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Abstract

A dizerere-cheice probabllity model can be estimated from a sample
stratified on the choice variable by maximizing the "pseudo-likelihood,”
a quantity eclosely related teo the log likelihood for a random sample, We
investigate the asyoptotic propercies of the estimator, and show that ik
1s consistent, asymptotically notmally distribuced, apnd satisfies a comnoaly
used criterion for asymptotic efficiency. 4s an example of the estimatoer,
we use It to estimate a slmple model of node choice in urban travél demand ,

where part of the sample is choice-based and where the choice probabilities

are given by the nested logit model.






1. Intreduction

We consider the asymptotic propertiss of the maximum likelihood method
of estimating diserete-choice models from choice-based sawmples. We shall
shaow that this estimator, despite the non-classical nature of the metheod by
which it is obtained (4] does indeed have the desired properties of consis-
tency, asymptobic nermality and asymptotic efficiency.

First let us briefly describe the nature of the estimation problem. Sup-
pose an individual can choose ene out of some discreie set of alternatives
{1}. & discrete choice model gives the probability P(i|z,#) that he will
choose alternative i, as a specified function of the exmogencus variables z.
These variables describe sbserved attributes of the Individual and of the
alternétiv&s open to him. The choice probability function is supposed to he
knowve except for the valﬁes of a finite set of parameters g, which we are to
estimate frxom the cobserved choices of a sample of individeals. Oae can then
use the model to predict changes in demand in response to changes in abrri-
butes z of the alterpatives and of the populaticn.(l)

It may be thai one or more alternatives are rarely chosen, but are still
of interest. A random sample, unless it were very large, would centain few
individyals making these choices, and thus lead to poor estimates of the
relevant parameters, We xight therefore do better te stratify the sanple,
with stratz based on the choice. This means that the population 1s divided
inta subsers, each consisting of individuals who chose gne particular zlterna-
tive, or one out of a particular set of alternatives; we then sample at
different rates from the differént subseis, By oversampling those individuals

who select the infrequently chosen alternatives, we may be able to nzke more



precise estimates than could be obtained from a randem sample of the saue
overall size, An endogenously stratified sample of this kind is referred
to as a "choice-based" sample.

Manski and Lerman [11) have considered the problem of estimating discrete-

(2}

choice models from choice-based samples, They obtain two main results..
First, they show that the usual maximum Likelihood estimator for randem
samples is asymptotically biased when applied to choice-based samples.
Secondly, they propose a new estimator, the WESHML, {weiphted exopenous saple
waximum likelihood) estimator, and prove that it is consistent for cheice-
hased samples. Several other consistent estimators for choice-based samples
have been cbtained by Manzki and MeFadden [12], who treat more generally the
problems of sample design and estimation of discrete-choice models. These
results, howaver, leave unresolved the guestion of efficiency of the different
cpnsistent estimators,

A wnatural approach to this question is to derive a maximum likelihoad
estimator and investigate its properties, iIm view of the classical proofs(S}
{not applicable here, however) of the consisteacy and asymptotic efficiency
aof maximem likelihood estimaters. There are, in general, four differeat
cases to consider [12]. These cases depend on two kinds of prier information
about the underlying population: (a) we may have an explicit parametric form
for p{z), the probability demsity function for the exogeznous variables =z}
azod {b} we may know the proportions Qi of the population that choose sach
alternative i. 1If we do have a parametric form for pf{z), the estimation

problem involves just a finite set of unknowa parameters, which means that

there is no diffieculey {in priaciple) in applying classical maximum



likelihood techniques. PBut, as discussed by Manski and McFadden [12], this
casze is unlikely to be useful in practice, particularly when the number of
exogenous variables z i3 large. We may therefore restrict our investigation
to the cases where p(z) is unconstrained a priori. HWaximum likelihood
estimators of § when p(2) is uaknown have been derived recently [4) for

choice-basad samyles,(ﬁ}

both with and without koown agpregate chares Qi, as
well 2z for more general schemes invelving combinabions of two or more Jif-
ferent kinds of sample. We did not, however, derive in [4] the asymprotic
proparties of these estimators. We shall show bere that the maximum likeli-
hood estimator for choice-based samples, with both pfz) and Qi unknnwn,ii)
is indeed consistent and asymptotically efficient,

Asymptotic efficiency will be considered here in the following sense. A
lower bound will be derived, corresponding Lo theﬂramérr Rae bound, for the
finite-sample variance of auy unbiased estizator of 9, A consistent estimator
is then zaid to be asymptotically efficient if its asymptotic variance attains
this bound, (We shall noet consider here the gquestion of superefficiency,

i.e. wherther there may exist consistent estimators with asymptotie variauce
less than this lower bound for seme values of 9 and some densities p(z).)
The class of choice~based samples considered by Manshki and Lerman [11]

has been extended in different ways in subseguent work.{ﬁ)

In their ssmpling
scheme, each subsample i5 2 random sample from those individuals who chose
one pariticular alternative, and there are as many subsamples as there ave
alternatives, In the "generalized choice-based Qample” [4) considered here,

each Subsample is5 a random sample from individuals whosze choice was in a

particolar subset of alternatives., (These choice subsets need not be mutually



exclusive,) This scheme obviously covers, as special cases, random sasples
and the strictly choice-based samples of Manski znd Lerman, but it also
includes the interesting case of "enriched™ samples. An eariched sample
has two components: first, a random sample is drawn from a population, in
which cercain alternatives of particular interest are infrequently chosen;
& choice-based sample is then drawn frem individuals who chose these less

popular alternatives; and the cozbined sample is used for estimation.

The guestion of estimation from an enriched szmple arose in the analysis
of mode choice in urban travel demand {see, for example, Train {17]), where
the discrete choices are the differeat modes of travel from heme to wark,

In addition te several household surveys, a choice-bzsed sample of rapid-
transit users had been interviewed, thus providing an enriched sample., As
an example of the estimater analyzed in this paper, we estimabte a simple
utility function feor mode choice from this enriched sample: the choice
probabilities are given by the nested lLogit model (see McFadden [14,15]),
and the estimator is full-information waximum likelihood.

The paper 1s organized as follows, Section 2 gives notatiom and defini-
tions, and Section 3 the assumptioans., The derivation of the aaximum Iikeli-
hood estimator iz summarized in Section &. The results are proved next:
consistency in Section 5, asymptotic normality ig Sectiop 6, and asymptotic
efficiency in Section 7. Results from the estimation of the nested logit
madel are presented in Section 8. Appendix A contains some preliminary

lermas, which are used in the prooefs and ave guoted here for completeness)



Appendix B contains proofs of scme further lemmas, which comprise the more
technical parts of the proofs; and Appendix ¢ givesz the formulation of the

nested legit model used in Section 8.

2. ¥otation and pefinitions
First we consider the sample design. We suppose that the sample comprises
5 subsamples, labelled by 5 (8= 1,...,8), For each s we specify a subset
- F(s) of the full set of alternatives {1,..,,M}, and then draw subsample s
a3 2 random sample from all iadividuals whose choice was ian ?(s). The choice-
based sampling scheme considered by Manski and Lerman [11] is representad by
F(s) = is}, s =1,...,M,
while the simplest example of an enriched sample 1s given by
F( = {1}, F2y = {1,....u}],
¥ote that the subsebs ?(s} need not be mutually exclusive, and that there iz
no loss in assuming that they are all different and non-empty.

Let N be the sample size, and ﬁs the number of cases in subsample s
(e =1,...,3)., Let Ni be the observed number of cases choosing alternative
i(i=1,...,4). We define

H =X /0 and H, = N./¥.
s 5 i i

Hote that ﬁs is fixed by the sample dasign whersas Hi iz, in general, random.

It iz, of courss, assumed that ﬁs >.0.

as before, the choice preobzbilities zre given by some specified funetions

P{iiz;ejiand the distribution of the exogenous variables z is given by the



{unknown) density x(z). The "true™ parsmeter values are denoted by §¥*.

