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Abstract. A paper by the same authors in the 1981 volume of
Stochastic Processes and Their Applications presented a general
model, based on martingales and stochastic integrals, for the
economic problem of investing in a portfolio of securities.

In particular, and using the terminology developed therein,
that paper stated that every integrable contingent claim is
attainable (i.e.,, the model is complete) if and only if every
martingale can be represented as a stochastic integral with
respect to the discounted price process. This paper provides
a detailed proof of that result as well as the following: The
model is complete if and only if there exists a unique martin-
gale measure.







1. Introduction

In our (1981) paper we presented a general stochastic calculus
model for the buying and selling of a portfolio of securities. To
recapitulate, let (Q, 4, P) be a probability space, let T < @ be a
fixed time horizon, and let F = {3&; 0 <t <T} bea filtration satis-

fying les conditions habituelles with J; containing only ) and the null

sets of P and with J& =J.

Let S ={S ; 0=<t =< T} be a vector valued stochastic process whose

t .
o K . . . . .
components S ,Sl,...,S are adapted, right continuous with left limits,
and strictly positive, Moreover, it is assumed that S~ is a semimartin-
. o k . .
gale with So = 1, Here St represents the time t value of the kth security.
. o . . .

Upon setting 8 = 1/S°, one defines the discounted price process

Z = (21,..,ZK)‘ by setting Zk = B Sk for k =1,...,K,

Let IP be the set of probability measures Q on ({2, J) that are
equivalent to P and such that Z is a (vector) martingale under Q, It is

assumed that IP is nonempty, so S and Z are actually semimartingales

under P. An arbitrary element P € IPis selected and called the reference
measure, Let E* denote the corresponding expectation operator. The
assumption that IP is nonempty is made to rule out arbitrage opportunities
that would permit investors to make unreasonable profits.

Let L(Z) denote the set of all vector valued, predictable processes

H = (Hl,..,HK) ={H ; 0 <t < T} that are integrable with respect to the

t;
semimartingale Z (see Jacod (1979, p. 52) for details about L(Z)). An

admissible trading strategy is any vector valued, predictable stochastic

process § = (@0,§1,..,@K) = {@t; 0 s t < T} such that

(1 h,...,8 eLw@),

(11) V' (8) 2 0, where V (8) = B&S =B 3 &S,
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(iii) V (8) = V_(8) + G (2), where G (&) = [3d2Z = J@Kdzk, and

Ja ot

(iv) Vh(@) is a martingale under P.

Here @: represents the number of shares or units of security k held by

the investor at time t, V“(Q), the discounted value process, represents

%*
the discounted value of the portfolio, and G (§), the discounted gains

process, represents the discounted net profit or loss due to the trans-
actions by the investor. Thus (ii) says admissible trading strategies
cannot permit the value of the portfolio to become negative, (iii) says
that all changes in the value of the portfolio are due to the investment
rather than due to infusion or withdrawal of funds, and (iv) serves to
rule out certain foolish strategies that throw away money. Note that
condition (iv) is the only one that might depend on the choice of the
reference measure.

A contingent claim X is simply defined as a positive random variable

(recall J = J&). Such a claim is said to be attainable if there exists an
admissible trading strategy & such that V;(@) = &IX, in which case ¢ is
said to generate X. A claim X is said to be integrable if E*(&FX)<:N.
The model is said to be complete if every integrable claim is attainable.
Contingent claims are useful as models of various financial entities
such as stock options, and knowing the model is complete facilitates the
computation of the price of a claim, See our (1981) paper for more
about this,

The sole purpose of this paper is to rigorously prove and extend
an important result in our (1981) paper. The new result is presented
as the following
Theorem. The following statements are equivalent:

e
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(a) The model is complete under P(.



(b) Every martingale M can be represented in the form
M=M + JH(iZ
o
for some H €L(Z).

