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ABSTRACT

The large—sample properties of the maximum-likelihood estimator of parameters
in a dynamic regression model with Gaussian errors are investigated, foruihe
case of explosive dynamics. It is shown that a normalized version of the
observed information matrix converges in law to a nondegenerate random
variable, the distribution of which is derived. The maximum-likelihood
estimator is distributed asymptotically as a variance mixture of normal random
variables. Standard Likelihood-ratio, Wald, and Lagrange Multiplier
statistics for testing linear restrictions are shown to be chi-squared
distributed under the null hypothesis, subject to standard regularity

conditions. This result is applied to a test of exclusion restrictions in a

stochastic consumption model.



1. INTRODUCTION

The investigation of estimation and hypothesis testing in linear
stochastic difference equations has been a major area of statistical and
econometric research since the seminal work of Mann and Wald [17]. The

general equation of interest can be written in the form,

Y =2 aY . +ZI8x, +¢ s E=1,2 000 (1.1)
tilitiiljgt t
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where the (xit) are taken to be nonstochastic reg;essors (or well behaved
random regressors), and the (et) are random error terms with certain
prespecified properties. When the roots of the characteristic equatibn
associated with (l.1) are all strictly less than one in absolute value, the
limiting behavior of various estimators of the unknown parameters has been
investigated exhaustively under a wide range of assumptions on the properties
of the sequences (xjt) and (et).

-Although Mann and Wald [17] considered estimation of the parameters of
the model under the assumption of stable roots, they certainly recognized the
possibility of at least one root greater than unity in absolute value, and the
difficulties associated with this problem. 1In the case of no exogendus
regressors and p = 1, White [25], Anderson [1], and Rao [21] have studied the
limiting behavior of the maximum likelihood estimator when
lall > 1.

Explosive pfocesses are not uncommon in applied econometric work. In the
important paper by Hall [13] on the stochastic properties of the permanent

income hypothesis, the equation



c,_=a_+a c + B'xt + e (1.2)

is considered, where ce is per capita consumption of nondurables and services,
and X, is a vector of exogenous variables. The hypothesis B = 0 is of

interest. Consumption, however, grows exponentially (i.e., @, > 1) and

1
Hall's estimates confirm this. Hall, however, applies standard estimation and
hypothesis testing techniques, with respect to inference, regardless of this
violation of the standard ergodicity assumption with respect to the

sequence {ct}. Other examples within consumption analysis include the work
of Davidson and Hendry [7], and Daly and Hadjimatheou [6]. Examples can be
found in other fields. As shown in Domowitz and Muus [9], explosiveness is
predicted-by theoretical models of investment behavior, and has been
investigated empirically by Blanchard [4].

The sole treatment of statistical inference based on the model (1.1),
which allows for a single unstable root and the inclusion of nonstochastic
regressors, is that of Fuller, Hasza and Goebel [12]. 1In their work, (st)
is a Gaussian white noise error process. Thelr results are derived via a
complicated orthogonalization procedure, which facilitates proofs of the main
theorems, but presents several complications. First, the conditions under
which the results are valid are stated in terms of the orthogonalized
variables, making difficult the verification of any such requirements on the
primitive variables of the model and its original structure. Second; the
inverse transformation used to obtain results on the original model parameters
involves random scaling factors, which conceal the structure of the
unconditional limiting distribution of the maximum likelihood estimator of the

unknown parameter vector. Finally the use of an orthogonalization argument



precludes any immediate extensions to the case of nonlinear models in the
future.

In this paper, we consider maximum likelihood estimation of (l.1) for the
case p = 1 and |a1| > 1, using an extension of LeCam's [16] work on locally
asymptotically normal families of distributions. This extension involves
variance mixtures of normal distributions, and is exposited in varying levels
of detail and generality in Basawa and Scott [3], Domowitz [8], and Domowitz
and Muus [10]. The usefulness of this framework is well illustrated for the
case of pure autoregressive models by Basawa and Brockwell [2]. The
regularity conditions we impose are quite standard, and are applied directly
to the primitives of the regression model. The concept of random
normalization factors is avoided, given our technique of proof.

Our principal results are two. From the theoretical point of view, we
characterize the limiting distribution of the maximum likelihood estimator as
a multivariate normal‘distribution, whose variance structure 1is that of a
nondegenerate random variable. This finding is in sharp contrast to results
obtained for stable (ergodic) models, in which the variance of the limiting
distribution is always nonstochastic._ The distribution of the parameter
varlance—-covariance structure is derived. The major result of practical
importance is that the likelihood ratio, Wald, and, suitably modified, score
statistics, for tests of linearvrestrictions;fremain chi-square distributed
under the null hypothesis. The non-null distributions for sequences of local
alternatives are extremely complex, however, and are beyond the scopelof this
paper.

