanism

achieves the same expected revenue as if the seller could observe the realizations of

the shocks. In other words, while the buyers still enjoy information rents from their

types, all their rents from observing the shocks can be appropriated by the seller.

In Subsection 3.1, we start with the derivation of the optimal mechanism when the

seller can observe the shocks (while the buyers cannot) after having committed to an

indirect mechanism. In Subsection 3.2, we show that in our model, the same expected

revenue can also be generated by the seller without observing the shocks.

6In many applications, the seller may not be able to generate just any random signal correlated
with s. Therefore, all we assume is that the seller can “show” si to buyer i if she so decides.
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3.1 The Optimal Mechanism When the Seller

Can Observe the Shocks

Let us assume, in this subsection only, that the seller alone can observe (and verify to a

third party) the realizations of the shocks after having committed to an indirect mech-

anism. The Revelation Principle applies, hence we can restrict our attention to mecha-

nisms where the buyers report their types, and the seller determines the allocation and

transfers as a function of the types and the shocks. We will analyze truthful equilibria

of direct mechanisms that consist of an allocation rule, xi(vi, v−i, si, s−i) for all i, and

an (expected) transfer scheme, ti(vi, v−i, si, s−i) for all i. Here, xi(vi, v−i, si, s−i) is the

probability that buyer i receives the good, and ti(vi, v−i, si, s−i) is the transfer that he

expects to pay, given the reported types and the realization of the shocks.

We will use the tools of Bayesian mechanism design to find the optimal (expected

revenue maximizing) auction. The result will provide an upper bound on the expected

revenue the seller can achieve in the case when she cannot observe the shocks directly,

which is going to be the subject of Subsection 3.2.

If buyer i with type vi reports type v̂i then his expected payoff will be

πi(vi, v̂i) = Ev−i,s [xi(v̂i, v−i, si, s−i)(vi + si)− ti(v̂i, v−i, si, s−i)] , (1)

where E stands for expectation. Let Xi(vi) = Ev−i,s[xi(vi, v−i, si, s−i)], and introduce

Πi(vi) = πi(vi, vi) for the indirect profit function. Then, (1) can be rewritten as

πi(vi, v̂i) = Ev−i,s [xi(v̂i, v−i, si, s−i)(v̂i + si + vi − v̂i)− ti(v̂i, v−i, si, s−i)] (2)

= Πi(v̂i) + (vi − v̂i)Xi(v̂i).

Incentive compatibility of the mechanism means that, for all vi, v̂i ∈ [0, 1], we have
πi(vi, vi) ≥ πi(vi, v̂i), that is, (1) is maximized in v̂i at v̂i = vi. Using (2), we can

rewrite incentive compatibility as

Πi(vi)−Πi(v̂i) ≥ (vi − v̂i)Xi(v̂i), ∀vi, v̂i ∈ [0, 1], and i = 1, ..., n. (3)

In the following Lemma, we apply standard arguments (see Myerson, 1981) for char-

acterizing incentive compatible mechanisms.
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Lemma 1 Assume that, after having committed to a selling mechanism, the seller can

observe the realizations of the shocks. A direct mechanism is incentive compatible if

and only if, for all i = 1, ..., n and vi ∈ [0, 1], Xi is weakly increasing, and

Πi(vi) = Πi(0) +

Z vi

0

Xi(ν)dν. (4)

Proof. By (3) and its counterpart where the roles of vi and v̂i are reversed,

(vi − v̂i)Xi(v̂i) ≤ Πi(vi)−Πi(v̂i) ≤ (vi − v̂i)Xi(vi).

This inequality implies that Xi is weakly increasing and therefore is integrable, and so

equation (4) follows.

Now we prove that equation (4) andXi weakly increasing are sufficient for incentive

compatibility. If vi ≥ v̂i then from (4)

Πi(vi) = Πi(v̂i) +
R vi
v̂i
Xi(ν)dν

≥ Πi(v̂i) +
R vi
v̂i
Xi(v̂i)dν = Πi(v̂i) + (vi − v̂i)Xi(v̂i),

while if v̂i ≥ vi then

Πi(vi) = Πi(v̂i)−
R v̂i
vi
Xi(ν)dν

≥ Πi(v̂i)−
R v̂i
vi
Xi(v̂i)dν = Πi(v̂i) + (vi − v̂i)Xi(v̂i).

This establishes that (3) holds.

Now we turn to the problem of determining the revenue-maximizing mechanism.

