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Abstract

Competitive equilibria are shown to exist in two-object exchange economies with
indivisibilities and additive complementarities in agent valuations between objects,
provided that complementarities are common across agents. We further investigate
whether the competitive equilibrium can be obtained as an outcome of a simultaneous
English-type auction mechanism under non-strategic (honest) bidding.
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1 Introduction

This paper addresses the problem of allocating two heterogeneous objects among a num-

ber of agents in an environment where there exist positive complementarities in agent

valuations between objects. The problem of allocating heterogeneous objects in the pres-

ence of complementarities emerged, for example, in the recent sale of spectrum licenses by

the Federal Communications Commission (Ausubel et. al., 1997). There are two issues

of interest. The first is the existence of competitive equilibrium. The second is whether

the competitive equilibrium can be obtained as an outcome of a relatively simple auction

mechanism.

It is well-known that competitive (Walrasian) equilibria may not exist in environments

with indivisible objects. Kelso and Crawford (1982) and further Gul and Stachetti (1999)

show that the competitive equilibrium exists in environments with indivisibilities if the

gross substitute condition is satisfied, that is, if there is a certain substitutability in agent

valuations across objects. In the presence of complementarities, examples of non-existence

of competitive equilibrium are easily generated (e.g., Bykowsky et al., 2000). It is then

of interest to investigate whether competitive equilibria exist in some special classes of

environments with complementarities.
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Brusco and Lopomo (BL, 1999) consider two-object environments with either no com-

plementarities or large additive complementarities in their study of bidder collusion in

multi-unit ascending price auctions. Although they focus on collusive equilibria of these

auctions, they demonstrate that there also exist Perfect Bayesian Equilibria (PBE) that

can be easily shown to be competitive (Walrasian) equilibria in the neoclassical sense.

However, BL do not consider the case of moderate complementarities.1 We show that, at

least in the special case when complementarities are common to all bidders, the competi-

tive equilibrium exists and is efficient irrespective of the magnitude of the complementarity

term.

The second issue of interest is whether the competitive equilibrium outcomes may

be implemented via a simple auction mechanism. Demange, Gale and Sotomayor (DGS;

1986) introduced a progressive auction mechanism that, under the assumption of honest

(non-strategic) bidding, achieves efficient allocations and minimal Walrasian equilibrium

prices. They consider a multi-unit allocation problems with heterogeneous goods, in which

each bidder is constrained to get at most one object. Gul and Stachetti (2000) suggest a

progressive auction mechanism that achieves efficient allocations and minimal Walrasian

equilibrium prices in environments where bidders are not constrained to buy only one

good, but the gross substitute condition of Kelso and Crawford (1982) on agent prefer-

ences is satisfied. We investigate whether the competitive equilibrium (CE) outcomes may

be achieved by honest bidders under a simultaneous (non-combinatorial) progressive auc-

tion in the common complementarity case. Honest bidding rules prescribe bidding on an

object or a package only if it maximizes bidder payoff at current prices. While honest bid-

ding may or may not be an equilibrium strategy, it may correspond to naive price-taking

behavior by unsophisticated bidders. We show that in the case of two bidders, a certain

variation of the simultaneous ascending price auction mechanism ensures that honest bid-

ding leads to minimal CE prices and efficient allocations for any value of complementarity

(moderate or large). The variation we propose is analogous to the “exact” progressive

auction mechanism of DGS, where bidders are required to report their full demand sets at

each price. In contrast, the “approximate” bidding mechanism analogous to simultaneous

English auction, such as the one considered by BL, may result in prices above the com-

petitive equilibrium levels and bidder losses due to the exposure problem (Bykowsky et

al., 2000). With more than two bidders, both the exact and the approximate mechanisms

may result in disequilibrium allocations and prices. However, we show that such problems

never arise and both mechanisms perform well if the complementarity is large.
1BL note that in general, in this case both the competitive and collusive PBE are hard to characterize.
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2 Characterization of competitive equilibrium in the com-
mon complementarity case

The framework is similar to BL (1999). There are two objects, A and B, and a set N of

n agents (bidders), n < ∞. Let ai be bidder i’s value for object A, and bi be bidder i’s

value for object B, with ai, bi ∈ [0, v̄]. Then i’s value for the package AB is given by

ui(AB) = ai + bi + k,

where k is the common additive complementarity term, k ≥ 0.2 Let W be the set of

possible packages that can be sold to a bidder, W ≡ {∅, A, B, AB}, and let w be an

element of W . We assume that bidders have quasilinear utilities in packages and money,

and are not budget constrained. Then bidder i’s utility of buying a package w given prices

p = (pa, pb) is i’s net value of the package, or his surplus: Si(w; p) = ui(w) − ∑
j∈w pj ,

where j is the object index, j ∈ {a, b}. Specifically,

Si(∅; p) = 0 (1)

Si(A; p) = ai − pa (2)

Si(B; p) = bi − pb (3)

Si(AB; p) = ai − pa + bi − pb + k (4)