(¢) TP is a singleton.
We call (b) the representation property. By a martingale, here, we
mean the real valued stochastic process M = {Mt; 0 <t < T} satisfies
the usual definition of a martingale under the filtration T and reference

measure P . Theorem (3.35) and its corollary in our (1981) paper only

asserted that (c¢) = (a) & (b), and the proof was only sketched.

2. Proof of the Theorem

The proof that (a) and (b) are equivalent is straightforward.

(a) » (b): Let M be an arbitrary martingale, Since any martingale
can be expressed as the difference of two positive martingales, we shall
assume, without loss of generality, that M is positive. Setting X = S;'MT,
we know there exists an admissible trading strategy & such that V:(@) =PHV
Moreover, the martingale V*(é) = Vz(é) + Jﬁciz by our definition of ad-
missible trading strategies, where H = (@1,...,§K). Thus M has the
same representation, because Mt = E*(BTX|J£) = Vt(@).

(b) » (a): Let X be an arbitrary integrable contingent claim,

Define a martingale M by setting Mt = E*(BTXIJL), and let H €L(Z) be

K
such that M = Mo + JH(iZ. Set @1 = Hl,...,@K =0, while for 5° put

8° = Mo + jH(iZ - HZ. This yields an admissible trading strategy & with
Vd(é) = M. Thus V;(@) = BTX, X is attainable, and the model is complete.
The proof that (b) and (c) are equivalent is more involved, for it

relies on a theory (see Jacod (1979, Ch. XI)) relating the representation

property to a condition involving a certain set of probability measures.



Let M(Z) denote the set of all probability measures on (Q, &) such that Z
is a local martingale under each Q €M(Z), and note TP C M(Z). An

element Q of M(Z) is said to be an extreme point if it cannot be

expressed as a strictly convex combination of two distinct elements of
M(Z). Let Me(Z) denote all the extreme points of M(Z).

According to Theorem (11.2) in Jacod (1979), Q EMe(Z) if and only
if Z can represent every H1 martingale (under Q). By localization, this
means Q EMe(Z) if and only if Z can represent every local martingale
(under Q). Consequently, P*E Me(Z) if and only if the representation
property (b) holds. We shall use this important result to show that
(b) and (c) are equivalent.

(b) = (¢): This now follows immediately from Corollary (11.4)
in Jacod (1979), which says (see also condition (iv) in Theorem (11.3))
that if f*G Me(Z), then there cannot exist another Q €M(Z) with Q
equivalent to P¢ (in particular, with Q €1P).

(c) » (b): 1t suffices to show P*E Me(Z). Suppose not. Then there
exists some o € (0,1) and Q’, Q" €M(Z) such that P* = Q'+ (1-a)Q",
Following the idea in the proof of Proposition (11.14) in Jacod (1979),
because Q’ < P*/a one can show Z is a martingale under Q{, and similarly
for Q". Thus Z is a martingale under QB = BQ'-P(I-B)Q" for every
B €(0,1). Since QB is equivalent to P* for all g €(0,1), this means

Q€ P for all B €(0,1). But this contradicts the fact that IP is a

B

singleton.



3. Concluding Remarks

The presentation of Theorem (3.35) in our (1981) paper was
followed by a brief discussion of cases when the martingale represen-
tation property (b) holds. Here we shall make some supplementary
comments,

The martingale representation property holds for any diffusion
process that's a martingale and for which the Stroock-Varadhan problem
(see page 4 of their 1979 book) has a unique solution (e.g., if the
diffusion coefficients are Lipschitz). This follows from Yamada and
Watanabe (1971).

The martingale representation property is also satisfied by a
diffusion process that's a martingale if the diffusion matrix is non-
degenerate and the coefficients are continuous. This was mentioned in
Jacod and Yor (1977) and in Yor (1977).

In the appendix of Yor (1978), written with J. de Sam Lazaro, it
is shown that the only one-dimensional martingales that have stationary
increments and satisfy the representation property are the Wiener and
Poisson martingales. In their proof they did not assume the increments
are independent, although this turns out to be implied by the other

conditions.
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