Using (4), we can write the expectation (over all types) of buyer i’s surplus asZ 1

0

Πi(vi)fi(vi)dvi = Πi(0) +

Z 1

0

Z vi

0

Xi(ν)dνfi(vi)dvi

= Πi(0) +

Z 1

0

Z 1

ν

Xi(ν)fi(vi)dvidν

= Πi(0) +

Z 1

0

Xi(ν)(1− Fi(ν))dν

= Πi(0) +Ev,s

·
xi(vi, v−i, si, s−i)

1− Fi(vi)
fi(vi)

¸
.
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On the second line, we applied Fubini’s Theorem. On the third line, we substituted

1− Fi(ν) for
R 1
ν
fi(vi)dvi. Finally, we plugged in the definition of Xi.

The seller’s expected revenue equals the difference between the expected social

surplus and the sum of the ex ante expectation of the buyers’ surpluses,

nX
i=1

Ev,s

·µ
vi + si − 1− Fi(vi)

fi(vi)

¶
xi(vi, v−i, si, s−i)

¸
−

nX
i=1

Πi(0). (5)

The mechanism design problem is to maximize (5) by choosing the integration

constants and the vector of trade probabilities subject to the incentive compatibility

constraints. That is, by Lemma 1, the problem is to choose for all i, Πi(0) and for

all i and (vi, v−i, si, s−i), xi(vi, v−i, si, s−i), so that Xi is weakly increasing and (5) is

maximized. The following proposition characterizes the solution to this problem.

Proposition 1 Assume that, after having committed to a selling mechanism, the seller

can observe the realizations of the shocks. In the expected revenue maximizing mecha-

nism, Πi(0) = 0, and the allocation rule is,

xi(vi, v−i, si, s−i) =

(
1/|M | if i ∈M and vi + si − 1−Fi(vi)

fi(vi)
> 0

0 otherwise
, (6)

where

M =

½
j : vj + sj − 1− Fj(vj)

fj(vj)
= max

k=1,...,n

½
vk + sk − 1− Fk(vk)

fk(vk)
, 0

¾¾
.

The seller’s expected revenue from this mechanism is,

Ev,s

·
max
j=1,...,n

½
vj + sj − 1− Fj(vj)

fj(vj)
, 0

¾¸
. (7)

In other words, the seller sets the allocation rule so that the buyer with the largest

non-negative shock-adjusted virtual valuation, vj+sj−(1−Fj(vj))/fj(vj), will win. The
transfers, and therefore the seller’s profit, are determined by the incentive compatibility

constraints. The proof (below) is standard.

Proof. The proposed allocation rule, (6), together with Πi(0) = 0 for all i, point-
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wise maximizes (5). We will prove that it can be made incentive compatible using an

appropriately chosen transfer scheme.

By assumption, (1−Fi(vi))/fi(vi) is decreasing, therefore the shock-adjusted virtual
valuation function, vi + si − (1 − Fi(vi))/fi(vi), is increasing in vi. This implies that
for all i, v−i, si, and s−i, xi(vi, v−i, si, s−i) ≥ xi(v̂i, v−i, si, s−i) if and only if vi ≥ v̂i,
and, after taking expectation with respect to v−i and s, Xi(vi) ≥ Xi(v̂i) if and only if
vi ≥ v̂i. That is, Xi is weakly increasing.
It remains to show that there exists a transfer scheme such that (4) holds, Πi(0) = 0,

and all types of all buyers participate. Recall that in a mechanism with allocation rule

xi and transfer scheme ti, the expected profit of buyer i with type vi is

Πi(vi) = Ev−i,s [(vi + si)xi(vi, v−i, si, s−i)]−Ev−i,s[ti(vi, v−i, si, s−i)].

Using xi given in (6), define buyer i’s transfer as

ti(vi, v−i, si, s−i) =
Z vi

0

Xi(ν)dν −Eṽ−i,s̃ [(vi + s̃i)xi(vi, ṽ−i, s̃i, s̃−i)] ,

where Xi(vi) = Eṽ−i,s̃[xi(vi, ṽ−i, s̃i, s̃−i)]. Observe that (4) holds, and Πi(0) = 0.

Finally, all buyers participate because their outside option is zero by assumption,

Πi(0) = 0, and Πi is increasing.

Remark 1 It is clear from the proof that the claim of Proposition 1 remains true

even if the monotone hazard rate assumption is violated, but the virtual valuations are

weakly increasing, that is, if vi − (1− Fi(vi))/fi(vi) is weakly increasing in vi for all i.

In the next subsection we show that the same outcome can also be implemented by

the seller even if she cannot observe the shocks, as long as she can allow the buyers to

observe them.

3.2 The Optimal Mechanism When the Seller

Cannot Observe the Shocks: The Handicap Auction

Assume that the seller cannot directly observe the shocks, but she can allow the buyers

to learn them. Clearly, in this case, the seller cannot do better than under the assump-

tions of Subsection 3.1 (where she could observe the shocks after having committed to
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a mechanism). The main result of the present subsection is that we exhibit a mecha-

nism, called the “handicap auction,” which implements the same allocation (with the

same expected revenue) as the revenue maximizing mechanism of Subsection 3.1.