Aggregate cheice probabilities are defined by

Qile)y = [ dz u(z) B(i|z,9), (2.1)

and thus we have Qi = q(iie*}. In the present case, the population shares

¢, are taken as unknowm 2 priori. We define
i =

?(?{5)1219}"'— Z P{jiz,-e); (2.2}
jed(s)
()i = 2 olile, (2.3)
ie¥(s)
g = : Q, (2.4)
je(s)
and -
) S H_ :
Blz,8) = I — P(¥(s}|z,0). (2.5}
s=1 Qs

An abbreviated notation will also be used, as follows:

(F(z)y = [ Frz) plz) dz )

P, = P(i]z,0%)
(2.6}
P{s) = P(F(s)]z, 8%) {
P = B(z,8%) j
4
As usgual, we have
J’I if L= j
51' = {2.7)
] ZD oktherwise

and we define

I if i ¢ (s}
M. = g (2.8}

is .
0 otherwize,



The expected value of Hi is

, (2.9}

_ M
P{z,8) = X

Ei-p(i|z,a}. (2.10)
i=l i

The asymptotic limit will be takén by increasing the total sample size,

Nam, with the relative subsample sizes ﬁs held Fixed,

3. Assumptious

We wake the following assumptions on the choice probability model. The
compaciness conditions (following Jennrich {5] and Amemiya [1]) imply uniform
convergence properties, which reduce the complexity of the proofs, The con-

ditions are reascnable in the context of econometric applicatiens.

Assumption 1. The choice set T {of alternmatives {) is finite.

Assumption 2. &% ¢ int® and z ¢ Z, where 8 (the pavameter space) and Z (the

space of exogenous variables) are compact.

Assumption 3. The model is identifiable: 4if g # 8% and 4 ¢ B, there is a

region [ ¢ Z such that
Jo &% ui@) [2(i]2,9) - B(i[z,90) 4 0 (3.1

fFor at least one choice alternative i,



Assumption &, P(ilz,ﬂ} is strictly positive for z ¢ 2, B ¢ 3. This may be

1
relaxed s)lightly by allewing P(i[z,g): 0 for z g zi’ where the opea set

r
zi ¢ Z does noi depend on 8 (but can, in general, depend on i); this allows

for the possibility of some alternaktives being unavailable at certain values

of z (Marski and MeFadden [12]).
Agsumption 5. P{i{z,a} is continucus in 9 for B e 2.

To establish asymptotic covariance properties, we make three further

assumpiions.

Assumption 6. Ia some neighborhoed of &%, the first two derivatives of

P(itz,e) with respect to @ exist and are continuous.

Assumption 7., The derivatives BP{ilz,a*]fasu {a=1,...,%) are linearly

independent on T x Z, i.e, if k is any vector such that
X . 2
Tk op(ilz. p*) _ 0 (3.2)
e aqm

for all i and almost all z (with respect to y), then k = 0.

Azsmption 8. The distribution of the exogenous wvariables is such that the
probability demsity functiom p(z) exists, and is non-zero for z ¢ Z, (Sene
straightforward modifications in the proof given in Section 7 will, however,
aceommodate the case where 2 can be considered as the direct product of a

discrete space and a contipuous space,}



The identifiability condition (assumption 3) implies that the probability
of the model not being ideatifisble from a random sample tends to zaro as
the sample size becomes large. For choice-based sampling we need also an

(7)

idencifiability condition on the szmple design, as follows.

Assumption 9. All alterpatives are iacluded in the sample, i.e,

5
U Feer = {1,...,u}, (3.3
s=}

and the subsats jﬁs) cannot be grouped into twe mutually exclusive sets of
alternatives, i.e. if ¥ is any praoper subset of {1,...,8} and ¥ is its

complement, then

[523'}'{5}:] A [stigl ?(S}J # # : (3.4)

. The HMaximum Likelihood Estimator

The log likelihoed for an observation from subsample s of a generalized

choice-based sample is

2Gz,8) u(=))
WIOIDE

£(i,z]s,8) = ln{ (4.1}

where Q(?(s}le) iz given by eqs. (2,1) and {2.3). This is a straightforward
generalization of the likelihood considered by Manski and Lerman [11]. 1In
comtrest ko the case of random ssapling, the log likelihoed is not separable
into a part independent of u(z) and a part independeat of §, because of the
denominator in eg., (4.1}, One therefore has to maximize not only over the
discrete parazeters 3, but 2lso over the space of probability distributions

corresponding to the unknown p{z).
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The maximm likelihood estimetor is derived by the following procedure
{of which more daetails are given in [4]).
{1) The probability density function ,(2) is replaced by a diserete set

of weights E“ﬁ}’ located at the sbserved data points {zn} (n=1,...,H).

(2) The weights LA %ﬁfa) are chosen to maximize the log likelihood
function, at fixed g.

{(3) A new get of weight factors w(s,8),5 = 1,...,5 is defined by

H N
—2 . % (o
W(5,8) nfl Wniﬁ}P(J(E}}zn,Q). (6.2

The concentrated log likelihood function can then be written in the form

N ns_,8) P(L |z @)
_ I o' n
LH[Q} = z 1In 3 } (&4.3)

=l . A(s,0) PE(sH z_,9)
s=1

{apart from term¢ independent of &), S is the subsample containing case n;

in and z_ are the observed choice and exogenous wvariables of case n.
(4} The pseudo-likelihood fq{e,h} iz defined by the same expression as
&

eq. (4.3), except that the weight factors A{s) are now considered as free
parsmeters Independent of 5, instead of being given by eq. (4.2). It can

be shown that EN{B,R) has & unique maximum with respect to A at [ixed §,

say at x{s) = hﬂ[s,e), At this maximum, the pseudo-likelihood is equal to

the concentrated log likelilood:

Ly (8 [Agle, 0) = 1 (9). (4.4)
(5)., The maximum likelihood estimator aq is then obtzined by maximizing
h -

over g, We can therefore represent the estimation procedure by



=11~

L (8, ,A.) = max max L, {8,\) (5.5)
¥ T e

where

. s 3 P(1i |z ,0)
n nI o } (4.6)

N
L (80) = R In { .
L A(s) Pﬁ?(s}‘zn,e}

s=)

Since eq. (4.6) is homogeneous in » of degpree zero, we can impose an arbitrary

(8)

normalization condition on A before maximizing, A suitable domain of A in
eg. (4.5) is then

A=A

T

(s) {a]n(s) 2 D and A(S) = ﬁs}. (5.7

In the case of a strictly choice-based sample, i.e. F(s) = {s} (s = 1,...,M),
the astimator in egs. [(4.53) - {4.8) is clearly the smmae as.the HManski-McFadden
estimator for unknown  (see [12], §3.D), which is therefore a maximum-
likelihood estimator,

The likelihood we have used does not satisfy the classical conditions fer

(9}

[

consistency and asympteotic efficiency of the maximum likelihood estimator,

We must therefore prove these properties directly.

2. fLCemsistency

The method is based on the fact that the classical proof of consistency
of the maximum likelihood estiaator [19] can be extended to cases where the
funetion to be maximized is other than a likelihood, Because the functions
which arisze in practice have rtather good regularity properties, the approach
{s wvia the methods of Jennrich [5] and smemiva [1], involving uniform con-

vergence, These methods have been used by Manski and Lerman (11] and by
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Manski and HMcFadden {12] to prove the consistency of several estimpaters for
choice-based samples. 'Some preliminary lemmas which we shall use are quoted
in Appendix A4 {lemmas &.1 to 4.3),

We consider the estimator givean by eq. (4.5), with

_ N
LHIEJ?\} = pfl lﬂ{h[in: znisn’ &)} (5:13
wWhere
A(E) P(i[z,E}
hii,z]s,8,3) = 3 - {5.2)
T =z A(E) P(j[2,8)
t=1 jeHt)

From Assumptions 1, 2 and 4, P(i|z,8) has a strictly positive lower bound,

say P, on C x Z ®» & and tharefore

Admin) To s h(i,z[s,8,0) s 1 (5.3)
Amax) 5 Po

where Afmin)= mins{l(s}}and A{max) = maxs{l{sj}. Let us temporarily restrict

the range of A by

k'lx*(s} £ A(s) < kx(s), s

=1;...,8~1, (5.4)
with some k » I, where A% is defiped by
ﬁs _
&= s m— ...‘
A%(S) 3. Qg (5.3)

and » additionally satisfiss

{(8)’

eq. (5.4). The bounds {5.,3) on h are now uniform in A as well as in § and =,

Let § be the set of (8,4} such that 523, Aef

The conditions of Lenma A.3 are therefore met for the function g = Inh, with
.= {(8,A) and g = (i,z).
Let N =+ = with the relative subsample sizes H held fixed. Then, applying

the law of large numbers to each subsample, we have
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-1 -~ -

BT L, (88 4 L(8,R) (a.s.) (5.8}
whers

-— S —

L(9,2) = Z R E [ 1o b(i,z|s,8,x)]

=1
s ,
=fazue 3 8 oz EHED guiasen) o)

s=1 ieF(s}) Qs
From Lemna A.3, the coavergence in eq. (5.7) iz uaniform in (8,%) for almest
every seguence of observations x.
We shall need the following result pn the ideptifiability of {8,x) from

the funmction h.