We begin with an exposition of a basic proposition, which describes the
framework upon thch we base our results. Maximum likelihood estimation of

the linear dynamic regression model with normal errors 1s considered in



Section 3, with an emphasis on the convergence properties of the (normalized)
observed Fisher information matrix. Conditions are given, under which the
information converges to a well-defined nondegenerate .random variable, the
distribution of which is known. We may then charactefize the asymptotic
distribution of the parameter estimator as a particular variance mixture of
normals. This result is used in Section 4 to develop the distribution of
commonly used test statistics, under the null hypothesis. Finally, in Section
5 we consider the extent to which the analysis performed by Hall [13] and
others who study (1.2) remains valid, once explosiveness is taken into

account. This is accomplished by a simple empirical example.
2. A Framework For Analysis

The asymptotic theory which underlies standard analyses of maximum-—
likelihood estimators is based on the concept of locally asymptotically normal
families of distributions.1 Crudely stated, tﬁe score tends in law to a
random‘variable with the normal distribution, and the variance of this
asymptotic distribution is a degenerate random variable, 1i.e.,
nonstochastic. In explosive dynamic linear models, the asymptotic
distribution of the estimator need not be normal, and may have infinite
variance.2 More generally, however, the limiting distribution of the score is
characterized by a variance that is a nondegenerate random variable, as
exposited by Basawa and Scott [3]. This insight has led to the introduction
of a concept of locally asymptotically mixed normal (LAMN) families of
distributions. Our work on the linear regression model relies on such a
conceptualization. General discussion of this framework is contained in

Basawa and Scott [3], Domowitz [8], and Domowitz and Muus [10]. In this



section, we simply state and discuss a basic proposition, which illustrates
the fundamental notions, and provides.the cornerstone of our subsequent
analysis. The discussion abstracts from a precise measure-theoretic
underpinning, in order to present an uncluttered exposition of the concepts
. involved. All events are simply assumed to take place on a well-defined
probability space, (&, B, P). In particular, all relevant fuﬁctions are taken
to be measurable throughout this paper, without further comment. Given our
continuity conditions, and that we work on finite-dimensional Euclidean space,
this is without further loss of generality. |

Let zT(e) denote the log likelihood function based on T observations of a
random variable, y. The4basic results are expressed in terms of the log

likelihood ratio,
LT(GI,GZ)-= zT(ez) - zT(el)

where 61 and 62 take values on a subset of finite-dimensional Euclidean
space. Let va(e) denote the score vector, i.e., the pxl vector of

derivatives of ZT with respect to 8. The matrix IT(G) is defined to be the
negative of the matrix of second derivatives of ZT with respect to 6. We also
define DT(G) to be a pxp diagonal matrix, with elements

E[azT(e)/aei]z; 1= l,¢++,p, arranged along the diagonal, and zeroes

elsewhere, when the expectation exists. Finally, set

/2

1
sT(e) = DT(G) VQT(G)

and

%* -V -y
= 2 2
IT(G) = DT(Q) IT(G) DT(G) .



Note that the quantity sT(e) is simply a normalized score vector, while the
matr;x I;(e) resembles the usual estimator of the information matrix, up to a
normalizing constant. It will be seen that such a normalization is crucial
for obtaining useful asymptotic results, similar to the analysis of maximum
probability estimators by Weiss and Wolfowitz [24]. We now impose some

regularity conditions.

Assumption 1. TFor every O interior to the parameter space ©, a compact subset

of RP, £T(9) is twice continuously differentiable, almost surely (a.s.). The

o2
expectations E[azT(e)/aei] s 1 = 1,°¢, p, are finite for each finite T.

Assumption 2. D,I,(e)-1 + 0as T + «, uniformly in 8 € O.

*
Assumption 3. There exists a pxp random matrix, I (8), which is a.s. finite
w W
* *
and positive definite, such that IT(S) + I (8), uniformly in 8, where +

denotes weak convergence (convergence in distribution).

Assumption 1 is a standard regularity condition, which may hold as
E[BR.T(G)/aei]2 + o, T+ o, Asgsumption 2 is essentially a consistency
requirement, which must be fulfilled in any application of interest. Taken
together, the first two assumptions basically are used to justify a Taylor
series approximation to the log likelihood ratio.

The crucial condition in practice is Assumption 3. As of now, we know of
no way of fulfilling this condition except by construction. Any such

construction relies crucially on the assumed density of the observations,



unlike standard asymptotic analysis. As a brief illustrationm, consider a

first—order autoregression with no constant term, driven by independent
%
T
to unity (in probability), a standard result for which normality is not

standard normal random errors. If the autoregression is stable, I converges

. *
required. If the autoregression is explosive, IT

2
variable with the y (1) distribution, which we shall establish as a corollary

converges weakly to a random
to our results in the next section.3

We now state the proposition central to our analysis. The proof is due

to Basawa and Scott [3].4

Proposition l. Under Assumptions 1-3, for all T sufficiently large, and

all 6 interior to 9,
L (8 +D () "2h 8) = h's (8) =Y 1" |
I. 78 2(®) p28) = hsg ) 2 h I (8)h, + op(l)

*
for all bounded sequences {hT} of elements of RP, where IT(G) is a.s. positive

definite.
w 1Y) *
* *
I (s,(8), I(®)) + (T (8)2z, 1 (8))
*

where Z is a pxl standard normal vector, independent of I (68).