In general, a handicap auction consists of two rounds. In the first round, each

buyer i, knowing his type, chooses a price premium pi for a fee Ci(pi), where Ci is a

fee-schedule published by the seller. The buyers do not observe the premia chosen by

others. The second round is a traditional auction, and the winner is required to pay

his premium over the price. Between the two rounds, the seller may send messages to

the buyers. In our model, the seller will allow every buyer to learn the realization of

his shock between the two rounds, and the second round is a second price (or English)

auction with a zero reservation price.

We call this mechanism a handicap auction because in the second round, the buy-

ers compete under unequal conditions: a bidder with a smaller premium has a clear

advantage. An interesting feature of our auction is that the bidders buy their premium

in the initial round, which allows for some form of price discrimination. We will come

back to the issue of price discrimination in Subsection 3.3.

An interesting alternative way of formulating the rules of the handicap auction

would be by using price discounts (or rebates) instead of price premia. In this version,

each bidder first has to buy a discount from a schedule published by the seller. Then

the buyers are allowed to learn the realizations of the shocks, and are invited to bid

in a second price auction with a reservation price r, where the winner’s discount is

applied towards his payment. The reader can check that a handicap auction can be

easily transformed into a mechanism like this by setting r sufficiently high (larger than

the highest pi in the original fee-schedules), and specifying that a discount di = r − pi
is sold for a price C(pi) in the first round. In what follows, however, we will use the

original form of the handicap auction.

If there is only a single buyer, then the handicap auction simplifies to a menu of

buy options: pi can be thought of as the strike price, and the upfront fee, Ci(pi), is

the cost of the option. In the second round, the buyer can exercise his option to buy

at price pi (there is no other bidder, so the second-highest bid is zero), for which he

initially paid a fee of Ci(pi). We will revisit the single-buyer case later in the context

of a numerical example.

First, we state what happens in the second round of the handicap auction.
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Lemma 2 In the second round of the handicap auction (after each buyer learns the

realization of his shock), it is a weakly dominant strategy for buyer i with price premium

pi to bid bi = vi + si − pi.

Proof. The second round is a second-price auction where buyer i knows that when

he wins, he pays the second highest non-negative bid plus his own premium pi. If he

submits a bid b̂i > vi + si − pi instead of bi, then the only occasion when this bid
makes a difference is when he wins with b̂i (which is therefore non-negative) and the

second highest bid (or zero, whichever is larger), bj, is between bi and b̂i. His profit is

vi + si − bj − pi < vi + si − bi − pi = 0, so he ends up worse off. A similar argument
shows that i can only miss profitable opportunities by bidding b̂i < bi. Therefore

bidding bi = vi + si − pi is indeed a weakly dominant strategy.

From now on, we assume that the buyers follow their weakly dominant strategies in

the second round. Then the handicap auction can be represented by pairs of functions,

pi : [0, 1] → R and ci : [0, 1] → R, for i = 1, ..., n, where pi(vi) is the price premium
that type vi ∈ [0, 1] chooses (in equilibrium) for the fee of ci(vi) ≡ Ci(pi(vi)). In what
follows, let wj = vj + sj − pj(vj), introduce an artificial buyer numbered j = 0 with
w0 = 0, and denote maxj 6=i{wj, 0} by wmax−i .

Incentive compatibility of the handicap auction {ci, pi}ni=1 means that type vi does
not want to deviate and choose pi(v̂i) for fee ci(v̂i) in the first round. If he deviates,

then by Lemma 2, he will bid vi + si − pi(v̂i) in the second round. Therefore, if buyer
i with type vi pretends to have v̂i in the first round while the other buyers behave

truthfully (that is, for all j 6= i, type vj buys premium pj(vj)), then his payoff is,

π∗i (vi, v̂i) = Ev−i,s
h
1{vi+si−pi(v̂i)≥wmax−i }(vi + si − pi(v̂i)− wmax−i )

i
− ci(v̂i). (8)

Incentive compatibility of the mechanism means that vi maximizes π∗i (vi, v̂i) in v̂i. Let

Π∗i (vi) = π∗i (vi, vi) be the buyer’s equilibrium profit function. Introduce

Qi(vi, v̂i) = Ev−i,s
h
1{vi−pi(v̂i)+si≥wmax−i }

i
, (9)

the expected probability that type vi wins the second round after having chosen pre-

mium pi(v̂i) in the first round, given that all other bidders behave truthfully.
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Lemma 3 A handicap auction {ci, pi}ni=1 is incentive compatible if and only if, for all
i = 1, ..., n and vi ∈ [0, 1],

Π∗i (vi) = Π∗i (0) +
Z vi

0

Qi(ν, ν)dν (10)

and for all v0i, v
00
i ∈ [0, 1] such that v0i < vi < v00i ,

Qi(vi, v
0
i) ≤ Qi(vi, vi) ≤ Qi(vi, v00i ). (11)

Condition (11) states that a buyer with a given type is weakly more (less) likely to

get the good in equilibrium than he would be by imitating a lower (higher) type in the

first round. Essentially, this means that lower types should get higher premia in any

incentive compatible handicap auction. More precisely, if pi is weakly decreasing for

all i then (11) holds, and the converse is true if the density of si has full support on

(−∞,+∞).