For any price vector (pa, pb), let i’s demand set be the set of packages that maximize i’s

surplus at this price:

Di(p) = {w ∈ W |Si(w; p) = maxv∈W Si(v; p)}. (5)

We employ a standard Walrasian notion of competitive equilibrium. A price p =

(pa, pb) is a competitive equilibrium price if, given p, there is an allocation of objects

to bidders µ : {A, B} → N such that each bidder gets a package in their demand set,

i.e., there is no excess demand. Such price and allocation pair (p, µ) is called a compet-

itive equilibrium. Given that bidders’ values for objects are non-negative, ai, bi ≥ 0, the

equilibrium also requires no excess supply, i.e., both objects are allocated to bidders.
2BL allow the additive complementarity term to vary across bidders, so that ui(AB) = ai + bi +

ki, with ki ∈ K, where K is either {0} (no complementarity) or an interval [k, k̄] with k > v̄ (large
complementarity). Assuming that the object values are drawn independently across bidders from the
same probability distribution, and the objects are allocated using a simultaneous ascending bid auction,
BL show that with either no complementarity or with large complementarities there exists a PBE of this
auction that lead to a CE outcome in the neoclassical sence; the resulting allocation is efficient. With no
complementarity, the bidders with the highest values for each object buy the objects at the prices equal
to the second highest values for that objects. With large complementarities, the two objects are allocated
to the bidder with the highest value for the package, at the price equal to the second highest valuation for
the package.
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In the presence of complementarity, efficiency and equilibrium conditions and prices

will differ depending on whether the objects are allocated to the same or to different

bidders. We will say that “packaging” is efficient if it is efficient to allocate both items to

the same bidder i ∈ N . “Splitting” is efficient if it is efficient to allocate the items to two

different bidders.

Proposition 1 For any finite number of bidders, n < ∞, and any common comple-

mentarity term, k ≥ 0, the set of CE prices and allocations is non-empty, and any CE

allocation is efficient.3 The set of CE prices is characterized as follows:

• Suppose that allocating both items to one bidder, or packaging, is efficient:

ai + bi + k ≥ max{max
j∈N

aj + max
j∈N

bj , max
j �=i

(aj + bj) + k} (6)

for some i ∈ N . Then the set of CE prices is given by (pa, pb) such that

max
j �=i

(aj + bj) + k ≤ pa + pb ≤ ai + bi + k; (7)

max
j �=i

aj ≤ pa ≤ ai + k; (8)

max
j �=i

bj ≤ pb ≤ bi + k. (9)

• Suppose that splitting of items between bidders is efficient:

ai + bj ≥ max{max
l∈N

al + max
l∈N

bl, max
l∈N

(al + bl) + k}, (10)

for some i, j ∈ N , i �= j. Then the set of CE prices is given by (pa, pb) such that

max
l �=i�=j

(al + bl) + k ≤ pa + pb; (11)

max{aj + k, max
l �=i�=j

al} ≤ pa ≤ ai; (12)

max{bi + k, max
l �=i�=j

bl} ≤ pb ≤ bj . (13)

Before turning to the proof of proposition 1, it is useful to write out explicitly conditions

under which a package w ∈ W is demanded by a bidder i ∈ N . Let p = (pa, pb) be a price

vector. Applying definitions 1-4 and 5, we obtain:

• AB ∈ Di(p) if and only if:

ai + bi + k ≥ pa + pb (14)

bi + k ≥ pb (15)

ai + k ≥ pa. (16)
3If CE exists, then efficiency follows from the First Welfare Theorem. We re-establish efficiency here

for the sake of completeness.
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• A ∈ Di(p) if and only if:

ai ≥ pa (17)

bi + k ≤ pb. (18)

(The third condition, ai−pa ≥ bi−pb, follows from 17-18 and is therefore redundant.)

• B ∈ Di(p) if and only if:

bi ≥ pb (19)

ai + k ≤ pa. (20)

(The third condition, bi−pb ≥ ai−pa, follows from 19-20 and is therefore redundant.)

• ∅ ∈ Di(p) if and only if:

ai + bi + k ≤ pa + pb (21)

ai ≤ pa (22)

bi ≤ pb. (23)

The following efficiency conditions will be also useful:

• Efficiency condition 6 holds, i.e., it is efficient to allocate the package AB to bidder

i ∈ N , if and only if:

ai + bi ≥ aj + bj for all j ∈ N (24)

ai + bi + k ≥ aj + bl for all j, l �= i (25)

bi + k ≥ bj for all j �= i (26)

ai + k ≥ aj for all j �= i. (27)

• Efficiency condition 10 holds, i.e., it is efficient to allocate item A to bidder i ∈ N ,

and item B to bidder j ∈ N , i �= j, if and only if:

ai ≥ al for all l ∈ N (28)

bj ≥ bl for all l ∈ N (29)

bj ≥ bi + k (30)

ai ≥ aj + k. (31)

ai + bj ≥ max
l �=i�=j

(al + bl) + k. (32)
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Proof of proposition 1 The sets of CE prices are derived by solving for the no excess

demand equilibrium conditions. Let (µ, p) be a CE price and allocation pair. Suppose

under allocation µ each bidder i ∈ N is assigned a package wi ∈ W , so that ∪iwi = {A, B},

wi ∩ wj = ∅ for all i, j ∈ N , i �= j. The no excess demand conditions are:

Si(wi; p) ≥ Si(v; p) for any v ∈ W. (33)

There may be only two types of equilibrium allocations: either both items in {A, B}
are given to one of the bidders, or the items are split between the bidders. Consider

equilibrium conditions for each of the two cases in turn.