When a likelihood sequence {IT} satisfies the conditions of this
proposition, we say that such a sequence satisfies the LAMN conditions. The

‘first statement simply justifies a series expansion of the log likelihood

ratio. The second defines the limiting distribution of the score, when the



distribution of I*(e) is known. 1In the case of nonstochastic

I*(e), the proposition provides a workable definition of the concept of
locally asympfotically normal families of distributions, for most cases of
interest in econometrics.

Given this result, it is hardly surprising that

(0,832 5, = 03, Ty (8) » ("3 22, 1%(0))
where BT is the maximum likglihood estimator.5 We omit details. Thus, the
basic difficulty in calculating the limiting distribution of the estimator
lies in the verification of a distribution for 1*(9), followed by the
calculation of the mixture distribution. This would be required, for example,
if the usual standard errors for coefficients were desired in a regression
framework. As might be imagined, such an exercise can be extremeiy
difficult. Fortuna;ely, the beﬁavior of the likelihood ratio statistic under
the null hypothesis can be characterized if only the conditions of the above
proposition are satisfied, without expliciting calculating the mixture. To

this we now turn, for the case of the dynamic linear regression model.

3. THE MODEL
Consider the nonergodic process,

yt=-ozyt_l+13'xt+et , £t =1, eee T (3.1)

= . = s e '
where v, 0 and |a| > 13 x [xlt xkt] is a k x 1 vector of

nonstochastic regressors, and (et) is a Gaussian white noise process
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(i.e., &~ N(O,cz), 02 > 0). The unknown parameters are

a,B = [B1 see Bk]', and 02. Our results are valid for arbitrary y_ , but at the -
expense of considerably more notation, which we eschew here. The case

of la] < 1 is also covered by the analysis, but the unit root

problem, |al = 1, is not covered.®?

From (3.1) we obtain by recursion,
y=2= ai(B'x +€,) (3.2)
t-1 i

2
Hence, if M, = E[yt] and ct = Var [yt],

t-1 g
u, =I aB'x__ . : (3.3)
t 1=0 t-1
2t
02 = UZJL—;:L- _ . (3.4)
t 2
a -1

Obviously, ci + @ ag t + » reflecting the explosive nature of the process.

In order to find the limiting distributibn of the maximum likelihood
estimator and associated test statistics we impose the following regularity
conditions on the (nonstochastic) regressors.

Assumption 4. (1) x,. = o(y") for all |y| > 1, 1 = 1,°,k.

it
T T y, T ’ Y,
(1) xitxjt/(f xit) (I Xse )+ a4
t=1 t=1 =
for T + », where the kxk matrix 0= [qij]ij=1,---,k is

positive definite, with finite elements.

(iii) sup + 0 for T+, 1= 1,200k,

1<t<T eriz
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These assumptions are virtually identical to the usual regularity
conditions imposed on regressors when analyzing the iimiting behavior of the
least-squares estimator. While (i) rules out exponential growth in the
regressors, polynomial time trends are allowed within our framework.
Condition (i1) is the standard identification condition, ruling out perfect
multicollinearity. The last condition ensures the nonsingularity of the
Iimiting normalized Fisher information matrix, to be defined below. Similar
regularity conditions may be found in standard econometrics texts, such as
Judge, et al. [15, p. 162], where they are sometimes referred to as “Grenander
conditions.”

The log-likelihood functién (apart from a constant) corresponding to the

dynamic regression model (3.1) is given by

T .
2 T 2 _1 _ _ 2
2,(a,8,0%) 2 Log 9 992 ;1 (v, - oy, - 8'%,) (3.5)

By differentiation we obtain the score vector

" 2T ~

1/6° T e,y

eop TECl
T
2y _ 2
VlIIa,B,a ) = 1/a t:1 e X,
(3.6)
2 4T 2
- T/20° + 1/2¢" L €,
t=1
L J

‘" from which we obtain the well known maximum likelihood estimators by solving

the likelihood equations VlT(a,B,cz) = 0.
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The observed Fisher information matrix is given by

2
1{a,8,0%) =

T
1/0% & Vo1
t=1

2

T
1/02 I x
t=1

anﬁ the diagonal normalization matrix is

2
pa,8,0°) =

T
1/02 z Eyi_

g=1 1

1t

y

t-1

, T s T
see 1/0° L Y._ /0" Z ey __
ol XtV e-1 eop B t-l
2 T 4 T
eee 1/0° Z x 1/0 I ex
el 1%kt eop tlt
T T
1/0% : xit 1/6* & N
t=] t=1
T
- T/Zc4 + 1/06 z ei
t=1
T
2 2
1/0 Z Xe
t=1
T/an