Proof. [Necessity] We first prove that incentive compatibility of the handicap

auction implies (10) and (11). Incentive compatibility is equivalent to,

for all i and v̂i < vi, π∗i (vi, v̂i) ≤ π∗i (vi, vi) and π∗i (v̂i, vi) ≤ π∗i (v̂i, v̂i). (12)

In the rest of this part of the proof, assume v̂i < vi. Introduce, for all x, y ∈ [0, 1],

∆i(x, y) = Ev−i,s
h
1{wmax−i −si+pi(y)∈(x∧y,x∨y]}(x+ si − pi(y)− wmax−i )

i
.

Rewrite π∗i (vi, v̂i) as

π∗i (vi, v̂i) = Ev−i,s

h
1{v̂i+si−pi(v̂i)≥wmax−i }(v̂i + si − pi(v̂i)− wmax−i )

i
− ci(v̂i)

+Ev−i,s
h
1{v̂i+si−pi(v̂i)≥wmax−i }

i
(vi − v̂i)

+Ev−i,s
h
1{vi+si−pi(v̂i)≥wmax−i >v̂i+si−pi(v̂i)}(vi + si − pi(v̂i)− wmax−i )

i
= Π∗i (v̂i) +Qi(v̂i, v̂i)(vi − v̂i) +∆i(vi, v̂i).

13



By similar decomposition,

π∗i (v̂i, vi) = Π∗i (vi)−Qi(vi, vi)(vi − v̂i)−∆i(v̂i, vi).

Given this, incentive compatibility of the handicap auction, (12), is equivalent to,

for all i and v̂i < vi,

Qi(v̂i, v̂i) +
∆i(vi, v̂i)

vi − v̂i ≤
Π∗i (vi)−Π∗i (v̂i)

vi − v̂i ≤ Qi(vi, vi) + ∆i(v̂i, vi)

vi − v̂i .

Note that ∆i(x, y) ≥ 0 if and only if x ≥ y, therefore ∆i(v̂i, vi) ≤ 0 ≤ ∆i(vi, v̂i). Hence,

incentive compatibility implies

Qi(v̂i, v̂i) ≤ Π∗i (vi)−Π∗i (v̂i)
vi − v̂i ≤ Qi(vi, vi). (13)

From this, Qi(ν, ν) is monotone weakly increasing in ν, hence it is integrable, and so

(10) follows.

Next, we show that (11) must hold. Assume that v̂i < vi. If pi(v̂i) ≥ pi(vi) then
clearly, Qi(v̂i, v̂i) ≤ Qi(vi, v̂i) ≤ Qi(vi, vi). Suppose pi(v̂i) < pi(vi). Introduce

εi(x, y) = Ev−i,s
h
1{wmax−i −si∈(x−pi(x)∨pi(y),x−pi(x)∧pi(y)]}(x+ si − pi(y)− wmax−i )

i
.

Rewrite

πi(vi, v̂i) = Ev−i,s
h
1{vi+si−pi(vi)≥wmax−i }(vi + si − pi(vi)− wmax−i )

i
− ci(vi)

+Ev−i,s
h
1{vi+si−pi(vi)≥wmax−i }

i
(pi(vi)− pi(v̂i)) + ci(vi)− ci(v̂i) (14)

+Ev−i,s
h
1{vi+si−pi(v̂i)≥wmax−i >vi+si−pi(vi)}(vi + si − pi(v̂i)− wmax−i )

i
= πi(vi, vi) +Qi(vi, vi) (pi(vi)− pi(v̂i)) + ci(vi)− ci(v̂i) + εi(vi, v̂i),

πi(v̂i, vi) = Ev−i,s
h
1{v̂i+si−pi(v̂i)≥wmax−i }(v̂i + si − pi(v̂i)− wmax−i )

i
− ci(v̂i)

+Ev−i,s
h
1{v̂i+si−pi(v̂i)≥wmax−i }

i
(pi(v̂i)− pi(vi)) + ci(v̂i)− ci(vi) (15)

−Ev−i,s
h
1{v̂i+si−pi(v̂i)≥wmax−i >v̂i+si−pi(vi)}(v̂i + si − pi(vi)− wmax−i )

i
= πi(v̂i, v̂i)−Qi(v̂i, v̂i) (pi(vi)− pi(v̂i)) + ci(v̂i)− ci(vi)− εi(v̂i, vi).
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By incentive compatibility, (12), πi(vi, v̂i) − πi(vi, vi) ≤ 0 ≤ πi(v̂i, v̂i) − πi(v̂i, vi).

