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AUGMENTING EUCLIDEAN NETWORKS--THE STEINER CASE

Abstract

On a Euclidean plane, a network and n points are given. It is required
to interconnect points to the network by links of minimal total length. The
use of Steiner points is allowed, and connections can be made anywhere along
the edges or to the vertices of the network. We prove that the problem can be
solved in finite time by methods similar to those used for the Euclidean
Steiner tree problem. The problem can be generalized to include flow
dependent costs for the various links, or to allow for the connection of
several networks. However, even in the form discussed in this paper, it may
be useful for problems such as connecting new customers to existing networks
(for example, computers, telecommunication, electricity, water, sewage
disposal), where the projected flow between the networks does not justify more

than the minimal possible investment.
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I. Introduction

The connection of new customers to electrical networks or new exchanges
to communications networks is encountered frequently. A network exists and is
to be augmented by connecting new nodes (points) to it. This problem can be
stated as follows: on a Euclidean plane, a set of points and a network
(consisting of straight edges) is given. It is required to connect the points
to the network by links of minimal total length.

We assume that links may be connected to the network anywhere along its
edges, and also that extra nodes may be added, if by doing so, the total
length of the links is reduced. (In effect this also means that our network
is embedded in a planar graph, since intersections may be considered as
nodes.)

Our problem is actually a generalization of the well known minimal
(Euclidean) Steiner tree problem [5,4,1]. A set of n points on a Euclidean
plane are to be connected by a network of minimal total length, which may span
(up to n-2) additional points, named Steiner Points (if the total length of
the network can be reduced by incorporating them). It is easy to show that
each Steiner point is of degree (rank) three, and the angles formed between
ad jacent pairs of arcs anywhere in the tree are at least 120° (120° exactly at
the Steiner points). There are many possible configurations (also referred to
as "topologies™ in the literature) for Steiner trees, which is the inherent
reason for the fact that the Steiner tree problem is NP-Hard [2]. (It follows
that our generalization is NP-Hard too.) However, for any given configuration
an easy construction is available whereby the tree can be drawn using a ruler
and compass (see Melzak [5]). The construction may degenerate, which would
indicate that no Steiner tree with the configuration involved exists. A

useful tool in constructing Steiner trees was suggested by Cockayne [1], and



named by him "The Steiner Polygon.” The Steiner polygon serves a dual
purpose: (i) it defines an area which contains the MST (minimal Steiner
tree); (ii) it establishes a cyclic order among the points on its boundary,
which makes the construction of the various configurations much easier, by
ruling out in advance many seemingly possible topologies. It may also serve
to decompose the problem to smaller ones, if it intersects itself.

In this paper we extend the Steiner construction to our generalized
version of the problem, thus making it possible to solve it in finite
(exponential!) time. We also show that the concept of the Steiner polygon can
be partly generalized to our problem.

In order to motivate our discussion, consider the following simple
example: the network G is a simple segment and we have to connect two points,
1 and 2, to it. The solution may differ, depending on the location of points

1 and 2 in relation to G. In Figure 1 we illustrate some possibilities.

Insert Figure 1 about here

The solutions to cases a, b and c are obtained by a separate solution for the
two points. In case 4, one of the points 1s connected directly to G, and the
other is connected through it. In cases e and f, the two points are connected
through a (third) Steiner point, such that all three angles formed are exactly
120°. Using results we shall develop, we can show that cases b and c¢ must be
optimal (for their arrangements respectively), but in case a, we show by a
broken line another tentative solution which must be checked before the
optimal solution is identified for sure.

Figure 2 depicts a much more complicated example, where 10 points should

be connected to a network which consists of three edges. The optimal solution



is given by broken lines, and includes a total of four Steiner points. We

shall refer to this example in more detail, towards the end of the paper.

Insert Figure 2 about here

II. The Problem

On a Euclidean plane, let a set N of n > 1 points and a network G(V,A) be
given, where V is a set of vertices and A a set of straight edges which span
the vertices of V. It is required to connect all the points in N to G in such
a manner that the total length of the required links is minimized.