Thus, we obtain the normalized Fisher information matrix
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* -1 -1 )
IT(a,B,cz) = DT(a,B,az) f2 IT(a,B,az) DT(a,B,az) /2 given by

“ Ap Bip « oe e B c,
Flir T P H o
Ifl(a,s ,02) = E
ikt Hp
Ip
where, ] 1
T tgl et/ E[tgl et ]
Bir tgl X5 Vo1 / (E[El Yt-12])1/2(£1 xitz)l/z
Cr = /2 tgl €Vt / o/ T(E] tEI yt_12])1/2
L tEI “ie My / (51 xii)l/z(tgl xjtz)l/z
R, =V 2 51 ENERA. (El x,2)2
Jq = (2/10%) sz ei-l

(3.7)
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The general form of the matrix I; is not new in the analysis of the
least-squares estimator, although our use of expectations in Drp is somewhat
unusual. Such a formulation has proved convenient for handling cases in which
the regressﬁr cross—-product matrix, normalized b& 1/T, does not ha?e a finite
nonsingular 1imit [15, p. 161]. Its primary application has been to
regressions with nonstochastic regressors which may grow as polynomials in
time. A similar form is used by Fuller, et al. [12] and Wei [25] for vectors
of suitably transformed or orthogonalized regressors. We use expectations to
provide a nonstochastic damping factor for the exponential growth in the
lagged dependent variable.

The convergence of I:(a,B,cz) is established by considering the limiting
properties of each individual element. Intermediate lemmas and proofs are
relegated to the appendix. One intermediate resglt is of independent
interest, for two reasons. It can be shown to hold for more general
situations than that considered here, and it allows us to link our results on.
the regression model to those concerning simple autoregressions, already in

the literature.

Lemma l. Given model (3.1) and Assumption 4,

ZTLI» 2 T
(y,-u)/E[ X
TS L t=1

yi_ll'éL§;> W2 , for T—> =

where W ~ N(O,1).
This result is valid for lagged dependent variable structures of any order,

with a single explosive root. Under suitable additional conditions, it also

holds for a nonlinear regression, with separable, linearly explosive
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dynamics. We use it to contrast our results with those of Anderson (1],
below. Given that properly normalized terms in ut converge to zero, the lemma

is the cornerstone of our first theorem.

a.S. %
> I for T + =, where,

*
Theorem 1. Given model (3.1) and Assumption 4, Iy (a,B,az)

W2 0 0 * o 0 0

a0 A 0

1 o o o q2k 0

* L ]
I = .
1 0

1

2
and W ~ xf, while the a4 are defined in Assumption 4.

It is interesting, but not too surprising, that I* is a block diagonal
matrix. For the particular case at hand, the only random element in I* is WZ,
distributed as a central chi-square with one degree of freedom.

Derivation of this matrix satisfies Assumption 3 of Section 2 by

construction. For our linear model, Assumptions 1 and 2 are rather trivially

satisfied, leading to the following result.

Theorem 2. Given model (3:1) and Assumption 4, the sequence of likelihoods

{lT(a,B,oz)} defined by equation (3.5), satisfies the LAMN conditionms.
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The importance of this result lies in its implications for the asymptotic

IZI
distribution of the score. Letting 6 = (a B q‘) , we have shown that

w % :
ST(e) —> N0, I (8)) , T+ (3.8)

where Sp = DT(Q)-JVEVIT. The distribution of the score vector can, therefore,-
be characterized as a variance mixture of normals, the mixture distribution
involving the chi-square distribution. This result forms the basis of
standard test procedures, which are considered in the next section.

Before turning to issues of hypothesis testing, we consider a
specialization of (3.1), which has received attention in the literature, most
notably by Anderson [l1]. Under the regularity conditions considered here,
equation (3.8) implies

1/, = w Y,

* -
Dp(8)°2 (8, - 8) —> 1 (8) 2z (3.9)

where BT = (aT , BT oT) is the maximum likelihood estimator, and Z is a
standard normal random variable. 1In the case of a first-order autoregression,
i.e., B8 = 0, we have
w
T 2 2 - -1

[E Zt=1 Yo_yl'2 (g = a) >W o Z (3.10)
Since the sequence of likelihoods is in the LAMN family, it follows, by
definition, that W and Z are independent. The limiting distribution of the
esﬁimator, under this particular normalization is, therefore, Cauchy, as shown
by Anderson [1, Theorem 2.7]. There exists, however, a random normalizing

factor such that the limiting distribution of the estimator is normal
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(Anderson [1], Theorem 2.8). This follows directly from (3.10) and Lemma 1,

i.e.,

w

T .
[ 1 Y§_1]yé(aT -a) —> z. (3.11)

t=1
Similar results may be obtained for higher order autoregressions, with a single

explosive root, as in the work of Rao [21] or Basawa and Brockwell [2].