By (14) and (15), this is equivalent to

Qi(vi, vi) (pi(vi)− pi(v̂i)) + εi(vi, v̂i) ≤ ci(v̂i)− ci(vi)
≤ Qi(v̂i, v̂i) (pi(vi)− pi(v̂i)) + εi(v̂i, vi). (16)

Observe that since v̂i < vi and pi(v̂i) < pi(vi), we have εi(v̂i, vi) ≤ 0 ≤ εi(vi, v̂i). Then,

εi(vi, v̂i) = εi(v̂i, vi) = 0, otherwise (16) implies Qi(vi, vi) < Qi(v̂i, v̂i) contradicting

(13). By εi(vi, v̂i) = 0,

Ev−i,s
h
1{vi+si−pi(v̂i)≥wmax−i >vi+si−pi(vi)}

i
= 0,

which is equivalent to Qi(vi, v̂i) = Qi(vi, vi). Therefore, v̂i < vi implies Qi(vi, v̂i) ≤
Qi(vi, vi), no matter whether or not pi(vi) ≤ pi(v̂i), and the first inequality of (11)

holds. Similarly, by εi(v̂i, vi) = 0, Ev−i,s
h
1{v̂i+si−pi(v̂i)≥wmax−i >v̂i+si−pi(vi)}

i
is zero, hence

Qi(v̂i, v̂i) = Qi(v̂i, vi). Therefore, v̂i < vi implies Qi(v̂i, v̂i) ≤ Qi(v̂i, vi), that is, the

second inequality of (11) holds.

[Sufficiency] We now show that (10) and (11) imply that the handicap auction

is incentive compatible. Let Ui(vi, si) be the expected equilibrium profit of type vi
with shock si in the second stage. Clearly, Π∗i (vi) ≡ Esi [Ui(vi, si)] − ci(vi). From the

incentive compatibility of the second round it routinely follows (see also equation 4 and

the proof of Lemma 1) that, for all si ≤ ŝi,

Ui(vi, ŝi)− Ui(vi, si) =
Z ŝi

si

Ev−i,s−i

h
1{vi+σ−pi(vi)≥wmax−i }

i
dσ,

where Ev−i,s−i
h
1{vi+si−pi(vi)≥wmax−i }

i
is the probability that, in equilibrium, type vi ob-

serving shock si wins the second round.

By Lemma 2, buyer i with type vi who pretends to have type v̂i in the first stage

and observes si before the second stage will bid bi = vi+si−pi(v̂i) in the second stage,
“as if” he had type v̂i and observed si+vi− v̂i. His probability of winning and expected
payment will be the same as if he had a type-shock pair (v̂i, si + vi − v̂i). Hence, his
expected profit in the second round will be Ui(v̂i, si + vi − v̂i).
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This noted, we can rewrite π∗i (vi, v̂i), with v̂i < vi, as

π∗i (vi, v̂i) = Esi [Ui(v̂i, si + vi − v̂i)]− ci(v̂i)
= Esi [Ui(v̂i, si) + Ui(v̂i, si + vi − v̂i)− Ui(v̂i, si)]− ci(v̂i)
= Π∗i (v̂i) +Esi

·Z si+vi−v̂i

si

Ev−i,s−i

h
1{v̂i+σ−pi(v̂i)≥wmax−i }

i
dσ

¸
= Π∗i (v̂i) +

Z vi−v̂i

0

Ev−i,s
h
1{v̂i+x+si−pi(v̂i)≥wmax−i }

i
dx.

In the last line, we replaced σ by si+x and changed the order of integration. Similarly,

π∗i (v̂i, vi) = Π∗i (vi)−
Z 0

v̂i−vi
Ev−i,s

h
1{vi+y+si−pi(vi)≥wmax−i }

i
dy.

Incentive compatibility of the handicap auction now becomes, for all i, v̂i ∈ [0, 1), and
vi ∈ (v̂i, 1],Z vi−v̂i

0

Qi(v̂i + x, v̂i)dx ≤ Π∗i (vi)−Π∗i (v̂i) ≤
Z 0

v̂i−vi
Qi(vi + y, vi)dy. (17)

From condition (11), Qi(v̂i+x, v̂i) ≤ Qi(v̂i+x, v̂i+x) for x ∈ [0, vi− v̂i]. ThereforeZ vi−v̂i

0

Qi(v̂i + x, v̂i)dx ≤
Z vi−v̂i

0

Qi(v̂i + x, v̂i + x)dx = Π∗i (vi)−Π∗i (v̂i),

so the first inequality of (17) holds. From (11), Qi(vi + y, vi + y) ≤ Qi(vi + y, vi) for
y ∈ [v̂i − vi, 0], so

Π∗i (vi)−Π∗i (v̂i) =
Z 0

v̂i−vi
Qi(vi + y, vi + y)dy ≤

Z 0

v̂i−vi
Qi(vi + y, vi)dy,

and the second inequality of (17) holds, too. Therefore, the handicap auction is incen-

tive compatible.