If G degenerates to a single point, our problem is reduced to the well
known Steiner tree problem. Therefore, we have a generalized version of that
problem, and may refer to the optimal solution as the Generalized Minimal
Steiner Tree (GMST). Note that the links incorporated in the solution may or
may not form a spanning tree by themselves, but together with G, they do span
N u V, and if G is a tree, then the GMST 1s also a tree. In our discussion,
we may refer to G as a single supernode (to which we assign the index 0), so
that in a sense the GMST is a tree, even if G contains cycles. However, there
is no reason to expect that the GMST will be a proper Steiner tree (let alone

an MST) for N u V.

Simple and Compound @GMSTs: If N is ultimately connected to G through one

link exactly, we call the GMST a Simple GMST. All other cases are named
Compound @STs and are actually combinations of partial, simple GMSTs. For
example, in Figure 2 the GMST is compound, but it can be broken down to four
simple components, namely the connections

of {1,2,3,4}, {5,6,7}, {8} and {9,10} to G.

We refer to the case where ’NI =1 as "the basic case.” In order to



solve it, we have to find the nearest arc of A to the node (where each arc
includes its endpoints); if the connection is not through an endpoint, it must
be by a perpendicular link. Thus, in order to solve the basic case, we have
to check up to 'A| arcs.

For some less trivial cases, we need the extended Steiner construction,
which is applicable to a set M < N of m < n nodes connected to G by a simple
GMST with m1 Steiner points exactly. This is actually a full Steiner tree
for m + 1 nodes, and we refer to it as a generalized full Steiner tree, or a
GFST. Note that for m = 1 a GFST is a single link.

According to Cockayne [1], a full Steiner tree can be represented by a
notation which indicates a pairing order of nodes of N (where a pairing
implies representing two points by another point on the apex of an equilateral
triangle based on the segment associated with the pair). Cockayne also showed
that node n (or any other node) can always be left alone and thus become an
endpoint of the segment which represents the whole FST at the end of the
pairing process. (As an example, take a Cockayne notation such as
((1,2), (3,4)), 5; this would indicate representing 1 and 2 by (1,2), 3 and 4
by (3,4), and finally (1,2) and (3,4) by ((1,2), (3,4)), which, with 5, forms
a segment. What we do in our case is simply to leave G, the (m + l)th node,
as such an endpoint, and connect it to the other node-—-representing G--as per
the basic case (thus locating the exact point to which we should make the
connection). Note that it is very easy to apply this extended Steiner
construction not only to cases where G is a single segment, but to any
network, as long as we assume that we are looking for a GFST with a given
configuration.

As in the regular Steiner comstruction, degeneracy may occur, thus

indicating that a certain configuration for M U G does not exist.



An Example: ILet N = {1,2,...,10}, as depicted in Figure 2, and let
M= {5,6,7} < N. It can be shown that for this subset, the GFST depicted in

Figure 3 is the GMST, and the

Insert Figure 3 about here

Cockayne notation associated with it is ((5,6),7), O. Figure 3-a illustrates
the extended construction, where nodes 5 and 6 are represented by (5,6), which
is represented in turn with 7 by ((5,6),7); ((5,6),7) is connected to G
perpendicularly, as per the basic case. (Part b of the figure describes the
generalized Steiner polygon for this subset, which we discuss later.)

At this stage, we can present an algorithm which solves our problem in
finite time, as follows: Look for all the possible subsets M < N which can be
connected by GFSTs to G} each such M, along with the minimal GFST associated
with it implies a super-network (which includes G and the minimal GFST), and a
set N - M of nodes which we still have to connect (unless N - M = @; clearly,
if we continue in a similar manner (find a subset, etc.), we must ultimately
obtain a solution, and the best of these solutions is the required optimum.

It can be shown that the proposed algorithm is exponential in lNI, and it
is by no means presented here as an efficient algorithm. It is comparable,
however, to the regular Steiner tree algorithm [1], since both "check™ all the
partitions of N.

One feature our algorithm does not make use of--at this stage——is the
Steiner polygon. 1Indeed, it is possible to generalize the Steiner polygon for
our case, and we proceed to do so now. However, for this generalization we
have to confine ourselves to cases where G is a single segment. This is not

too restrictive since simple trees are always connected through single



segments or endpoints thereof.