Case 1: Suppose that, in equilibrium, the package AB is assigned to bidder i ∈ N .

The no excess demand conditions are conditions 14-16 for bidder i, and conditions 21-23

for all other bidders j �= i. Combining the inequalities, we obtain the characterization of

the set of CE prices as given in 7-9. Note that a price vector satisfying the ineqalities 7-9

exists if and only if conditions 24-27 hold: Obviously, if conditions 24-27 are satisfied, we

can find prices (pa, pb) that satisfy 7-9. Conversely, suppose there exists a price vector

(pa, pb) satisfying 7-9. Then 7 implies 24, 8 implies 27, 9 implies 26; finally, adding 8 and

9, we obtain maxj �=i aj + maxl �=i bl ≤ pa + pb, which, together with 7, implies 25. Hence

we obtain that a set of CE prices supporting the allocation of the package AB to bidder

i is non-empty if and only if such allocation is efficient.

Case 2: Now suppose that, in equilibrium, item A is assigned to bidder i, and item

B is assigned to bidder j, for some i, j ∈ N , j �= i. Hence A ∈ Di(p), B ∈ Dj(p), and

∅ ∈ Dl(p) for all l �= i �= j; that is, inequalities 17-18 hold for i, inequalities 19-20 hold for

j, and inequalities 21-23 hold for all other bidders l �= i �= j. Combining these inequalities,

we obtain the characterization of the set of equilibrium prices as given by 11-13. As in the

previous case, it is straightforward to show that a price vector satisfying ineqalities 11-13

exists if and only if efficiency conditions 28-32 hold. �

We will say that a CE price p is a minimal CE price if for any other CE price p̃,

pa + pb ≤ p̃a + p̃b. Let us compare the minimal CE prices in the common complemen-

tarity case with two benchmarks. The first is the prices that result from the separate

English auctions (SEA) run for each object if there are no complementarities between

objects. Obviously, the SEA then implement an efficient outcome, with prices equal to

the second highest values for each object: Let ai = maxl∈N al, and bj = maxl∈N bl; then

(pSEA
a , pSEA

b ) ≡ (maxl �=i al, maxl �=j bl). Observe that these are the minimal CE prices for

the no complementarity case.

The second benchmark is the prices that would result if A and B are bundled and sold

in an English auction as a package, without the option of splitting the objects between
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the bidders. The two objects are then allocated to the bidder with the highest value

for the package, at the price equal to the second highest valuation. We will call this

price the Vickrey price for the package: Let (ai + bi) = maxj∈N (aj + bj); then pV ick
ab ≡

maxj �=i(aj + bj) + k.

Corollary 1 1. In the presence of a positive complementarity, k > 0, any CE price is

no lower then the minimal competitive (SEA) price in the no complementarity case:

(pa, pb) ≥ (pSEA
a , pSEA

b ).

2. If the complementarity is large, k > v̄, then packaging of items is always efficient,

and the minimal CE price for the package is equal to the Vickrey price:

pa + pb = max
j �=i

(aj + bj) + k, (34)

where i ∈ N is such that (ai + bi) ≥ (aj + bj) for all j �= i.

Statement (1) of the corollary follows from conditions 7-9 and 11-13 of proposition 1.

Statement (2) is obtained by observing that 10 cannot hold as a strict inequality if k > v̄,

and by further checking that in this case maxj �=i(aj + bj) + k ≥ maxj �=i aj + maxj �=i bj ,

where i is the bidder with the highest value for the package; hence the lower bound on the

sum of CE prices is determined from inequality 7.

The following characterization of CE prices in the case of two bidders will be used in

further analysis.

Corollary 2 Let there be two bidders, n = 2, denoted by indexes i, j ∈ N , with i �= j.

• Suppose that allocating both items to bidder i, or packaging, is efficient. Then the

set of CE prices is characterized by the following constraints:

aj + bj + k ≤ pa + pb ≤ ai + bi + k; (35)

aj ≤ pa ≤ ai + k; (36)

bj ≤ pb ≤ bi + k. (37)

The minimal CE prices are as follows:

1. If ai ≥ aj and bi ≥ bj, then the set of minimal CE price vectors is given by:

pa = aj + λk (38)

pb = bj + (1 − λ)k (39)

for any λ ∈ [0, 1]. In particular, (aj , bj + k) and (aj + k, bj) are minimal CE

price vectors.
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2. If ai > aj and bi < bj, then the set of minimal CE price vectors is given by:

pa = aj + λk + (1 − λ)(bj − bi) (40)

pb = bj + (1 − λ)k − (1 − λ)(bj − bi) (41)

for any λ ∈ [0, 1]. In particular, (aj +bj −bi, bi +k) and (aj +k, bj) are minimal

CE price vectors.