Lemma 1, Suppose (8,3} # (8%,1%), where (B,A) ¢ §. Then there is an D ¢ Z,
with nonzere measure, such that if z ¢ [ then
b (i, 2]5,8,A) ¥ h{i,z[s, 8%, x%)
for some (i,s}'with ie J(s).
The proof is given in Appendix B.
We apply Lemma A.L to the Function h at some fixed z, with = = (i,3) apd

= [(BA). * is given by eq. (5.5), and £ is given by

3
£(8,n;2) = Z Z  hii,z]s,0%,0%) In{h(i,z{s,8,A)]. (5.8)
=1 ie§(s)

Let {(8,A) ¢ & and (g,n) ¥ (4%,a%). Conditions (1) and (ii) of Lemma A.l are
clearly satisfied, so that

£{8,h;2) 8 £{oF,n%;x) for all z ¢ Z. (5.9}
Adpplying Lemma 1 to part (b) of Lemma A.1l, we alsp have

fia,n2) = £{g,n%52) for all z e {3, (.10
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wnere {3 = Q{8,%) has non-zero measure. Eq. (5.7) can be written as

!lm H

P(F(s)]2,8%) £(8,Az2) {5.11)

=

5
L{B,n) = [ dz p(z) 2
g=1 ~g
and it therefore follows from eqs. (5.9} and (5,10} that f{e,h} < ﬁ{&*,h*}.

Thus i{a,h} iy maximized at § = 9%, & = x¥, and this maximum is unique in 3.

From Lemna A.2{za}, éﬁ

vergence of N-l Eq{ﬁ,h} to i{a,h} and the uniqueness of the wmaximum at
i

and iq exist. By Lemma A.2(b), the uniform con-
i

(g%, %) imply B, -+ 0% and iq =+ A% a.e,

H h
Finally we comsider the restriction of x, eq. (5.4), Suppose B, € B and

. L (10y -1 =~
ho £ h(S} but hD does not satisfy eqg. (5.4). “Then w LN(BO,LQ} <

¢, =¢, In k, with ¢

1 2 = 0, where ¢, and ¢  @te independent of §, A and W,

2 1 2
By choice of %, this upper bound can be made less than L{g%,A%). But

=1~ = = P
according to Lemma A.2{c), H LH{QN,AR) couverges to L{G%, A~} a.e,

2] - -1 ~
a .
We therefore have ¥ LH{EO,AG} < M LN[E

= )\:3 for all sufficiently large

K a.e. This means that (eq,hu) maxinizes L“[a,h] not just in & but in
) h h

(& x ﬂ(S))’ i,e. the restriction of A has no sffect for sufficiently large

h) a.a.

why - P -~
and are therefore coasistent estimators of g% and (H [ .
By and : £ o* and (A1)

&, Asymptotic FNormality

Given consistency, asympiotic normality can be shown to follow froa the
identifiability of the sample (Assumption 9) and the regularity condition

(Assumption 7). Because our previous assumpliens are encugh to establish
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-1 -
uniform convergence of N LH{E,A}, wa aeed only Assuwmption & on the

derivatives of P{iiz,g) with respeet te B, vather than the Cramér-type

conditions involving third derivatives (see, e.g,, Amemiya 1] p. L1009 for

the treatmeat used here}, |
Let p denote the combinad parameter set [§,A(1},..., A{S5-1)]. As before,

the normalization condition A(8) = ﬁs is fuposed. We wish to fiand a matrix

V¥, the asymptotic covariance matrixz, with the following property: if k is

any non~zero vector, then the distribution of lezk'{aﬂ - p*} converges to

N(O, R'VE)}. In general, V will be pesitive semi-definite. If k is such
that k'vk = @, then asymptotic normality has to be interpreted as

1/2 ~
by / k'G?N - m*) =+ 0 in probability.

Let &% « & be a compact neighborheod of 8% in which the differentiability
and continuity given by Assumption & hold., Let p* be some neighborhood of
n%, bounded away from zero, such as

ICERN | -% A%(s) < A(s) < Za%(s), s = L,...,5-1} (6.1)
In the following, we shall restrict (B,») to B% X j*. Consistency implies
that we almost always have (EN,QH) g int [@* x A%) for sufficiently large W,
and thus the restricticn.has no effect on large-N behavier. We also define

2(i,2]5,0) = In [ h(i,z|s,8,0)], (6.2)

where N1 is given by eq. (3,2},

Lemma 2.fa) E(i,z|s,m} and its first two derivatives with respect to @ axe

unf formly bounded on % X A+ x Z.



(b ﬂ_l fqimj and its first two derivatives are also uaiforwmly
&

bountded on &% x A% x £,

These properties follow directly from the definition of E, from
Azar- —tions & and 6, and from the compactness of 9% x A% % Z; a proof will
oot be given,

For sufficieatly large N, the maximm of L (p) at aq occurs in the
¥ Ik
interior of the region where fq{q:} is differentiable, and is therefore a
&

stationary poinc, i.e. Bfﬂ{éﬂ)fa¢ = 0 (for almost every x). By a Taylor

expansion, az - -
L ¢ L@l <L Olyle)
¥ 2 {¢?H'€p*}=[‘ﬂ m—“_j I T (6.3)

where 53 = ¥+ (1 - 3) ﬁH for some » ¢ [0,1]. Because $N -+ p*, we~have€%+ 4% also,

First we consider the convergence of

2- 2
-1 3 @ N 3 Min, z[s,-9) 6.4
pdkp' i=1 <o’ '

According te Lemma 2, each term in the sum is uniformly bounded on

8% ® A% x Z, We may therefore apply Lemma A.3 to eq. (6.4), taking expecta-

tions separately for each subsample. According to this lexma, the expression
in eq. (H6.4) converges to its expected value uniformly In &% x A% for almost

every x. Therefore, since corvergence is uniferm and aﬂ =+ g%, we have

2!'-'
S°L_(§, )
-1 MW _
N apaq)l - J {6.5}

where the "information matrix" J is given by



2

5
3= : B ET O 2(i,zl5,0%) J
==

VB PLT TR
= -3 b <P—5 P, ai{i’zls'.w*) \ (6.6)
=1 Lef(sy \% 1 R

{in the abbraviated notation of eq, 2.6).

Lemna 3. The "information matrix™ J Is positive definite, The proef is
given in Appendixz B,

From eq. (6.5) it follows that azfq{$ﬁ)f&ﬁ&p‘ is also positive definite
I

for all sufficiently large N  {a.e.}, and thus the inverse in eq. (6.3)
exists,
1
Hext, we consider the asymptotic distribution of Nh? EE“{:p*)!'&p, the
) v

last term in eq. {6,3). If we define

L) YR,z |s,e%) A5 _,2_|s,0%)
F -2 I n I - n n
yism = B2 f == R b @
and note that 2 ﬁs E[d3(1,2]5,¢%) /3] = 0, then we have
i af.,q(@*) 5 1
-z K - e L
h T" 551 Hs z (s, n), {6.8)

nefi(s)

where 15(s) is the set of obsarvations in subsample 3, The randem vector

5{s,n) has mean zero and covarliance matrix g given by



c = H {E r Ot 2|5, 0%) Bﬂhﬂsm*} ]
8 L

-z[——(—'—f-ﬁ“” - [-4-’—*[—‘—1;”‘””1'} (6.9)

— -

The uniform boundedness given by Lemma 2 ensures that the expectations in
{6.9) exist, Thus g is finite and, by construction, positive semi-

defipnitae,

Then, by the Lindberg-Levy central limit theorem, the distribution of
1

ﬁf 3 k' §(s,n) (6.10)
nel(s)
converges to the normal distribution H[G,k‘csk), for any wvector k such that
k'csk = 0. For nom-zero k such that k'ask = 0, on the other hand, the
expression {6.10} converges in pﬁobability to ze&a. Summing over s, wa

-1 _
find that the distributiom of ¥ k' ELH{@*)Iam converges to the normal

distribution N{0, k'(k}, with

for any k such that k'Ck > G.{llj
Combining this result with eq. (6.5), we obtaip the asymptotic
distribution of ea. (6.3}, Lec |
ve=g (6.11}
Then Hé.klﬁaﬂﬂp*} converges in distribution to M{0Q,k'Vk) for all k such that
k'Vk > 0, and converges {in praobability to zero for any other vector k. Thus

V¥ is the asymptotic covariance matrix of ﬁu.