For completeness, we present Cockayne's original Steiner polygon first.
We do that in a slightly different manner from Cockayne's own presentation, so
that the generalization will be more natural. The definition is an iterative
one, as follows:

The Steiner Polygon (Cockayne): For a set N of n points, connect all

n(n-1) /2 pairs by straight segments, and let P, be the convex hull polygon of
all the segments (and N). Obviously P, is formed by a subset of the segments,
and a subset of N is on its boundary. This completes our initial
preparations, and we proceed with stage 1.

In stage i (for i=l,...), P;_; is given. 1If for any edge on the boundary
of Py, say E:I, there exists a point m € N such that Am,k, % does not contain

any other point of N, and such that Xk,m,2 > 120 , then P; 1s obtained from

>

P;_1 by dropping k,% and incorporating k,m and m, % in its stead. If no such
boundary edge exists, P;_j is the Steiner polygon.

To proceed with our generalized definition, which applies to the case of
connecting a set N of n points to a simple network G, consisting of a single
edge a,b, we now define:

The Semi-Generalized Steiner Polygon (SGSP): For a set N of n points,

and a network G(V,A), where V = {a,b} and A = {5?3}, designated as (super)
node 0O, connect all (n + 1)n/2 possible pairs by straight segments, where
segments connecting points in N to G, such as'gjﬁ, are obtained as per the
basic case, and let P, be the convex hull polygon of all the segments.
Obviously P, is formed by a subset of the (ntl)n/2 segments, and possibly a
segment c,d — ETB: This completes our initial preparations, and we proceed
with stage 1.

In stage i, P;_1 is given. For any boundary edge k,! where k,% €N,



proceed as in the ungeneralized case, but the internal point m may also be a
or b (i.e., m € N U V), and Ak,m,2 should not contain any other point of N U
G. If no such boundary edge exists, P;_; 1s the semi-generalized Steiner
polygon.

And finally, in order to define the Generalized Steiner Polygon, we begin

with the SGSP, and try to make it even smaller, as follows:

The Generalized Steiner Polygon (GSP): Starting with the SGSP as P, we

proceed with stage 1. 1In stage i we have P;_;. If a boundary edge of P;_,

such as k,% where k € N, £ € N U G and a point n € N exist in such a manner

that no other point of N is in the area defined by the edges k,%, k,m, m, 2 and
possibly G (if & = 0, i.e., 2 € G), and such that X k,m,R > 120°, then P; is
obtained from P;_; by dropping k,% and incorporating k,m and m,% in its

stead. If no such edge exists, P;_; is the GSP.

Note: If & =0, then k,% and m,% (or k,0 and m,0) do not necessarily
connect to G at exactly the same point. This is the main difference between
the GSP and the SGSP or the regular Steiner polygon, and this is the reason
that the GSP does not necessarily contain the GMST, even though the SGSP does.

The following three results were introduced by Cockayne [1], where the

complete proofs may be found.

Theorem 1 (Cockayne): The MST is completely contained within the Steiner

polygon.
It is easy to verify that Theorem 1 can be directly extended to our case
if we substitute the MST and the Steiner Polygon with the GMST and the SGSP

respectively; hence, we will assume that Theorem 1 includes this variation.

Corollary (Cockayne): 1If the Steiner polygon intersects itself, it is

sufficient to solve the Steiner problem separately for each resulting part of



the polygon.
By virtue of the corollary, we may hence assume that the Steiner polygon
is not self-intersecting. This implies that there is a well defined cyclic

order for its vertices.

Theorem 2 (Cockayne): When applying the Steiner construction to any FST

topology, the points on the Steiner polygon need only be considered in their
cyclic order, though internal points of the polygon may be inserted between
pairs of points.

We find it worthwhile to mention that in his proof of Theorem 1, Cockayne
(correctly) states as self evident that P, must contain the MST, and proceeds
inductively to negate the possibility that P, may not contain it if Py,
does. Theorems 3 and 4, which follow, are analog to Theorems 1 and 2
respectively, where the GSP replaces the Steiner polygon, and the GIST or the
GFST replaces the MST or the FST. The reader can verify that it is not always
possible to use the GMST in the generalized case; hence, we state Theorem 3
for simple @MSTs only, and since Theorem 3 is required for the proof of
Theorem 4, we have to settle for the minimal GFST there. In this context, we
nention that an attempt to generalize the GSP for any G (and not just one
segment) fails in the sense that there would be a counter example to

Theorem 3.
Theorem 3: If the GSMT is simple, it 1s completely contained by the GSP.