3. If ai < aj and bi > bj, then the set of minimal CE price vectors is given by:

pa = aj + (1 − λ)k − (1 − λ)(aj − ai) (42)

pb = bj + λk + (1 − λ)(aj − ai) (43)

for any λ ∈ [0, 1]. In particular, (ai+k, aj +bj −ai) and (aj , bj +k) are minimal

CE price vectors.

• Suppose that splitting of items between bidders, such that bidder i is allocated A, and

bidder j is allocated B, is efficient. Then the set of CE prices is given by (pa, pb)

such that

aj + k ≤ pa ≤ ai (44)

bi + k ≤ pb ≤ bj . (45)

The minimal CE price is given by:

pa = aj + k (46)

pb = bi + k. (47)

The above also implies that in the case of two bidders, the minimal CE price equals the

Vickrey price of the package for any value of k, as long as the packaging is efficient:

Corollary 3 Let there be two bidders, n = 2. Suppose that packaging of items is efficient,

ai + bi + k ≥ max{ai + bj , aj + bi, aj + bj + k}, for some i, j ∈ N , i �= j. Then, for any

value of complementarity term, k > 0, the minimal CE price for the package equals to the

Vickrey price: pa + pb = aj + bj + k.

3 Performance of the exact simultaneous auction mecha-
nism under honest bidding

We next investigate whether competitive equilibrium outcomes may be achieved by honest

bidders under a simultaneous English-type auction (SIMEA) in the common complemen-

tarity case. As in DGS (1986), we will consider two variants of the SIMEA mechanism
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– the exact and the approximate mechanisms. We discuss the exact mechanism in this

section. The auction starts with an initial price vector (p0
a, p

0
b) = (0, 0) announced by the

auctioneer. We assume that all values are discrete. Specifically, all prices are integers,

and all bidder valuations are even integers (in general, for the case of two objects, if all

valuations are multiples of δ, prices are required to be multiples of δ/2). Each bidder

announces which packages w ∈ W are in her demand set at this price. It is required

that all bidders report all packages in their demand sets. If it is possible to assign items

{A, B} to bidders so that each bidder gets a package in her demand set, then the prices

must be at a CE, and the auction stops. If no such assignment exists, then the auctioneer

raises prices by one unit on items in {A, B} which are overdemanded. An items is overde-

manded at price p if it is necessary to increase the supply of this item (and, possibly, some

other items) to find an assignment so that each bidder gets a package in their demand

set. For example, in the case of two bidders, if bidder 1’s and 2’s demand sets at price

p are D1(p) = {AB}, D2(p) = {AB}, then the overdemanded set is O(p) = {A, B}. If

bidder 1’s and 2’s demand sets at price p are D1(p) = {AB, A}, D2(p) = {AB}, then the

overdemanded set is O(p) = {A}.4 After the prices are raised, the bidders report their

new demand sets, and the procedure continues until a price vector is reached at which no

excess demand exists. We first show that with two bidders, two objects and a common

complementarity term k ≥ 0, if all bidders report their demand sets honestly (that is, they

follow the honest bidding strategy), the exact SIMEA mechanism converges to a minimal

CE price and leads to an efficient allocation.

Proposition 2 Suppose there are 2 bidders, n = 2. If bidders follow the honest bidding

strategy, then, for any value of the common complementarity term k ≥ 0, the exact SIMEA

mechanism converges to a minimal CE price, and the resulting allocation is efficient.

It is clear that under honest bidding, the iterations will stop at some point, since

prices are bounded by bidder valuations: pa, pb ≤ v̄ + k. It is also obvious that in the no

complementarity case, k = 0, the mechanism will converge to the SEA prices. To establish

the case of positive complementarity, k > 0, we employ the following properties of bidder

demands under honest bidding:

Lemma 1 (No switching) Suppose bidders bid honestly in the exact SIMEA, and let

k > 0. For any bidder i, any price p, and any items v, w ∈ {A, B} with v �= w, if
4If bidder 1’s and 2’s demand set at price p are D1(p) = {AB, A, B}, D2(p) = {AB}, then the

overdemanded set is either O(p) = {A}, or O(p) = {B}, but not {A, B}. The mechanism then prescribes to
raise the price of either A or B, but not both. This creates an indeterminacy in the mechanism. Lemma 1
below shows, however, that under honest bidding, a bidder’s demand set may never consist of {AB, A, B},
given k > 0. For k = 0, {AB, A, B} ⊆ Di(p) implies ∅ ∈ Di(p).
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v ∈ Di(p), then w /∈ Di(p̃) for all and p̃ ≥ p. That is, a bidder does not demand two

packages containing two separate items at the same time, and does not switch from one

separate item to the other as the prices rise.