A more convenient expression for ¥ cam be obtained by evaluating J
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end [} in terms of derivatives of the probabilitries P(i!z,sj. Gne finds that

{1 has the form

1

D=3 - JGJ (6.12%

where

AT (6.13)
8 2 “st g = =
s 5 Qs t
L. J
{This matrix is partitioned according to the parameters g and i, and the indices
g and t run from 1 to $-1.3) Therefore
V=0 =-G. {6,14)

If J is partitioned in the same way,

P

J= ‘, (6.15)
B' cl
S

then, in the notation of eq. {2.6),

s R oP, oP, = g
32 s Lo o LB RN
he=l Q ieZ(s) i Ya UUB P o B
33 Ay
g =L {E}ng} ) Pgsz oF
@s 0 X 3%1 ﬁ i/ (6.17}
,...2 L1
=_%.,jf_5- 5 -<_L?'_LlP5PE\ (6.18)
st as !\' Hs st " / .

I1f we denote the zsymptotic covariance matrix of aw by VB, then, from
&
(0.14) and (&.15),

Vo= [A- 3¢t g J'l, (6.1%)
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which is positive definite. The optimality of this covariance watrix will

be investigated in the next section,

7. Asympiotic Efiiciency

7.1 A Class of Lower Bounds

We First derive a bound of Cramér-Rao type on the covariance matrix of
an unbiased estimator of B. In the previous two sections, the problem was
that the function to be maximized, Eﬂ{e,l), is not the leg likelihood. HNow
a new problen arises, since the parameters § are being estimated Iin the
preseace of an unknown probability density i(z}.

Let tl{x} {a vector) and tz{x) be unbizsed estimators of § and of
f dz p{z) @(z). The test function p(z} is bounded, integrable, and satisfies

[ ¢z gre) = 0 (7.1)

2
[z 231 =1, (7.2)

where the integrals are over the compact region Z, Wote that every test function

${z) will lead to a lower bound on the covarlance matrix. To damonstrate
efficiency, we shall find the test Ffunction which gives the greatest of these

lower bounds, and show that this bound is equal to ?B'

We have
E[tlixll =D (7.3}
Blt,(x)] = [ dz u(z) o(2) (7.4)

where x 1% a sequence of observations {{il,Zij,..jiR,zH)}.

Expectations are taken acceording to the likelihood

¥ PG lz  8dpiz)
. 4 nl n It
B ACH N1y i Q(’a’fsnllﬁ‘w?‘

n=1

{7-53
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Q{?{S}le;p} is defined by eq. ¢2.3); the notation has been modifizd to
emphasize the dependence on p.

The functional derivative {of a funectienal Fful) with respect to p is

defined by

S_F [£] = lin = { F[ w(2) + ef(z)] - Fiu(z)] }
H g =20 €

{where this limit exists), £{z) being any funetion such that p + ef is in the

domain of ¥. Then one finds that

E}E[t (K}} _ -
R D f Indi=|g, 1)}
L= g = SESEES T, 76
GE[E (=) ]
1w o ol = ie o SAEKRGT ()] (.7
1
and
E!E[t (x)] o 3
— 2 - a&l‘u{xle.- }f
0= —ge = E[tz(x) 55 ¢ s {7.8)
SBE[t, (%))
B 1 _ 8 indix|g,u)l
0= —t— [y) el &, GO e wl] 7.9

In deriviong eqs. (7.8) - (7.9), one has to interchange the order of differentia-
tion and integration:  this is justified because the functions in question
are bounded and the region of iategration 1s clesed and bounded. We also

have

SF 1nX(x| 8., _ o sllnd(x]e,u)} .
o Mflea)] L o el ]2 o oan

As ia the usual derivation of the (ramér-Rac beound (see, for example,

Rac [l6]), consider the covariance matrix of the random vector



[

I Sf 1ndrx|a,u)} 5{l“~fx19;ul}
£, 00, 5,0, TR : fo} ]

This covariance matrix iz of the form

[G(tl,tz} 1
! B

S

(7.11%

(7.12)

whare C(tl,tz} i% rhe covariance matrix of tl(x) and tz(x}. The (& + 13-

dimensional unit matrices in the off-diagonal blecks follow frem egs

{7.9). The matrix RN is

dul 3lnd §lnd (@] ol
- dg  dg’ By dg°
» olaL stal $1nZ [¢] 2

where we have usad eq. {(7.10). If we write

-
1p oo P A

— = B =

N N A' R

(usipg the same partition as in eq. 7.13), thepn we find

Tap 3 L \® s, I,

s=1 Q_ igg(sy V71 8
L {Eﬂ?gsg > /$P§5}> 1
q o8, | 98,
af’ \ 3 ﬁs Eus;\ i
= — - E —
A, <g s / Z Eg <aea ) { gr(s))
2 - 5 Hs
H= (g } - I3 { gP(s}}
5

. (7.6)-

(7.13)

(7.14)

(7.13)

(7.16)

(7.17)
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where we have used the zbbreviated neotation of eq. (2.5}, and where

I

g = 5(2) = wlz)/un(2).

Bipce eg. (7.12) is necessarily pesitive sepdi-definite, it follows that
C(tl,tzj exceeds R;I by a positive semi-definite matrix, This is the reguired
lower bound, which holds for any g(z) satisfying egs. (7.1)-(7.2), provided
that Rhl exists, and for anmy unbiased estimators t. and T, .

1 2

7.2 fOptimization of the Lower Bound

Consider the variance of an estimator of 91 {tha {irst component of &),
This iaovolves no loss of generality, bacause 81 can always be taken as aay

linegar combiaation of the actual parameters, The lower bound is thea

(Rhl}u = (), + Flgl {7.18)
where
o
[T "a),]
Flgl = ———F— {7.19)
H=-A'T &

Eg. (7.19) represents the increase in the Cramir-Rao bound (r-l}ll due to
the presence of the unknown funciion u{z}. F[g] is to be maximized with
respect to g(zd,

From eqs. (7.15)-(7.17), we see that Fig] is invariapt under linear
transformations of g(z). We may therefore mauimize instead P{g) over E{z),

(12)

where
22y = () ( (&) )% : (7.20)
subject to the wmore convenient normalizatioa conditicons
(B)=0, (&)=L (7.21)

The following results, proved in Appendix B, are then applicable.



A

Lemma 4, The eigenvalues of R[E] have a positive lower bound independent of

[

Lerma 5, There is a bound B such that, given any E, thers is a function gl

satisfying igfz}] < B and F[glj = F[E].
=1 LS Y | . -1
Because (R )ll and {H - A'T A} are diagonal elements of R, they

are bpunded above according to Lemna 4. This implies: (i) FIg} is bounded
abave; and (ii} the depcminator in eq. (7.19) has a positive Lower bound.
According to Lemma 5, we can izmpose the uniform beound |§{z}[ < B on the test
functions ¥ without coastraining the maximization,

The maximun can therefore be found by variational merheds. Suppose

(i3 of E{z), L.e.