4. Hypothesis Testing

We consider the case of a composite null hypothesis, in which a subset of
the parameters, possibly including a, is constrained to a preassigned vector
of values.7 As noted by Engle {11], any well-defined linear hypothesis can be
transformed to fit this description. We are interested in the properties of
the standard Wald, likelihood ratio, and Lagrange multiplier statistics under

the null hypothesis.

t t_t
Let 0 = [61 92) » Where 91 is a kl x 1 vector and 62 is a k2 x 1 vector
(k1 + k2 =k + 2). The null hypothesis is taken to be 61 = e? , 92 unrestricted.
~ [ I ]
Define 0 = [9? 92) to be the maximum likelihood estimator under the null,

~ -~ r A~ 1

L
and let 0 denote the vector of unrestricted estimates, [91 62 ) . We
suppress the T-subscripts on the estimators for notational simplicity at this

stage. We similarly partition

B .* %*- 7 %* %*
I 12 L P
%* %*
I(8)= IT(O) =
%* %* * *
I Lo Lot ITZZJ
B | - - "




- 18 -
accordingly, where the dependence of the components on the elements of 6
is understood. The matrices I(6) and IT(G) are partitioned in precisely the
same manner.

The conventional likelihood ratio statistic is written as

LRy = ~2[2,(8) - 2,.(8)] (4.1)

and the Lagrange multiplier statistic is simply

~ 'k o~ ] At
M, = ST(G) IT (8) sT(G) (4.2)

which reduces to the more conventional form
~ ! ~—1 ~
LMT = va(e) IT(G) va(e) (4.3)

in practical application. In terms of 6 this statistic may be written as

19

~ ! ~

11,
Ve, (8) I°7(8) V& .(6)

11

where I (0) is the partitioned inverse of I(8) and V& is partitioned as

1T

91. Finally, the Wald statistic is
- (9 0%yt (1 0 et (e WA
Wp = (8 = 8" [Ty )p (8) = Tjop (8) T,pq(8) = I,,4(8)] (4.4)

It is well known that all three test statistics have the same asymptotic
distribution under the null hypothesis, in standard settings. We reaffirm

this result for the nonergodic regression model.
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From Proposition 1 we get the validity of the Taylor series expansion,

~

) = 2.(6

lT(Sl,OZ = 2.08,, ) + s (91,9 ) (6—9)

~ ! -1 - - =1 ~
-1/, (6-8) D (8) /ZIT(G) Dp(8) /2(9-9) *+ 0 (1)

=2 (8.8.) =Y, (8-8) D ('e‘>‘1/21 (6) D_(8) 1/2<e—’é> + 0 (1)(4.5)
TV1°72 2 T T T p :

remembering that ST(§1’32) = 0, and where 8 lies on the line segment between

8 and 3. From (4.5) we obtain,
IR = 2[2.(8) - 2.(8)] = (6-8) D" 2By 1.(B) .~ 72 (3)(6-8)
T T T T T T

p

where 3 lies on the line segment between 6 and 3.

IT are continuous and 8 and 3

Since the functions Dy and
are consistent under the null, a standard

argument establishes the asymptotic equivalence between the likelihood ratio

statistic and Wald statistic.

Applying a first-order>Taylor series expansion to the score vector we

obtain,

8,(8) =s (9) - D (9) I/ZI (9)(9-9) + o, (D (4.7)

e -~

where 60 lies on the line segment between 6 and 6. Evaluation at the point
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9 =9 yields,

~ . -]/2 . ® o~
ST(G) = Dt(e) IT(G) (6-8) + op(l) (4.8)

-

where 6 lies on the line segment between 6 and 5. From (4.6) we then obtain,

A o~ =—1/ = =—=1/ A~
2 2(o-
(0-6) DT(G) IT(G) DT(G) (6-06) + op(l)

-~ *. -1 -~
= + »
sp(8) In(8) ~7 s,(8) + o (1) (4.9)
from which we obtain the asymptotic equivalence between the Wald test
statistic and LM test statistic. Hence, we have established the asymptotic
equivalence of all three test statistics.
From (3.8) we obtain by standard arguments, resting on the continuity of

the functions Dep and I, as well as the consistency of the estimators involved,

that

1 11 ¢ N

sT(S)' 1;(6)‘ sT(S) + o0 (1) = slT(é) 1; (8) s ,,(8

+ op(l)

— xz(kl)

Hence we have established the following rgsult.
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Theorem 2. Under Assumption 4

(1) LRT’ LMT’ and W& are asymptotically equivalent.
Yoo

(ii) LRT > X (kl)
v 2

(111) M, —> X (kl)
Y2

v) W, —> x (k)

under the null hypothesis.