Proof Suppose that, for some bidder i ∈ N , A ∈ Di(p) at some price p = (pa, pb). Then,

from 18, pb ≥ bi + k, which obviously implies that p̃b ≥ bi + k for any p̃b ≥ pb. But,

from 19, we may have B ∈ Di(p) only if pb ≤ bi. �

Lemma 2 (Bidder demands with and without complementarities) Suppose bidders

bid honestly in the exact SIMEA. For any price p, let D0
i (p) denote bidder i’s demand set in

the no complementarity case, k = 0, and let D+
i (p) denote bidder i’s demand set in the pos-

itive complementarity case, k > 0. If, at some price p, AB ∈ D0
i (p), then D+

i (p) = {AB};
if v ∈ D0

i (p) for some v ∈ {A, B}, and ∅ /∈ D0
i (p), then D+

i (p) ⊆ {v, AB}. That is, a

positive complementarity induces bidders to seek higher aggregations.

Proof Suppose, for some price p, AB ∈ D0
i (p). This implies that ai ≥ pa and bi ≥ pb, and,

hence, D+
i (p) = {AB} for any k > 0. Now suppose that A ∈ D0

i (p) and ∅ /∈ D0
i (p). This

implies that ai > pa and, hence, for any k > 0, either D+
i (p) = {A} (if pb > bi + k), or

D+
i (p) = {AB} (if pb < bi + k), or D+

i (p) = {A, AB} (if pb = bi + k). �

The above proof also demonstrates that if, at some price p, there is excess demand

when k = 0, then there is excess demand when k > 0. Hence, we obtain:

Corollary 4 (Lower bound on prices) If bidders bid honestly in the exact SIMEA,

then final auction prices are at least as high as the SEA prices in the no complementarity

case: (pa, pb) ≥ (pSEA
a , pSEA

b ).

We now prove proposition 2.

Proof of proposition 2 It is sufficient to consider the positive complementarity case, k > 0.

Since ai ≥ 0 and bi ≥ 0 for all i ∈ N , we observe that both bidders will initially demand

package {AB} only, and therefore the prices will rise on both items simultaneously. Let

t be the last iteration at which both bidders demand {AB} only; let the corresponding

price be pt
a = pt

b = p. From 14-16, this implies that for each i ∈ N :

ai + bi + k > 2p (48)

ai + k > p (49)

bi + k > p. (50)

10



Suppose, at iteration t+1, bidder i reports some other package in her demand sets. Given

honest bidding, we note that p + 1 ≥ min{a1, a2, b1, b2}. There are two possibilities:

Case I: ∅ ∈ Di(p + 1). This implies that:

ai + bi + k ≤ 2p + 2 (51)

ai ≤ p + 1 (52)

bi ≤ p + 1. (53)

From inequalities 48 and 51 (and given that the values are even intergers), we obtain that

ai + bi + k = 2p + 2. The auction stops at the price pa = pb = p + 1, and package AB is

allocated to bidder j �= i.

It is left to demonstrate that this allocation is efficient. Since j demanded {AB} at

iteration t, we obtain that aj + bj + k ≥ 2p + 2 = ai + bi + k, i.e., aj + bj ≥ ai + bi. We

next need to show that aj + bj + k ≥ max{ai + bj , aj + bi}, or:

ai ≤ aj + k (54)

bi ≤ bj + k. (55)

But these follow from inequalitites 49 and 52, 50 and 53 implied by j’s demand at p and

i’s demand at p + 1:

aj + k ≥ p + 1 ≥ ai (56)

bi + k ≥ p + 1 ≥ bi. (57)

We note that the resulting price satisfies all the requirements 35-37 of CE prices and is,

by corollary 2, a minimal CE price: pa + pb = ai + bi + k.

Case II: ∅ /∈ Di(p + 1). Suppose, without loss of generality, that A ∈ Di(p + 1). By

lemma 1, B /∈ Di(p + 1). (The case when B ∈ Di(p + 1), A /∈ Di(p + 1) is analogous.)

Similarly to Case I above, given that all values are even intergers, we obtain AB ∈ Di(p+1).

Hence, Di(p + 1) = {A, AB}. A ∈ Di(p + 1) implies:

ai > p + 1 (58)

bi + k = p + 1 (59)

If follows that ai > bi + k. The auction may follow several scenarios depending on the

demand of bidder j:

1. If ∅ ∈ Dj(p + 1), then the auction stops, and the package AB is allocated to bidder

i. This is Case I considered above.
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2. If ∅ /∈ Dj(p + 1) and B /∈ Dj(p + 1), then either Dj(p + 1) = {AB}, or Dj(p + 1) =

{A, AB} and the price will further rise on item A, but not on B. The following two

points are worth noting. First, for any p̃ = (p̃a, p̃b) such that p̃a > p+1, p̃b = p+1, if

Sj(AB; p+1) > Sj(A; p+1), then Sj(AB; p̃) > Sj(A; p̃). If Sj(AB; p+1) = Sj(A; p+

1), then Sj(AB; p̃) = Sj(A; p̃). That is, bidder j’s preferences between packages A

and AB do not change when the price rises on A, but not on B; this follows from

the relation between j’s surpluses from A and AB identified by conditions 15 and

18. Similarly, bidder i will demand either {A, AB}, or nothing, when the price rises

on A but not on B. (By lemma 1, she will not demand B). Second, since bidder

j still demands package AB at the price (p + 1, p + 1), we obtain, using 59, that

bj + k ≥ p + 1 = bi + k, and hence bj ≥ bi.