FIg] is stationary with respect to variations
8 FIE) = 0. | (7.22)

The Lagrange wmultipliers corresponding to the constraints (7.21) are found

(14)

-1 i
to be zero, and so do not eater eq. (7.22), We suppose that ([ ﬂ}l is

=1 -
nonzerp, because otherwisze (R }11 = (T 1)11, which would evidently be a

minimm, If we defipe

_ar i - -1
A T (RS W ¢ S (7.23)
(ray,
foraw=1,...,K, then eq. (7.22) baeones
28" AI%] - SHIE) = 0 (7:24)

From eqs. (7.18}-{7.17) we have



s § H
AR R {ég_g.ﬂ> p(s) | pl2) (7.25)
=1 QS
and _
3 H
suigl = 2{ ¥ -z 5 EROD ) J e (7.26)
=1 Qs

Substituting these equations in eq. (7.24) and rearranging, we have

P(s)
D hs (7.27)

Fsh

+

L

g(z) = §'

[ Y]

s=1

where the wvector b is defined by

ey - (—l@-} i (7.28)

“
&Ht
wopale

7.3 Solution of the Variatiomal Equatien

The remzining steps consist principally of matrix manipulations to
express the lower bound in a recognizable form. First we solve eq. (7.27)
to obtain an explicit expression for E(z).

Multiplying eq. (7.27) by P(t) p{=) and integrating gives

- s

- _ ofB(0) dP <P tYP(s

{ge(n)) §< : ae> vz BEEE ) 5 (7.29)
This can be rewritten as

gst o+ vet = o ' (7.30)

where the matrices B+ and ﬂ+ are defined by eqs. (6.17) and (6.18), but with
the ipdices 5 and t running frem 1 to § (instead of §-1), Ewidently E+ is
glpgular: it has a zero eigenvector {ﬁsfﬁs). This means that eq. (7.30)

can be solved for b only up to an arbitrary constant, which we may take as bs:
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s

b= -g'BCT +

. b (7.31)

Fal
[nd
]
™ s
[ £

for t = 1,.,.,5-1, with B and C given by egs. {(6.17) and (6.18). Substituting
this into eq. (7.27) zives E(z) in temms of £ and bS' W esn ~iiminate bs

by using the condition {E[Z}}_= ¢, This leads to
= 5-1 P ¢
<—P>' z (E'BC" }f B(E) _ <—L—1> (7.32)

g
This expression for E(z) can now be used to evaluate eqs. {7.16)-(7.17}:

Ochu
& |
el Lo

i
fa % [ 7

B(z) = € |

L=
It

r-v e (7.3%)

and

]

H= g - ‘-’;1} 3 (7.36)

whera va is the asymptotic covariance matrix given by eq. (6.19). The vecter
£ remains to be determined. Substituting eq. (7.33) inte the last term of

eq. (7.23)and multiplying from the left by VI we find that

2a= ¢V (7.35)
(13)

where ¢ is 4 constant. We now have the solution: substituting egs.

(7.33)-(7.35) inte eq. (7.19), we find that the maximum value of the lewer bound is
=) (7.36)
R 317 Gglyp - (S

The cheice of B, was arbitrary: the same argumeat goes through for any

(16)

linear coubination of the components of 8. The asymptotic covariance

-matrix;ve of the estimator ﬁﬂ thus attains the lower bound.
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8. Estimation of a Transportation Mode Choice Model from an Baviched Sample.

As an example of this method, the maximum likelihood estimator given by
egs, (4.5)-(&.6) has been used to estimate a model of traasportabion mode
choice for travel to work. The choice set consists of the following four

alternative mcdes:{I?J

(1% avtomobile, driviag alene; (2) bus; (3) rail
transik ({subway), and (4) carpool. The chosen alecernative was the'mode the
subject "usually" uwsed Lo travel to work. The choice probabilities are
estimated as functions of time and cost variables, a set of dummy variables,
and coefficients deseribing the degree of "similarity" within subsats of
alternatives,

The estimation reported here is based on dabta from the Urban Travel
Demand Forecasting Project at the University of California, where it has
been used by MceFadden, Train and others in developing disaggregate models of
travel demand (see, for example, Train [17,18}). The enriched sample used
here consists of two parts.{ls} The first part consists of two geographically
stratified household surveys ceonducted in the S2n Franciseo Bay Area in 1975,
This was the sample wsed by Train [17,18] in estimating logit models of mode
choice, The seceond part of the preseni sauple is choice-based: resvondents
were chosen randonly from persons entering selected rapid transit stations,

who said they were traveling to sork, ()

The choice-based sample is thus

a {geographically stratified) randem sample of those who cheose alternative 3,
The sstimator given in Section 4 was derived under the assumption that

the main subsample was drawn randomly from the same population that underlies

the choice-based subsample, It is alseo applicable when the whole sacple is

stratified by excgenous varisbles, simce the probability density p(z) is
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is just replaced by Eaﬂﬁuaﬁz} y wheTe W& iz the weight given to stratum o

and uu(z} is the probability density of z in this stratum (see Manski and Lerman
f111}. 1In the present case, the geographic strata did not ewactly correspond

to the povulations served by the transit stations used for the cholece-based

(203 and iz walid

survey. The estimacion procedure is therefore approximate,
only to the extent that == tan1-- isn served by the selected transit stations
is more or less representative of the exogenously stratified sample.

The cholice probabilities are given by the nested logit model Introduced
recently by MecFadden [14,15],. This has most of the computatiomal tractability
of the conventiomal multinomial legit model, but has some of the flexibiliry of
the probit model in allowing a wmore general covariance structure betweesn the
utilities of different alternatives: this allows a more realistic pattern of
cross-elasticities of demand than is implied by models (such as the multinomial
iogit model) with the oroperty of "simple scalability” (see McFadden [15]).

The choice probabilities for the nested logit model are given in Appendix C,

. A simplified investigation iz presented here, in which the choice set used
by Train is reduced from seven to four alternatives (as given above),and the
set of ewplanatory variables is reduced to the follewing:

C: cost divided Ey post-tax wage, In units of minures.

T: on—vehicle time {aute plus transit, where applicable},in winutes.

E: access time in minutes, deflned as walk time plus trapsfer wait

time plus inirial walr time (half the headway of the first transit
carrier).
Dummy wvariables D1, D3 and D4 are included for alternmatives 1, 3 and 4 respec-
tively; there are two coefficients of inclusive values ¢1 and ¢2 associated
with the nodes at level 1 (see Appendix C); and a weight factor A = A{1l}
associated with the cholce-based subsample (see eq. 4.6). Thus nine coefficients

were estimated, using a full-information maximum likelihood (FIML) procedure.{zl}
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Two models Were estimated, based on different tree structures for the

(22) In model (A), the nodes at level 1 are (1} auto-

choice probabilities.
based modes (alternatives 1 and 4) and (2} transit-based modes (alternatives
2 and 3). This would allow for uncbserved variables which may be common €O

transit-based modes in general but differentiate them from auto-based modes.

In model (B}, the nodes at Ievel 1 are (1) modes necessarily requiring use of
cne's own autemobile (alternatives 1 and 3) and (2) other medes (alternatives

2 and 4). This should reflect, at least in part, correlations due to the effect
of the automobile ¢owmership decision, which 1s not in¢luded explicitly in the
present analysis,

The results are presented in Table I, with estimated standard errors in
parenthesas, First, it is evident that the enriching subsample was not large
enough to sigonificantly improve the estimates, This is related to the fact
that {1) earichment raised the proportion of rail users in the sample from
5,47 to 11.3%, whereas an optimal sample design is expected to be one with
roughly equal numbers of subjects on the three principal modes (car, bus, and
tail), and (ii) the simplified model used here conktains no rail-specific variables
{except for the dugmy varizble, but a choice-based subsample contains very
lictle information about its coefficlent), Altheugh the goodness of fit improved,

a5 indicated by the log likelihood ratioizB)

and the likelihcood ratio index,
there was no improvezent in the estimated standard erreors in model (A). In
model (B) there is a coansistent decrease in the standard errors {except for
the cost coefficient), considerably greater than would be expected from a 7%
{ncrease Iin sample size, but still small., On the other hand, the fact that
the estimates themselves do not change significantly when the enriching sample
is mdded ipndicares that the choice-based estimator is handling the weighting

prub1Em'correct1y.(24)
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Secondly, the coefficients ¢ are all sipgnificantly different from 1, the

valpe they would have in the ordinmary logit model (except for Py estimated

in model (&) from the original sample)}, indicating substantial correlations. There
seems also to be a diftezu”-ﬂfzia betweaen P and Pays unlike the seguential logit
model, However, in wmodel (A) these coefficients are greater than 1, and so
violate the assumption of an wnderlving wstility maximization model satisfying
the hypotheses of the Williamz-Daly-Zachary theorewm (McFadden [15)Y. Thus the
model (B} estimates may be preferzble, despite the substantially greater leog-
likelihood ratic in model {A), Coefficients greater than one may, however,

arise not only from vielation of the hypotheses of the Williams-Daly-Zachary
theorem, but alse frowm possible misspecification of the utility function, in
particular by omission of a varisble which distinguishes auto-based and tranmsit-
based modes. 1In the present model this may well be the case; in prineiple

the guestion will be resclved by including additional socioeconcmic and system

" variables (see, for example, Train [18]) and by including automobile ownership

as an additional level in the tree. Wevertheless, we put forward the results
based on this simplified wmodel as indicating the feaszibility apd potential

of the estimator.
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Appendix A