For the proof, which is similar to that of Theorem 1, see [6] (the first

version of this paper).

Theorem 4: When applying the Extended Steiner construction to a GFST

(assuming one exists), the points on the GSP need only be considered in their



cyclic order, though internal points may be inserted between pairs.

Proof: Since the GFST is an FST, it follows that it is simple and G is placed
correctly in the cyclic order. Hence, Cockayne's original proof for Theorem 2

holds here as well.

We now return to our general problem for any G. Our premise is that G
consists of a finite number of connected segments, and for any subset M ¢ N
and full topology, we can easily locate the best segment to connect through.
However, in the choice of M, we can sometimes save much time by intelligent
inspection.

Let P, denote the convex hull polygon of N (as in its Steiner polygon
definition). Let P be the Steiner polygon for N. TFinally, let Q denote the

Steiner polygon as defined for N u V, then:

Theorem 5: When solving for any set M, only those edges of G which are

accessible from P, by straight uwninterrupted lines need be considered.

Proof: Trivial. [
Theorem 6: If Q is partitioned by various chains of edges in G to some
disjoint faces, the GMST can be obtained by solving separately for the edges

of each such face and the subset of N which is contained in it.

Proof: 1If we suppose that there is a direct connection between two such
faces, two possibilities exist: (i) This connection is by an edge which
intersects G; (ii) The connection does not intersect G, but passes (partly)
outside Q. In case (i), it is clear that the GMST could still be found by
separate solutions for the two faces. In case (ii), an inductive procedure,

such as the one used in the proof of Theorem 3, will rule this possibility

out. i
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Theorem 7: If P is intersected by G to some disjoint parts, it suffices to

solve the problem separately for the points of N in each of these parts.

Proof: Clearly the condition Is sufficient (but not necessary) for Theorem 6

to hold. 0

Rote: Theorem 5 will then serve to identify the edges of A which need be
considered for each subset of N.

Theorems 5 and 6 may be used in a straightforward manner to facilitate
the solution procedure. Theorem 7 is not strictly necessary since its
applicability implies the applicability of Theorem 6; however, when solving
manually, it is sometimes clear at a glance that Theorem 7 applies (e.g., case

b in Figure 1), and it is easier to apply than Theorem 6.

III. An Example:

In the example depicted in Figure 2, we have N = {1,2,...,10},

v

{a,b,c}, A = {a,b, b,c, b,d}, P = 1,2,3,4,5,6,7,8,9,10,1 and

Q =a,l1,2,3,4,5,6,7,c,8,9,10,a. By Theorem 7, {5,6,7} can be solved

separately, with possible connections to b,c or b,d. N - {5,6,7} should be

o

solved with possible connections to all three edges in A. However, Theorem 6,
which in this case is indeed better than Theorem 7, allows us to partition

N - {5,6,7} further. Thus, we can solve for {1,2,3,4} separately, considering
only connections to a,b or b,d; and {8,9,10,11} can be solved while
considering only connections to a,b or b,d. We have already discussed the
case of M = {5,6,7}; the GSP for this case is depicted in Figure 3-6, and it

imposes the cyclic order which we have used.

Conclusion

We have demonstrated a finite procedure to solve the network augmenting



- 11 -

problem, by extending to it known techniques used in the Steiner tree problem,
including the Steiner construction which can be executed by a ruler and
compass. Much work remains to be done. For instance, specific heuristics
should be developed to parallel those known for the Steiner tree problem. The
problem may be extended to augmenting a network with rectilinear distances, or
a network embedded within a graph--cases for which versions of the Steiner
tree problem exist. The problem may also be generalized further in two
directions at least. One such generalization is to assign costs to the edges
according to their flows (see Gilbert [3], or Trietsch and Handler [7]).
Another generalization is to allow more than one network to be given. We call
this version the Network Connection Problem, and in a subsequent paper, we
intend to show that it is also solvable in finite time. Finally, we note that

the two generalizations we mentioned do not rule each other out.
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