In Lemma 1, we characterized incentive compatible mechanisms under the assump-

tion that the seller can observe the shocks, while in Lemma 3, we characterized incentive

compatible handicap auctions for the case when she cannot. Note that the necessary

and sufficient conditions for incentive compatibility (in particular, the monotonicity

conditions on Xi and Qi, respectively) are not the same in the two cases. We will
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comment on the consequences of this fact in the next subsection.

Lemma 3 can be used to derive the handicap auction that maximizes the objective

of the mechanism designer. In particular, we can easily determine the expected revenue

maximizing handicap auction. In the next proposition we do just that; moreover, we

claim that this handicap auction achieves the same expected revenue as if the seller

could observe the realization of the shocks.

Proposition 2 Assume that the seller cannot observe the realizations of the shocks,

although she can allow the buyers to observe them. The seller can implement allocation

rule (6) with expected revenue (7) via a handicap auction {ci, pi}ni=1, where

pi(vi) =
1− Fi(vi)
fi(vi)

, (18)

and ci(vi) is defined by

ci(vi) = Ev−i,s

·
1{vi+si−pi(v̂i)≥maxj 6=i wj}(vi + si − pi(vi)−max

j 6=i
wj)

¸
−
Z vi

0

Ev−i,s
£
1{ν+si−pi(ν)≥maxj 6=i wj

¤
dν. (19)

Proof. If, for all j = 1, ..., n and vj ∈ [0, 1], type vj of buyer j purchases a price
premium pj(vj) = (1 − Fj(vj))/fj(vj) in the first round, then buyer i will win in the
second round if and only if, for all j,

vi + si − 1− Fi(vi)
fi(vi)

≥ max
½
vj + sj − 1− Fj(vj)

fj(vj)
, 0

¾
.

This is so because in the second round, every buyer j bids vj + sj − pj(vj). Hence the
allocation rule is indeed the same as (6), provided that all buyers behave “truthfully,”

i.e., every buyer j with type vj chooses pj(vj) for a fee cj(vj) defined in (19).

We can easily check that the handicap auction defined by (18) and (19) satisfies the

hypotheses of Lemma 3. First, pi is weakly decreasing by the assumption of monotone

hazard rate. Second, the fee-schedule, (19), is equivalent to (10), as

Π∗i (vi) ≡ Ev−i,s
·
1{vi+si−pi(vi)≥maxj 6=i wj}(vi + si − pi(vi)−max

j 6=i
wj)

¸
− ci(vi).

17



Also note that Π∗i (0) = 0 for all i. By Lemma 3, (18) and (19) define an incentive

compatible handicap auction.

It remains to show that the seller’s expected revenue in this handicap auction is

equal to that in the optimal mechanism of Proposition 1 (where the seller could observe

the shocks). Note that the expected payoff of buyer i with type vi in the mechanism

of Proposition 1 is given by (4) with allocation rule (6) and Πi(0) = 0. The expected

payoff of buyer i with type vi in the proposed handicap auction is given by (10) with

premium schedule (18) and Π∗i (0) = 0. Therefore, Πi(vi) = Π∗i (vi) for all vi. Since the

allocation rules in the two mechanisms coincide, the total social surplus is the same in

both cases. The seller’s expected revenue is just the difference of the total surplus and

the buyers’ payoff, therefore, it must also be the same.

Remark 2 If the support of each shock is (−∞,+∞) then, as we remarked before
the proof of Lemma 3, pi must be weakly decreasing for the handicap auction to be

incentive compatible. Also observe that the optimal allocation rule in Proposition 1

is unique (i.e., allocate the good to the buyer with the highest non-negative shock-

adjusted virtual valuation). Therefore, if the seller can achieve the same revenue in a

handicap auction without observing the shocks, then the allocation rule must be the

same. Hence, the premium in this handicap auction must equal the hazard rate, (18),

and the monotone hazard rate assumption is necessary to guarantee the same revenue.

3.3 Discussion

From the seller’s perspective, the premium—fee schedule offered in the first round of the

handicap auction works as a device to discriminate among buyers with different value

estimates. When a buyer decides to participate in the handicap auction, he knows his

type (expected valuation), which tells him whether he is more or less likely to win.

Therefore, in the first round, a buyer with a high type chooses a small price premium

for a large fee in order not to pay much when he wins. Using analogous reasoning, low

types choose large price premia, which are cheaper, but make winning more expensive.