Preliminary Lemnas

(26)

In the following we assume w ¢ 3 and § ¢ Z where € and Z are compact
gubsets of finite-dimensional wvector spaces. The index a iz discrete.
% ¢ X is a sequence of cbservatioas {gn} of points in Z.
Lemsa A1 Let qm&p} be a set of non-negative real-valued functions.
Suppose thart * ¢ & L5 such that

(i) qlﬂy*) » 0 for all ¢ ;

(ii) = {hm{¢*} - hmiq:}] >0 for all o % .
=

Let £{p} = é Hlﬁp*} in Hlﬂg}. Then:

(a) f{p) is maximized at ¢ = g%, 1.e, if ¢ F w* then
f@@) £ f@p#); and
(B) if @ # % and Hlﬂp} # ﬁmﬁp*) for some ¢, then f{p) < £(p*).
This iz a standard result; see, for exawmple, Rao {18] p. 59 (a =ore

general reselt which includes the present lemmal.

Lerma A2 Let fR{x,m} be a measurable function on & measurable space X,
znd for each x e X a continuocus functionm of ¢ for o ¢ 2 .,

{a) There exists a measurable functiom éﬁ(x} such that

£lx )] = sup {E(x, 9)]
Qg @

for all = e X%.
{b) If fH(x, by (K=1, 2, ..., w) converges to £{p) a.e.

uniformly for all w ¢ ¢ and if f£{p) has a unique maxicrum at w% ¢ ¥, then

— 3 -2,
¢N P a
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{c) If EN{x., gy (HN=1, 2, ..., ® ceonverges to £{@) a.e. uniformly
for all ¢ e &, and if ¢H{x} ~ ¥ a.e., then fH[x, mq{x}] - £{p*) a.e,
¥
The first part is given by Jennrich [53], p. 637, and the rest by

ameniya [1], p. 1002-1003,

Lerma A.3 Let z{{, ©) be continucus in ¢ for cach £ € Z and measurable
in { for cach @ ¢ 3%, and suppose lg(g, @}1 iz bounded on Z = &, TIf
R o= {gl, Lo ...} is a random sample from Z according to a probability

measure b, then as ¥ =~ «

=1 H
¥ Eel, @~ El&(, o]
_ n P
n=1
uniformly in ¢ Kor almost every x.

This form of the law of large numbers is gquoted by Jemnmrich [5], p. 636.

Appendix B

Proofs of Lemzmas used in the texr

Lewma 1 [Section 5: identifiability of h{i, z{s, & X)}.] Suppose (8 A)
£ (&x, A%Y, where {8, A) ¢ &. Then there is an (1 & Z, with nolzero measure,
such that if z ¢ 0 then hii, z|s, 9, ») £ hii, z|s, .8*, »%Y  for some (i,s)
with i ¢ F(s).
Proof, 1f the lemma does not heold, there is somz (9, W) # (9%, A%}, with
(8, ) ¢ &, such that h(i,z]s, 8, A) = h(i,z|s, ¥, a¥) for alwost all
z ¢ 2 and for all {i,s) with i ¢ 315}. According to eq. (5.2) this can
be expressed as

P(ilz, 8) = p(s) P{ijz, &), i eF(s), {B.1}
where

pla) = ca¥(s)/ (s}
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and the term ¢ is independant of {i,s), TFrom ey, (B.1) it follows that

if some alternative i is coatained in two subsamples £ ard t, then

afs) = p(t). 1lLet 8= {sip{s} = p(1)}. Ifs ¢ 3 and t ¢ S‘*then

p(s) # p(t) and therefore F(s) N F(t) = @. This contradicts the second

part of Assumption 9 unless 2§1= B i.e., p(s) is independemnt of s.

According to the first part of Assumpiion 9, eg. (B.1} holds for all i,

and so can be summed over i to give p= 1, But then P(ilz,aj = P(i[z,e*}

for all i and almest all z, which coatradicets Assunption 3 unless B8 = g%,
Since p = 1, we also have »({(s8) = ch¥(s)., The nurmélization condition

on » then gives ¢ = 1, so that X = x*. Thus (9,A) = ($,A¥%), contrary to

what was supposed. Q.E.D.

Lomaa 3, [Section H: regularity of the pseudo-likelihood function.]
The "iaformation matrix" J {eq. 6.B6) is positive definite,

Froof. TFirst, we rewrite J in the form

J = g HE Dk, zls, v O1G,zls. %) 5.2)
5;1 5 8 co ¢y’ > .

which is manifestly positive semi-definite., To derive this expzession, we

substitute the identity

into eq. (6.6}, and note that

_ 2
=~ 1 d h{i,z!s,m*‘:]
B2y Lh{i,z!s,¢*} S

[ ]

g=1

BZ ]

= (P , 4 E Z  h(i,z|s,e*)
< Spdp 5=1 ie}'(s} i

—

) =0, (®.3)
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where the final inequality follows from
P hzse) = 1.
s=1 1 e §(s)

Thiz immediately gives eq. (B.2) frow eq. (6.6).

Hext we consider the general guadratic form F = 4'Ji. Let &' = {a',b'),

with a' = {al, caay aK} and b' = (bl, cauy BS-I} corresponding to the para-

meters B and ) respectively. We also define bs = (0, After rearranging

terms, wa have

. MR K /1 9% 1 oF
F= 2 Q. \B & W %8 T = 38
=1 ™4 a=1l i o F L.
5 Q1 P(n) 2
+ 3z ht ﬂit'ﬁﬂ - &
t=1 i P
¥ Q s Q sﬁ
+ '*_12' L = <Pi{51b§”—t“}{s§1=§ﬂ}
o =1 % H, e Q, 1is

) { tzl btnit}2> ? (8.4}

where we have used eqs, (2.6} and {(2.9), By the Schwarz inequality, each
term in the second sum over i is strictly positive, : unless there is a
constant ¢ such thar bt = ci(ﬁtfat} for all t with 1 ¢ gIt}. Suppose

this holds for all i, Then (i) all alternatives in a given subszmple t

have the same value of e, say kt; and (ii) if subsamples s and t have any
a;ternatives in common, then k, = kt. From Assumption 9 feq. 3.4) it follows
that 1:.s is independent of s, and censequently (from egq, 3.3} cy is inde-

pendent of i, But bs = G by definitien, s0 o = 0 for a2ll i and b, =0

for all t. Therefore the second sum over i in eq. (B.4) is strietly posi-

tive unlesz b = 0,
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F canuot theo be zero unless

¥ /1 BPi
\P, 3
1

5 (8.3
2

L T1F
QA0
B
R
Il
o]

g

¥ a
a=1 %
for all i and almost all = ¢ Z, Multiplying eq. {B.3) by Pi and summing
over i, we get %m{aafP} anaﬁl = 0, from which Z a_ aPiﬁaﬁi = 0 for all i
and almpst 31l z. This contradicts Assumption 7, 30 under the initial hypo-
thesas J is positive definite.

Q.E.D.

Lewzma 4. [Section 7.2). The eipenvalues of R[E] (eq. 7.14) have a positive

lower bound independent of E.