In short, the conventional test procedures carry over to the nonergodic
case. We have little to say about behavior under the alternative, however.
The usual drift terms considered in an analysis of local power properties now
involve nondegenerate random variables with the chi-squared distribution, even

in the 1imit. This issue is deferred to future research.
5. An Empirical Analysis

Several examples of explosive processes have occurred in applied
econometric analysis. An important’example is provided by Hall [13], who
studies the stochastic properties implied by the life cycle-permanent income
hypothesis. On the basis of a quadratic utility function
u(ct) ='% (a-ct)2 , ct < a, where a denotes the bliss level of consumption

(ct)’ Hall derives the estimating equation.8
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= 5.1
Act € A (5.1)

where (et) is an uncorrelated stochastic process, and A denotes the difference

operator, Ax, = x

¢ £ = Fpopt To investigate the empirical validity of the above

result Hall [13] considers the regression,

c, =8 + @ ey + 8'xt_1 + e (5.2)
where x,_; is a kxl vector of regressors in the household's information set at
time t-1. Under the null hypothesis, B8 = 0, and we leave al unconstrained.

In the empirical implementation, the standard consumption measure
(including nondurables and services per capita) is used. Resqlts are obtained
using seasonally adjusted U.S. time series data.

Since it is an empirical fact that consumbtion (per capita) grows
exponentially rather than linearly, it 1is hardly surprising that Hall [13]
obtains values of al in excess of unity. 1In this case, the techniques
developed in the previous sections are needed in order to test 8=0. Applying
seasonally adjusted aggregate data over the time period 1950:1-1983:4, we
obtain the results given in Table 1. Notice that the conventional standard
errors have not been reported, since these are meaningless within the
framework of the linear explosive regression pfocess.. In order to carry out
the orthogonality test proposed by Hall [13], we have used

b4 ), where vy denotes real personal

t (ct-z’ €e-3° “t-4’ Te-1’ Te-2° Ve-3° Vo4
disposable income per capita. In column 1 we report the estimates with the

restriction B=0 imposed, while the unrestricted estimates are reported in

column 2. .As expected, al > 1 in both cases: As shown in the previous
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section, the ordinary hypothesis testing procedures‘remain valid under the
maintained hypothesis Iall > 1. Computing the likelihood ratio statistic LR

for the hypothesis H.: B = 0 against the alternative HI: B # 0, we obtain

0’
LR = 6.47. Thus, the marginal probability of rejection is 0.25, leading us to
conclude that we cannot reject the null at a 757 -~ significance level. As
found by Hall [13], the life cycle—~permanent income hypothesis cannot be
rejected using the above set of exogenous variables (obviously, a different
choice of x, could lead to such a rejection). It could very well be argued
that the quadratic utility function specification induces explosiveness by not
taking into account that the bliss level of consumption rises over time.

However, we have carried out the above empirical analysis mainly to illustrate

the econometric problem and techniques discussed in the previous sections.
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Table 1
Hall's consumption model 1950:1-1983:4
= + + B! +
ct “o al ct-l 8 xt: et:

(1) (2)
constant -1.2998 =-3.4401
Ceo 1.0054 1.1702
Crmn . - -0.0785
Ceo3 - -0.1289
Cesy - ’ -0.2038
Ye-1 - 0.0356
Ye-2 - -0.1088
Ye-3 - 0.0656
Ye-s _ - -0.0022
SSE 26117 23409

T 136 : 136

Note: Data are taken from the National Income and Product

Accounts. SSE 1s the sum of squared errors.



- 25 =
6. SUMMARY AND CONCLUSIONS

In the present paper we have studied the limiting distribution of the
maximum likelihood estimator in the lineaf nonergodic regression model
(3.1). 1In particular, we have demonstrated that the limiting distribution of
the vector of maximum likelihood estimators is a variance mixture of nofmal ’
distributions, the mixture distribution involving the chi-squared distribution
in an essential way. Furthermore, we have shown that the traditional
hypothesis testing procedures carry over in the explosive case. We note the
simplicity in testing parametric restrictions in the model due to the block
diagonality of the limiting normalized Fisher information matrix.

Our results on asymptotic inference obviously suggest the need for
theoretical and numerical investigations of the small-sample properties of
such commonly used statistics. Theoretical progress for the AR(1l) model,
without regressors, has been made by Satchell [22]. Our results indicate that
his sugéestion concerning expansions around the distribution of the test
statistic, rather than around the normal distribution, has merit and should be
explored ([22], p. 1283). Nankervis and Savin [19] have already carried out a
serious Monte Carlo study of the problem. Small sample properties are found
to be quite good when the regressors are independent normal, although
convergence is slow for tests associated with the autoregressive parameter.