It is interesting to observe that in the optimal handicap auction, two buyers with the

same actual valuation (same vi+ si) do not have the same probability of winning. The

buyer with the larger vi will choose a smaller price premium, bid higher in the second

round, and will be more likely to win. This shows that the auction does not achieve
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full ex post efficiency, even under ex ante symmetry of the bidders and conditional on

the object being sold.7

In order to better explain our main result (Proposition 2), consider a setup where

the buyers are ex ante symmetric (the vi’s are identically distributed), and the shocks

are mean zero random variables. Let us compare the optimal allocation rule in the case

when the seller can observe the shocks (as in Subsection 3.1) with that of the revenue

maximizing auction when nobody (neither the seller nor the buyers) can observe them.

In the latter case, the seller should allocate the good to the buyer with the largest

non-negative virtual value-estimate, vi − (1 − F (vi))/f(vi). If the seller can observe
the shocks, then, in the optimal mechanism, the good will be allocated more efficiently,

as the winner will now be the buyer with the highest non-negative shock-adjusted

virtual valuation, vi+ si− (1−F (vi))/f(vi), according to equation (6).8 According to
Proposition 2, the seller, by controlling the release of the shocks and without actually

observing them, can implement the same allocation, and surprisingly, can appropriate

the increase in efficiency.9

One may suggest that the way the seller can appropriate all rents from the addi-

tional information is that in the handicap auction, she essentially charges the buyers

a type-dependent up-front fee equal to the “value” of the information they are about

to receive. This intuition may be appealing, but it overly simplifies the workings of

the mechanism. First, the value of the additional information to the participants is

not well-defined because it depends on the rules of the selling mechanism. This value

could be different if the seller chose a mechanism different from the handicap auction.

Another argument is that we showed, the seller may not always be able to extract

all rents for the additional information via a handicap auction. This is so if the vir-

tual value-estimates are monotone increasing, but the type-distributions do not exhibit

7In contrast, in the classical setup with deterministic valuations, the optimal auction of Myerson
(1981) and Riley and Samuelson (1981) is efficient conditional on sale, provided that the buyers are
ex ante symmetric.

8It is easy to see that if vi− (1−F (vi))/f(vi) < vj − (1−F (vj))/f(vj), but, by adding the shocks
to both sides the inequality is reversed, then vi + si > vj + sj . Therefore, an allocation based on the
shock-adjusted virtual valuations “pointwise” improves efficiency. (This may not be true if the Fi’s
are not identical.)

9If the buyers’ ex ante type-distributions are not identical then, as the seller gets to observe the
signals, the efficiency of the optimal mechanism may only improve in ex ante expectation. Still, there
will be some efficiency gain, which will be fully extracted by the seller even if she cannot observe the
additional signals.
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monotone hazard rates (compare Remarks 1 and 2). The allocation rule in the optimal

mechanism when the seller can observe the shocks will be based on the shock-adjusted

virtual value-estimates, but the corresponding premium functions, the pi’s, would not

be weakly decreasing. Therefore, the former allocation rule is not implementable via a

handicap auction when the seller cannot observe the shocks.

3.4 Determining the Optimal Handicap Auction:

A Numerical Example

It may be useful to compute a numerical example not only for illustrative purposes,

but also, to see how a seller may be able to compute the parameters of the optimal

handicap auction (the price premium—fee schedule) in a practical application.

The optimal pi(vi) is given by (18), and ci(vi) is given by (19). Supposing that pi
is differentiable, we can rewrite (19) as

ci(0) = Ev−i,s

·
1{si−1/fi(0)≥maxj 6=i wj}(si − 1/fi(0)−max

j 6=i
wj)

¸
, (20)

c0i(vi) = −p0i(vi)Ev−i,s−i
·
Pr[si ≥ max

j 6=i
wj − vi + pi(vi)]

¸
. (21)

Note that (21) is just the first-order condition of vi ∈ argmaxv̂i π
∗
i (vi, v̂i), where

π∗i (vi, v̂i) is given by (8).

We will consider the following setup. The types are distributed independently

and uniformly on [0, 1], and the shocks are distributed independently according to a

standard logistic distribution.10

First, assume that there is a single buyer, that is, n = 1. As we mentioned it earlier,

the handicap auction with a single buyer can be thought of as a menu of buy options,

represented by C1(p1), where p1 is the strike price and C1(p1) is the fee of the option.

In the first round, the buyer chooses a price p1 and pays C1(p1); in the second round

(after having observed s1), he has the option to buy the good at price p1.

Let us represent the menu of buy options as a pair of functions, c1(v1) and p1(v1),

v1 ∈ [0, 1]. In the uniform-logistic example, the expected revenue maximizing strike

10The cdf of the standard logistic distribution is Gi(si) = esi/(1 + esi), si ∈ (−∞,+∞).
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price-schedule is given by (18),

p1(v1) = 1− v1.