There are only three possible cases:

(a) Bidder j keeps demanding AB (and, possibly, A, but not B), until (pa, pb) =

(ai, bi + k). At this point bidder i reports ∅ as part of her demand set, and

the auction stops, with package AB allocated to bidder j. Let us show that

this allocation is efficient. Since AB is demanded by j at the price (pa, pb) =

(ai, bi + k), we have:

aj + bj + k ≥ ai + bi + k (60)

bj + k ≥ bi + k (61)

aj + k ≥ ai. (62)

The above three inequalities imply that it is efficient to allocate package AB to

bidder j, as given by efficiency conditions 24-27. From corollary 2, the resulting

price (pa, pb) = (ai, bi + k) is a minimal CE price.

(b) Bidder j keeps demanding AB and then demands B when the price of A reaches

some level pa, bi + k < pa ≤ ai. At this point the auction stops, with item A

allocated to bidder i at the above price pa, and item B allocated to bidder j at

pb = bi + k. Let us show that this allocation is efficient. Since j demands B at

the price (pa, bi + k), we have:

bj ≥ bi + k (63)

aj + k = pa. (64)

From 64, aj + k = pa ≤ ai, and therefore aj + k ≤ ai. Hence we obtain that

bj > bi +k and ai ≥ aj +k, which are equivalent to the efficiency conditions 28-

32 adopted for the case of two bidders. Hence, the items are allocated efficiently

at the minimal CE price (pa, pb) = (aj + k, bi + k).
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(c) Bidder j keeps demanding AB (and, possibly, A), and then demands ∅ when

the price of A reaches some level pa, bi +k < pa ≤ ai. At this point the auction

stops, with package AB allocated to bidder i at the price (pa, bi + k), where

pa is defined as above. Let us show that such allocation is efficient. Since j

demands ∅ at the price (pa, bi + k), we have:

pa + bi + k = aj + bj + k (65)

pa ≥ aj (66)

bi + k ≥ bj . (67)

Since pa ≤ ai, from 65 we obtain ai + bi ≥ aj + bj . From 66, aj ≤ pa ≤ ai, and

hence aj ≤ ai. Finally, 67 states that bi + k ≥ bj . These inequalities together

establish the efficiency conditions 24-27. From corollary 2, the resulting price

(pa, pb) = (aj + bj − bi, bi + k) is a minimal CE price (note that bj ≥ bi).

3. If ∅ /∈ Dj(p + 1) and B ∈ Dj(p + 1), then the auction stops. Item A is allocated to

bidder i, and item B is allocated to bidder j at prices pa = pb = p+1. To show that

this allocation is efficient, we note that since B ∈ Dj(p + 1), then:

bj ≥ p + 1 (68)

aj + k = p + 1 (69)

From 58 and 59, we know that ai > p + 1 and bi + k = p + 1. Hence, bj ≥ bi + k,

and ai ≥ aj + k, which shows that the conditions 28-32 holds, i.e., the resulting

allocation is efficient. From corollary 2, the resulting price (pa, pb) = (aj + k, bi + k)

is the minimal CE price.

This exhausts all possible honest bidding scenarios for n = 2. �

Unfortunately, the desirable properties of the exact SIMEA do not generalize to the

case of more than two bidders if no additional constraints are imposed on the range of

values of the complementarity term k.5 The following example demonstrates that with

more than two bidders, n > 2, the exact SIMEA mechanism may lead to inefficient

allocations and prices out of equilibrium range.

Example 1 Let there be three bidders, n = 3, and let a1 = b1 = 20, a2 = 36, b2 = 0,

a3 = b3 = 16, and k = 20. Hence it is efficient to allocate both items to bidder 1; from 7-9,
5This is in spite of the fact that the properties of bidder demands as given in lemmas 1-2 and corollary 4

apply irrespective of the number of bidders.
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pa pb max S1(p) D1(p) max S2(p) D2(p) max S3(p) D3(p) O(p)
0 0 60 AB 56 AB 52 AB A,B

...
20 20 20 AB 16 A,AB 12 AB A,B
21 21 18 AB 15 A 10 AB A,B
...
26 26 8 AB 10 A 0 AB,∅ A
27 26 7 AB 9 A 0 ∅ A
...
34 26 0 AB,∅ 2 A 0 ∅ ∅

Table 1: An example of failure of the exact SIMEA mechanism to reach a competitive
equilibrium outcome with three bidders.

the set of CE prices is given by:

56 ≤ pa + pb ≤ 60 (70)

36 ≤ pa ≤ 40 (71)

16 ≤ pb ≤ 40 (72)

Consider the bidding dynamics under the exact mechanism as illustrated in table 1.