Proof, Consider the quadratic form u'Ru, where u is any veector of unit

length, Let u' = (al, ners Ay by, Then, fxom eqs. (7.1%) - (7.17),
s H
u'Bu = z :—g 4,{’ ks (P,fz x (F, >
s=1 Q. sy Y ie ¥ *
&
2
-1 =2 <Pifi>1 } , (B.6)
ie}@}
where 5
3
= ¥ 1—.- _i. =
fi = a P 58 + bE . (B.7)
1
For any A, we have
) S
M 2y, _ M 1_( T T 2 .z

i=1 i=1

where we have uszd eq. (7.21) and the ideatity zi(arifae} = (0, Consider
2

the term in a, For fized a , this sum has & minimum in 2 of the form

. 2
326 with 4 > 0. (& is independent of 2 because the term In a is homogeneous
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of second oxder.) if & were zero, then Zrom Assumption 7 we would have
a =0 at the miaimum. But 32 was Fixed arbitrarily, so we must have § » 0,
2 2
Since & + b = 1, the expression (§.8) then has a lower bound 61 = mindd,1) » 0,

which by construction is independent of u, § and A, It follows that

2
max <Pi{fi+h1 >z 8,/ R

Then, frem eq. (2.3), there iz at least one s for which

3 (P.{f,+k}2> > 8/ (B.10)
ieg(s)t *

for all A, This leads to a leower bound on the expressicen {B.6), as with

the usnal Cauchy-Schware inequality:

L

&
u'Re > - H—l > 0 (B.11)

At

e

for socine s, Obviocusly u'Ru is not less than the least eigenvector of R,
go the eigenvectors of R have a positive lower bound independent of g,

Q.E.D.

Lemza 5. ([Section 7.2} There is a bound B such that, given any g, there

is a § satisfying ﬁﬁlfz}[ <3 and ¥F[§,) > FIE).

Proof. We suppose that there is some test function ¥ such that

FIg*] = o > 0; otherwise the lewma is trivial, t iz clear that we

need prove the result enly ior test functions § satisfying F[(E] » a.
First, we note that-ASSumptions 2 and 6 imply that lBP(s}ﬂaEai is

bounded, uniformly in z. We also have 0 € P(s) < 1 and

0 < min{ﬁs;ﬁsj < P < 5§ max(ﬁsjﬁs) s directlf from the definitions
5 il = =S



of these guantities.
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Avplying thesez bounds ta eqs, (7.13) - {(7.17} gives

HIE] = Kb(EE) - K1<E>2

o, (81} < K, CiE})

irq,ﬂl ::—: K3

where the {Ki} are positive constapts independeat of E.

Kext, we choose some bound € and define

8, (2)

and

g+{z}r

H

{ £(2) if g g ¢

D otherwisa

§(2) - g, (2)-

From this definition, it follows that

Kediz (s lds )

while from the identity (gi } + <g2

have

(18]} <

(leol) <

Hote that the inegualities (B.12) do not depend on the norwalization con-

III\
+/

By <

{ 2 yv1/2 < 1

2, 1/2
(& )

1A

ditiong {7.21), and go apply to the fuuctious g+:and 3 alsa.

HESE

that FEgG] = Ff

and B > C. We need therefore consider only the case where (g_?_ ).} 0.

Let FIE] =

-

E

D, then we find that gD{z) satisfies eg. (7.21), and

J.

In this case, the lemma is satisfied with El = g

(B.12)

{B.13)

{B.14)

(3.15)

(B.16)

H{E]/D[E], where ¥ and D correspond to the numerator and



denominater in eq. (¥.19), and let

N = w[E] - gl
D, = Pig] - Dlg.) ,

o that

FI§1 D, - H, . {B.17)

¥z 1 - F{E] blg ) . A

From the inequalities (B.12)} and ¢(B.15) - (B.18), we have

o] < % (gj':) ¢
(B.18)

by 2 X (gf->
for sufficiently large C. [Here, and in the following, the value of C that
is "sufficiencly large' depends only on o and the constants E in eq. (B.12),
not on .1 According to eq. (B.18),

- S | 2
FIE] D, N, 2 (X -C K <s+> > 0 (3.19)

for large encugh §, and thus, from eq. (B.17},
Nlg,] > FIE) plg,] . (%.20)

Thus g_(z) is not constant, because otherwise we would have N[goi = ﬁ{gol = 0.

Consequently there is a linear transformation,

@ = bla+g, @], (8.21)
with finite coefficients, such that El(z) satisfies eq. (7.21). We ﬁote
that D[EII = bzn[gn] and F[Elj = F[gD]. Frow Lemma 4, D[Ell ~ 0 apd
thereforsa D[gnl > 0. Eg. (B.20) thus becomes

Fig,] = Flg, ] > FIE]. {B.22)
It rewrains to show that El{z}, a3 defined by eq. (B.21), has a Pound

independent of g, The coefficient a is given by
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- . = kY
and therefore, from eqs. (8.15) - (3.16), ial < Cil .
The coefficient b 1s given by
-2 2 2
b = ¢ &, > -a° (B.23)

nww from eq. (B.12) we have H[gD] < Kﬁ. <igui>2 » Wwhile from eqs.

(B.17) and (B.19) we have N[éol = K, <gi> , for large enough C. Thusg
<gi> < {Kﬁfﬁ?} <g§> s where we have used the Cauchy~Schwarz inequality
for <|g01} . But (gi) +-<gi> = 1, and therefore

<g§ >z a+ K61K7)'1
Substituting in eq. {(B.23), we have

b2 > (1+ Kﬁm?)'l ¢,
so that b i bounded by a constant for large esnoupgh C, say 'bl < K.
Finally, from eq. (B.Z1),
5, < Ibjcls @ + lahs xe+c™H,
so that § (2) is indeed bounded.

Q.E.D.

Appendix €

Nested Logit Model

We give here the choice probabilities fuf the pested logit zodel,
For a proef of consistency with an underlying random utility maximizatioa
model, and a discussion of its relationship to the sequential logit model
and the genceralized extreze value model, we refer to McFadden [15].

First, ome defines a tree structure for the choice set. This can be
conzidered as a sequence of successively finer partiticons of the choice set,

starting with the eotire set and ending wirh it partitioned inte individual
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alterpatives. We Index these partiticons by £ = 0, 1, ..., L. At level £,

the choice set T = {I, ..., M} is partitioned into the subsets

a9, 1=1, ..., 3} Thes KD =€  add(,i) = {i},

i=1, ..., M, For each subset (((#,1), the model will introduce a corre-

iation between the steochastic parts of the utilitiss ni ths fornatives

in the Subset.tz?)
Let i e®(£,i) index the subsets in level £ 4 1 which are the partition

of 4(2,1), i.e. B is defined such that

iL.i} = zZ CI{£+ 1, 1. {C.1)
j e®i,1)

One can turn thig structure inte a tree by drawing a node or branch-point(za)
(l,1) for each (I(%,1i), and lines joining {2,1) to the set of poiats
{e+1, 33 | 3 ¢®(2,1)}. For exsmple, model (A} is defined by®(0,1) = {1,2],

'®(,1) = {1,4}, and® (1,2} = {2,3},

A zet of "incluzive wvalues™ v{l,1) is then defined recursively for

£= L, L-1, ..., 1 as follews., Let w{lL,i} = vi{z, 8), the systematic

compenent of the utility of alterpative i. If #(f,i) > 0, then

vi(g,1) = $(L,1) ln{ é‘j‘,{ , exp[v{i-1, j)faﬁ{.&,i}]} (C.2a)
J e®B (4,1 ]

while if $(i,i) = 0,

v(,1) = wax{v(t-1, D] i ¢BDY . (C.2b)
The {&(2, i)} are a set of "coefficients of inclusive values" (or'dissimilarity
coefficients”), ona for each node at levels I to L-1; without loss we can
put H0,1) = 1. Ths;. remaining (%, i} are then to be estimated., Here thay
are taken as coanstant coefficients, although in general (1, j) may depend

on atrributes of all alternatives in (J(#,j). Consistency with underlying
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random utility maximization requires 0 < ¢ < 1 (see McFadden [15]).
The follewing probabilities are then defined, for k ¢B (1, i) and

£= L-1, ..., 1, 0. If #£,1) > 0, then

expf{v{stl ky/ a2, )1

WD = SN G, m T G, 7Y (©.32)
m g B (4, 3)
1f $(4,§) = 0, then '
e if v(l, k) = max {v{i+1, W; meB(L 1)}
ak{n) = | o enerwise, (€.3b)
with ¢ such that Ekq(kli, iy = 1 ; and finally
p@il, i) = z plile+1, k) qk|£, 1) , (C.4)

k e B{L 1)
which defines p(il#,j) recursively, starting from p{i{L,i) = 1. The required
choice probabllities are then
P(ilz, = opilo, 13, (C.5)
which defines the nested logit model, The "utilities" of the alternatives

are conventionally linzar in parameters, 1i.e.