In the case of nonstochastic regressors considered here (a time trend is used
in the study), their results are not quite as promising for very small
samples. Better performance is obtained for larger values of the
autoregressive coefficient. At T = 100, however, the F-statistic performs

quite well, as predicted by the large-sample theory presented here.
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Several extensions of the model studied here suggest themselves. It

" would be interesting to establish the appropriaté regularity conditions and
derive the asymptotic distribution of the maximum likelihood estimators in
models containing stochastic regressors, nonlinear regression functions, and
general ARMAX structures. In addition it would be of practical importance to
establish the limiting properties‘of the general least squares estimator (not
assuming normality of the error term), as well as establishing the
distribution of the teét statistics under (local) alternatives. These, and

other extensions, will be the topic of further research.
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Appendix

In the present section we shall establish the result stated in Theorem 1. We
shall prove the convergence of the normalized Fisher information matrix

*
IT(a,B,az) by considering in turn each element of the matrix.

By Assumption 4 (ii) we immediately get,

T T 2l T 21
Lean®1e xjt/(zt=1 Xie) (zt=1xjt) > 935 for T > (4.1)
2 T 2
Since — ) € =1 = =yx_ =1 we get by Kolmogorov's Strong Law of Large
TUZ t=1 t T *T
Numbers,
. a.s. ’
29T 2 >1  for T+, (A.2)
2 t=l 't
To
Since vV 2 T e x Jo/ T (ZT x 2)1/2 ~ N(O —2-) we get
t=1 t “it t=1 “it T
I T 2/, a.s. 3
{ 2 _Zt=1 ex, /o /T ():t=1xit)l —> O for T+ =, (A.3)
‘ o —= T — (r¢T 2%y
We immediately obtain E[/ 2 zt=1 €, yt_llc/ T (E[zt=lyt-1]) =0

— —_ 1
and Var [V 2 Zt=f etyt_l/O/ T (E[zz=1/yt_f])42] =-% . Hence, by

Kolmogorov's Strong Law of Large Numbers,

e— T 2 a.s.
’2 z'£=1 ey /9 T (L)% "

t=1"1t

>0 for T + =, (A.4)
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What remains to be shown is the convergence of the elements

T 2, T 2 T T 2y T 2
Leap ey /Eldpay ve-1] and 2oy %3y /{1y xit:)/2 (E[Zt:=1yt:-1]f/2°

This problem is resolved by proving a number of Lemmas.

Since Yo = 0 we have, using 3.3,

T 2 T-1 2 T-1 2 T-1

and, using 3.4,

T 2 T-1 2 o T-1 2 2 =2 N
where,
wy, = GZ[GZT - az - (T—l)(a2 —1)] + (az - 1) X::; ui (A7)

We shall use the following result established by Cramer and lLeadbetter

[5]1, formula (4.6).

Lemma A.l. Let (Xt) be a sequence of random variables, such that

2 3
E[(Xt+1 - Xt) ] < 6t all t where (Gt)

is a sequence of positive real numbers, such that
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Zt Gt { =, Then (Xt) converges almost surely.

Define
—
W= a2 0202ty e -y ) (A.8)
t t
Then Wt ~ N(0,1), cf. formula 3.4. Furthermore, define
*
Wt = Yt W£ , Wwhere
1y -
Yy = (a2t -1)/2cx ¢
t
Obviously, Yt —> 1 for t + =, and
—
w* = az-l 0-2 a-t (v. -p) (A.9)
t t t
x 3eSe
Lemma A.2. Wt > W for t + ® |, where W~ N(0,1).
Proof: We have,
2 . 2
*  * 27 _ a -1 - - | - 2
E{(Weyy= W] = BT OGar = Mewd) e G m )l
oca oca
Y2
a -1 2
= (/=5 ¢.,,)°]
. at+1 t+l1

3-2(t+1)

@2-1)
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*
Thus, by Lemma A.l, the almost sure convergence of (Wt) is established,
since Yo * 1 for t + », it follows that W ~ N(0,1).

-2T

Lemma A.3. mTa > 02 for T + =.

Proof: We have,

® Q_ZT = Q—ZT O’z[GZT - a2 - (T—l)(az—l)]

+ Q-ZT (a2_1)2 ZT

1 2
e=1 Y& (A.10)

- 2
Obviously, a ZToz[a T_ az - (T—l)(az-l)]'———> 02 for T + =

The second term in (A.10) converges, since

-2T, 2 2 ¢T-1 2
@ " (a1 Zt:=1 He

—> 0 for T+ o

by dominated convergence, since by Assumption (i), there exists K > 0 such

that

2t

® 2 2T - -
Z < K Zt=1 a { =

a
t=1 "¢

(cf. formula 3.3)
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a.s.
Lemma A.4. Zg;i (yt - ut)2 / E[Z:=1 yt_f] > W for T+ , where
W~ N(O,1).
Proof: We have
T-1 T T=1
2 2 -1, 2 2 2
E (y. -w )/ ez y 7] =w"(a=-1) z (y -u])
t=1 t t t=1 t-1 T =1 t t
T-1
T e .
t=1 T 't

2, 2 .y o 2T -1 %2 -2t
o“(a -l)tila w, W a 1[1,T—1](t)

+

(az-l) W g o2t
t=1

by dominated convergence, since aZTm-; is bounded,
-]

T a_Zt

t= *
th(m)! < R(w) for almost every realization of (Wt(m))

¢ », and there exists a bound K(w) < =, such that

Convergence of the second term in (4.6) is stated in the following lemma.