All three bidders will initially demand package AB only, and therefore the prices will rise

on both items simultaneously. At pa = pb = 20, bidder 2 switches his demand from AB to

A: S2(AB; p) = S2(A; p) = 16. However, bidders 1 and 3 keep demanding AB only, and

hence the prices rise on both items until they reach pa = pb = 26. At this point bidder 3

reports ∅ ∈ D3(p), given S3(AB; p) = S3(∅; p) = 0, and the price of B stops rising. Now

bidder 1 demands AB, and bidder 2 demands A, hence the price of A keeps rising until

the prices reach the level of pa = 34, pb = 26. At this point S1(AB; p) = S1(∅; p) = 0,

and bidder 1 reports ∅ ∈ D1(p); bidder 2 still demands A, with S2(A; p) = 2. Hence the

auction stops with item A allocated to bidder 2, and item B not allocated; the resulting

prices, (pa, pb) = (34, 26), are out of the equilibrium range: pa < 36.

However, we can show that in the case of a large complementarity, k > v̄, the exact

mechanism performs well with any number of bidders. We first observe the following:

Lemma 3 Suppose the complementarity is large, k > v̄. Then, in the exact SIMEA

mechanism, honest bidders never bid on individual items. That is, for any bidder i ∈ N ,

for any price p that may result from honest bidding, Di(p) ⊆ {AB, ∅}.

Proof As before, we observe that all bidders will initially demand the package AB only,

and therefore the prices will rise on both items simultaneously. Let t be the last iteration

when all bidders demand AB only; let the corresponding price be pt
a = pt

b = p. From 15,
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we obtain bi + k > p for all i ∈ N . Suppose some bidder i demands A when the prices rise

to (p + 1). Then, from 17-18:

ai ≥ p + 1 (73)

bi + k ≤ p + 1. (74)

Hence, ai ≥ bi + k ≥ k > v̄, a contradiction. �

Further, from corollary 1, we know that when k > v̄, packaging of items is always

efficient, and the minimal equilibrium price is equal to the Vickrey price for the package.

Hence we obtain:

Proposition 3 Suppose the complementarity is large, k > v̄. Then for any number of

bidders, n ≥ 2, honest bidding under the exact SIMEA mechanism leads to an efficient

allocation and minimal CE prices:

pa = pb = pV ick
ab /2.

4 Features of the approximate SIMEA meachanism under
honest bidding

The approximate SIMEA mechanism is similar to an English-type open outcry auction, run

simultaneously for both goods. It is completely analogous to the approximate mechanism

in DGS (1986), except that bidders may bid for more than one item at any given time. As

in the “exact” mechanism, the auction starts with an initial price vector (p0
a, p

0
b) = (0, 0)

announced by the auctioneer. At this point any bidder may bid for any item or items,

which means she commits herself to possibly buying the items at the announced prices;

the items are temporarily assigned to this bidder. Then any uncommitted bidder may (i)

bid for some unassigned item(s), in which case she becomes committed to them at their

initial prices; (ii) she may bid for assigned items, in which case she becomes committed

to them, and their prices increase by a fixed amount δ each; or (iii) she may drop out of

the bidding. The auction stops when there are no more uncommitted bidders, at which

point each committed bidder buys the items assigned to her at their current prices (see

also DGS, p. 867).6

DGS show that in their setting, the approximate mechanism leads to prices arbitrary

close to the minimal equilibrium prices, provided that the bid increment δ is set small
6This mechanism is also analogous to the simultaneous ascending bid auction described by BL (1999),

except that the bidders here are constrained to bid up by a fixed increment δ.
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enough. We demonstrate that generally this is no longer true for our setting. In the

presence of complementarities, the approximate mechanism occasionally suffers from an

exposure problem (Bykowsky et al., 2000), which may lead to prices above the competitive

equilibrium levels, bidder losses, and inefficient allocations. However, we show that this

can never happen when complementarities are large, k > v̄. Further, the results of our nu-

merical simulations indicate that even with moderate complementarities, the occurrences

of bidder losses are rare, and in most cases the approximate mechanism leads to efficient

allocations and prices close to the minimal CE prices.

The exposure problem arises under the approximate mechanism because, unlike the

exact mechanism, as part of the procedure bidders have to commit themselves to possibly

buying the items at the announced prices. In the presence of complementarities, a bidder

often needs to bid above the stand-alone value of objects to obtain the package, which

may lead to “mutually destructive bidding” and generate losses when the desired packages

do not materialize (Bykowsky et al., 2000; Kagel and Levin, 2001).7

Bykowsky et al. discuss two types of problems that may arise in environments with

complementarities under simple (non-combinatorial) auction procedures similar to the

approximate mechanism. First, if bidders have to bid above items’ stand-alone values to

obtain packages, they may drop out of bidding early due to the fear losses, and the efficient

equilibrium may not be reached. However, this is not a problem if bidders are not afraid

of financial exposure (in particular, if they bid honestly). Second, in some environments

the competitive equilibrium may not exist at all, and it may be impossible to reach an

efficient allocations via a non-combinatorial auction without inflicting losses on bidders.