é
O A AL ©.6)

where the z.., 2re the exogencus variablasy described in Section B8 (three
axplanatory variasbles and three alternztive-specific dumrmies}.

It can be shown [14] that the ceoefficients § are related to the
covariances between the utilities of different alternatives, with inde-
pendence at ¢ = 1 and perfect correlation at ¢ = O (althovgh the exact
relationship is complicated, particularly if L > 2). If 5 = 1 for all ¢

and 1 one has the ordinary multinomial leogit model, while if ¢ depends



43—

only on £ one has the sequential logit model(zg} [23.

A program has baen written to estimate the choice medel, eg. {£.5),
from a choice-based sample by maximizing the pseudo-likelihood of eq. (4.8).
The program was developed from the logit estimation routines of the QUAIL
program [3), with 2 modified maxzimization algoritie t» 211+ “or possible
non-concavity of the pseudo-likelihood. A general tree structure can be
specified (except that estimation becemes impractically slow for more than
about a dozen nodes), and also a general cheice-based sample, except that
one of the subsamples is always assumed to be randoa,

The treatment of cases with nissing data on one or more altermatives
depends on whether (2) those alternatives were not in the subject's choice
set, or (b) the alternatives were asvailable but the relevant data was
unobtainable. 1In case (a) we apply “exclusive" deletion of nodes, i.e.
subsets (1{2,j) are deleted frem the choice wodel only if they coasist
entirely of missing altermatives, while in case (b) we apply "inclusiwve'
deletion of nodes, i.e. {I(2,]) is deleted if it contzins any wmissing
aiternative, Thus missing data will cause the tree structure te vary
from one vhservation te another, which is a major cause of complexity in
the estimation program. In the present estimation, it was assumed that

missing data on specific alternatives corresponded to unavailability,
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Footnotes

(1) For a review of discrete choice models and their application, ses
McFadden [13]. Note that any discrete respoase or oubtceme can be analyzed,
nct necessarily choice,

(2 Lerman, Mauwski and Atherton [10] discuss in more detail the rationale
for cheice-based sampling, with particular applicatien to the demapd for
different modes of transportation. Choice-based sampling was first con-
sidered by Warner {20? 211.

(3} Bee, for example, Rac [16].

] In some cases, the maximumn likelihood estimator is the same as an
estimator obrained previously by Manski and MeFadden [121,

3 The case of wnknown u(sz) but known Qi will be presented elsewhere,
(6) Manski and McFadden [I2Z] consider samples which may be stratified

on both endogenous and exogencus variables., Here we consider only strati-
fication based on the choice (or cutcome).

{7 This cnnﬁitinn is necessary for the logit model with a full set of
altetnative-specific dummy variables, but in general it is not necessary.
It i3 pot satisfied by the choice-based sample design comsidered by Manski
and Lerman.

{8) We are concerued here rainly with the estimates éN. As pointed out
by Manski and McFadden [1Z], the iﬂ can be used to estimate the agpgregate
shares 5 {see [4], Section 3.4, for further details).

{9 See, for example, Rao [16)]. It does not even satisfy the conditioms
of Flefer and Wolfewitz [9] for coensistency in the presence of infinitely

many nuisance parameters,
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(10 If A(s) < k-lh*(s} for some 8 # 8, then h{i,s; 8,x; z) < h*(s)!(kﬁsPc};

while if A(s) » W*{(s) for some s # 8, then h(i,S; 9N} 2) {.Eﬁ!{kl*(s}?é}.

{11} 1If k‘csk = 0 for some subsamples s but net others, we use the follow-
ing: if El =+ 0 in probability and §2 converges in distribution, then

5t §2 converges to the same discribution. If k'csk = 0 for all s, thexn
k'Gk = 0 and the expression {6,8) converges im probability to zero.

(12} By assumption ¢ (z) is bounded, say l@(z)[ < K. Since f@zdz = 1 and
jhdz = 1, we can use the Cauchy-Schwarz inequality to show that I(¢2fu}dz =
<g2> > K 2. Thus B(z) is well defined.

(i3) If Flg] i: a functional of g(z'}, then the variation with respect to
g{z) is a Ffunction of z vhich can be defined as $F[g] = lim(e =0 ){Flg{z"}
+ he{z‘-z}] - F[g{z'}]}fez, where hE(x) = ¢ if |x] € ¢/2 and hetx) =0

if |x| > e/2.

.{14) This i5 a consequence of the invariance of F[g] under linear trans-
formations, i.e. E{z) - a + bg(z). Eq. (7.22) then determines g{(z)} only
up to such & transformation.

{15) Eq. {7.23) gives ¢ = (H-a'r'la}f(r'lml. But if one substitu;es
from eqa. (7.33) - (7.35} into this expression, it reduces te an identity,
If required, one could determine ¢ by substituting eq. (7.35} for £ into
the expression for §(z), eq. {7.32), and then using the normalization com-
dition, eq. (7.21).

1

(16) FNRote that eq. (7.36) does not give R =% In general, a different

5
test function E{z) iz required to optimize the bound for each different
linear combination of the elements of B,

(17} Alternative 2 involved walking frowm heme te the bus stop, while

alternative 3 involved auto access from home to the fransit scaticon. 1The
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sample which we use contained three more alternatives: bus with aute
access, rail transit with bus access, and rail transit with walk access,
These three alternatives were dropped from the present apalysis because
very few sample members chose them,

¢* % Train [18) gives a synopsis of the rather cemplicated history of
thiz sample., For details of the stratification and survey mechods, see
Johnson [6, 7] and Johnson and McFadgen [8].

{(1%) Subjects who usually used ancther mode of transportation, but whoe
happened to be using rapid transit ar the time of the survey, have been
excluded from the sample in the present analysis.

{20) More complicated maximum likelihood estimators are available for
samples stratified both om endogenous and on exogencus variables [12],
[4]. Because of the complex system of overlapping strata from the diffar-
ent subsamples, the present sample would have to be divided inteo a large
number of irreducible substrata, mauy of which contain enly a few obser-
vations. As a result, it was not practicable to take full zccount of the
geographic stratification with a sample ¢f this size,

(21 Afcer deletion of cases with incomplete information, or with only
one realistic altermative available, the numbers choesing alternatives

1l to 4 are 378, 68, 74 and 137 respectively. Of those choosing alternative
3 (railj, 41 are from the choice-based subsample.

(22} These models have also been estimated from the exogenocusly strati-
fied sample by McFadden [15], using a sequential logit estimation pro=-
cedure (which requires ¢1 = ¢2} rather than the FIML procedure used here.
For comparison, the log likelihoods for models {(A) and (B) were then

-502.9 and -501.8 respectively.
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(233 TIf the coefficients of C, T and E were zero, and if ¢1 = %= 1,

then minus twice the difference between the log likelihood at convergence
apd the log likelihood with dummies only is approximately x?(S d.£.).
Obvicusly this null hypothesis is inm every c¢ase untenable,

{24) Ii 51 is taken as the sample value {33/616), tnei. cie - true™ wvalue

of the waight factor i is 1,145%.

{25) The differences exceed ¢ne standard deviation but are not signif;cant
at the 5% level,

{(26) Thesa lemmas were used by Manski and Lerman [11] to prove consistency
of the WESML estimator,

(27} Except when (= 2 or when (! consists of a2 single alternative.

{(28) For notational convenience, we 2llow the pessibility that

.(&,1i) = J{i+1, j), resulting in & trivial branch-point,

(29 The tree structure illustrates the covariance structure between
alternatives, and does not imply that the decigion process iz itsalf

sequential,
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