T-l 2 T 2 3eSe
Lemma A.5. z ut/ E[ £ Vet ] > for T + =,
t=1 t=1
Proof: We have,
T-1 T T-1 T-1 T
Z 2/ E[ z yt_12] = I ui /(¢ ui + Z ai) +0 for T+ =
t=1 °© t=1 t=1 t=1 t=1
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T-1 T-1 ' -1 '
since I ai / Z ui = az[aZT -a? - (Thl)(az -1)] = ut2+ »
t=1 t=1 t=1

for T + » by the argument of Lemma A.3.

lenma A.6. I u(y -u) /B[ I y,_°]—> 0 forT»e.

T_l ’ T 3eSe
z
T=1 t=1

Proof: We have,

ks [ 5,2 = (&)%) T )
L ou(y -w)/ B2 y_ “]=(a"-1)%_ £ u(y -u
eop £V T e ooy t-1 T, tt t

T-1
- * -
- a(az _1)3/2 aZTw 1 a 2t+T

W
oy T e
-]
- %* - .
= ofa? -1)% 5 &PTh W Q72T I, -9
t
e=1
+0 for T+ =

by the dominated convergence theorem using an argument similar to that

applied in the proof of Lemma 3.-

Combining lemmas A.4~A.6 we finally get the convergence result, stated in the

following proposition.
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PROPOSITION A.7. £ y2 JE[X y> ]+ W almost surely, where
: t-1 t-1
t=1 t=1
2 2
W~ x (1).

We shall, finally, establish the convergence of the term

1 1
ZI=1 xityt-l/ (ZI=1 xii)/z(E[Z:_lyt_%])/z o We shall use the results stated in

the following lemmas.

T-1 T 2 1/
Lemma A.8. Z ut/(E[ Z yt-l]) 2 +0as T+,
t=1 t=1
Proof: We have,
G B K R O O )k
t=1 ut t=1 .yt-]. t=1 ut t=1 ut t
+ 0 for T "'Qo
Lemma A.9 ZT-I (y, =u )/ E[ZT 2])1/2 for T+ =
= - t=1 ‘Y T M t=1 Tt-1 :
2_1 1/,
» 8D o here W~ N(O,1)
a -1

Proof: From formula (A.6) we obtain,

- 2 =Y, 2 -1
Tomt Gem w MRy 2 102 0l 2 @0 1] 6, - )

T-1 =-1/2,2 Y, ¢ =
Zt=1 wp ' T(a"-1)%0 a” W
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2 Y, = t-T -l T %1 (t)
=‘(a -1)¢o Zt=1 a wy, “a Wt [1,T-t]
gcxz-lzl/2
> acl W for T+ =

by dominated convergence, applying Lemma A.2 and Lemma A.3, noticing that

lim ZI;} F T - —-ail
Tco

Combining lemmas A.8 and A.9 we get

T-']. deSe
Lemma A.10. ) y /(E[Xt Ty2 1])/é il ) ER A N ©, where W ~ N(0,1).

deSe

T T
Proposition A.ll. Zt=1 X, yt-l/(zt=1 it {E[Zt o1 Yo l]jué > 0 for T + =,

Proof: By Assumption 4 (ii) there exists GT, such that

6T + 0 for T+« , and

1T %y Tey (Lo e V2 (RLIT v, 2102

X y
T it t-1
=) Ty

=1 (3. x, )" (E[z: L

T-1 T 2 1/2
8p Loy Yooy /(ELL y9.21])
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by Lemma A.10.

From the above results, we have established the following theorem.

- x ’ a.s.
Theorem 1. IT (a, B, 07)

*
> I for T + =, where

w2 0 0 0 0 0
1 92 ° " " Ik 0 0
i 1
1 0
1

and W2 ~ x2(1)e
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Footnotes

See. LeCam [16] for a rigorous treatment. A much lengthier, but more
readable exposition is provided by Ibragimov and Has'minskii [14].

See, for example, the work of Anderson [1] and Rao [21] on pure
autoregressive models.

Such a result also is implicit in the analysis of Anderson [l].

Our conditions are different than those of Basawa and Scott, but there is
little extra to prove, and we simply credit them with the result.
Reworked proofs are contained in Domowitz and Muus [10].

The existence of the estimator is assured under the stated conditions.
See Domowitz and Muus [10) or Basawa and Scott [3].

The unit root problem requires some very specialized tools. See, for
example, Phillips [20].

As implied by our previous assumptions, the hypothesis a = 1 is excluded
from consideration here.

In the Hall model, it is assumed that the real interest rate is constant
and equal to the household's subjective rate of time preference. See Muus
[18] for a derivation of model (5.1), as well as a discussion of the
restrictions involved.
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