The equations characterizing the fee-schedule, (20) and (21), become,

c1(0) =

Z ∞

1

(s1 − 1) es1

(1 + es1)2
ds1 = ln (1 + e)− 1,

c01(v1) = 1− e1−2v1

1 + e1−2v1
.

By integration, we get an explicit expression for c1(v1) as

c1(v1) =
1

2
ln (1 + e)− 1 + v1 + 1

2
ln
¡
1 + e1−2v1

¢
.

We can express the cost of the option as a function of the strike price as

c1 = C1(p1) =
1

2
ln
£
(1 + e)

¡
1 + e2p1−1

¢¤− p1.
This (downward-sloping) schedule is depicted as the top curve in Figure 1.

If the buyer has a higher estimate then he will choose to buy an option with a lower

strike price at a higher cost. For example, if the buyer has the lowest estimate, v1 = 0,

then he buys the option of getting the good at p1 = 1, which costs c1 = ln[(1+ e)/e] ≈
0.3133 upfront, and yields zero net surplus. In contrast, the highest type, v1 = 1, buys

a call option with zero strike price at a cost of about 0.8133.

Now we turn to the case of many buyers, n > 1, in the uniform-logistic example.

We will compute the optimal handicap auction represented by {ci, pi}ni=1. As in the
case of n = 1, in the revenue-maximizing mechanism, pi(vi) ≡ 1− vi.
Instead of analytically deriving ci(vi) for different numbers of buyers, we carry out

a more practical Monte Carlo simulation. What we describe below is also the method

that a seller could use in order to determine the parameters of an optimal handicap

auction in practice.

We take 100,000 random draws from the joint distribution of (s, v−i), and com-

pute wj = vj + sj − pj(vj) for all j. Then we determine ci(0) from (20), where

the expectation is estimated by the sample mean. We compute ci(vi) recursively,

ci(vi+step) = ci(vi)+step∗c0i(vi), where step= 1/100. The derivative can be estimated
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Figure 1: Fee schedules in the revenue maximizing handicap auction
(uniform-logistic setup; schedules from top to bottom for n=1, 2, and 5)

from (21), rewritten as

c0i(vi) = Esi,s−i,v−i
£
1{vi+si−pi(vi)≥maxj 6=i wj}

¤
.

From ci(vi) and pi(vi) we compute Ci(pi) ≡ ci(p−1i (pi)).
The results of a (typical) simulation are shown in Figure 1. The top curve shows

Ci(pi) for the case of n = 1. There are actually two (almost identical) curves superim-

posed on each other: one graphs the formula that we derived before, the other is the

result of the Monte Carlo experiment. The curve in the middle is Ci(pi) for n = 2,

and the one in the bottom is Ci(pi) for n = 5. As n increases, Ci(pi) shifts down and

flattens out.
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4 Conclusions

In this paper, we analyzed an auction model where the seller could decide how accu-

rately the buyers learned their private valuations. In particular, in our setting, the

buyers only knew an initial estimate of their private valuation, and the seller had

the ability to release (without observing) independent signals that were added to the

buyers’ estimates to determine their ex post valuations. In other words, the buyers’

valuations were initially uncertain, but the seller could allow them to resolve this un-

certainty. We derived the expected revenue maximizing mechanism.

In the optimal mechanism, the seller allows the buyers to learn their valuations with

the highest precision and obtains the same expected revenue as if she could observe

the additional signals (which she can release, but cannot directly observe). The buyers

do not enjoy any additional information rents from the signals whose disclosure is

controlled by the seller.

The outcome of this mechanism can be implemented via a “handicap auction.” In

the first phase of this mechanism, the seller publishes a price premium—fee schedule for

each buyer; each buyer chooses a price premium and pays the corresponding fee. Then

the seller allows the buyers to learn their valuations with the highest precision. In the

second phase, the buyers bid for the good in a second-price sealed-bid auction with a

zero reservation price, knowing that the winner will pay his premium over the price.

For a single buyer, the handicap auction simplifies to a menu of buy-options.

Interestingly, our main result extends to general adverse selection models, as shown

in our related paper Eső and Szentes (2002). In that paper, we consider a setup

where a principal controls the precision of the agent’s information regarding his own

type (productivity, ability, etc.), by being able to release, without observing, signals

that refine the agent’s estimate.11 In the principal’s optimal contract the agent learns

his type with the highest precision, yet no information rents will be left with the

agent for the additional signals.12 Again, the one who controls the flow of information

appropriates the rents of information.

11This is the case, for example, when the principal is the employer of the agent, and decides about
the extent of the agent’s learning the details of the task, etc.
12The optimal contract, however, may be a lot more complicated than the handicap auction.
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