In our setting, the first problem is ruled out because we assume that bidders bid honestly

and therefore do not suffer from loss avoidance; the second problem is ruled out because

the competitive equilibrium exists (proposition 1). However, we show that even when the

competitive equilibrium exists and bidders bid honestly, the approximate mechanism may

lead to prices above the CE levels and bidder losses.

Example 2 Consider the following example. Let there be two bidders, n = 2, and

let a1 = 21, b1 = 64, a2 = 20, b2 = 99, and k = 30. Efficiency prescribes allocating

both items to bidder 2; the minimal CE prices are given by: pa ∈ [21, 50], pb ∈ [65, 94],

with pb = 115 − pa, and the maximal CE prices are pa ∈ [21, 50], pb ∈ [90, 119], with

pb = 140 − pa. Consider the bidding dynamics under the approximate mechanism with

the bid increment δ = 1. Here we assume that bidders bid in the most aggressive manner
7Kagel and Levin find that the exposure problem is quite strong in experimental ascending auctions

with homogeneous goods and variable complementarities. Kwasnica and Sherstyuk (2000) do not observe
bidder losses in their experimental markets with common complementarities, but they report significant
underbidding which may be due to the fear of such losses.
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round pa pb µa µb bidder S(AB) S(A) S(B) S(∅) BidA BidB
1 0 0 0 0 1 113 20 63 0 yes yes
2 1 1 1 1 2 145 18 97 0 yes yes
3 2 2 2 2 1 109 18 61 0 yes yes
4 3 3 1 1 2 141 16 95 0 yes yes

...
20 19 19 1 1 2 109 0 79 0 yes yes
21 20 20 2 2 1 73 0 43 0 yes yes
22 21 21 1 1 2 105 -2 77 0 yes yes
23 22 22 2 2 1 69 -2 41 0 yes yes
...
48 47 47 1 1 2 53 -28 51 0 yes yes
49 48 48 2 2 1 17 -28 15 0 yes yes
50 49 49 1 1 2 49 -30 49 0 yes yes
51 50 50 2 2 1 13 -30 13 0 yes yes
52 51 51 1 1 2 45 -32 47 0 no yes
53 51 52 1 2 1 11 -30 n/a n/a holds yes
54 51 53 1 1 2 43 -32 45 0 no yes
...
63 51 62 1 2 1 1 -30 n/a n/a holds yes
64 51 63 1 1 2 33 -32 35 0 no yes
65 51 64 1 2 1 -1 -30 n/a n/a holds yes
66 51 65 1 1 2 31 -32 33 0 no yes
...
92 51 91 1 1 2 5 -32 7 0 no yes
93 51 92 1 2 1 -29 -30 n/a n/a holds yes
94 51 93 1 1 2 3 -32 5 0 no yes
95 51 94 1 2 1 -31 -30* n/a n/a holds* no
96 51* 94* 1 2 2 3 n/a 5* n/a no holds*

Table 2: An example of bidder loss under honest bidding in the approximate mechanism.
Bidder values are a1 = 21, b1 = 64, a2 = 20, b2 = 99, and k = 30.

consistent with honest bidding, i.e., they bid on both A and B whenever AB is in their

demand set. However, it is easy to check that the bidding dynamics and the resulting

prices and allocations would stay essentially the same if bidders bid less aggressively (i.e.,

bid on an individual item whenever the item and the package are both in the demand

set), or the bid increment is reduced (e.g., δ = 0.5 or δ = 0.1). The bidding dynamics is

illustrated in table 2. Since under the approximate mechanism the two bidders will take

turns bidding, the bidding may be described in rounds. For each round, the table shows

the current prices, pa and pb; assignments, µa and µb
8; the bidder whose turn it is to bid;

this bidder’s resulting surpluses from each package if she acquires this package; and the

bidder’s decision whether to bid or not on each item (“holds” indicates that the bidder is
8µa = µb = 0 in the first round indicates that both items are initially unassigned; µv = i in the later

rounds indicates that item v is currently assigned to bidder i.
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currently committed to the item).

The bidding starts with both bidders bidding for both items in pursuit of the package

AB; the prices increase accordingly. Note that the bidders continue bidding in this way

even when the price of one of the items, A, exceeds its stand-alone value (rounds 23 and

22, for bidders 1 and 2, respectively), and bidders become exposed to financial losses.

At round 52, the prices reach the levels where bidder 2 finds most profitable bidding on

item B only (S2(B) = 47 > 45 = S2(AB)); she therefore drops out of bidding on A.

Bidders 1 then appears “stuck” with A, and keeps on bidding on B in an attempt first to

avoid the loss from holding A alone (rounds 53-63), and later to minimize the loss from

packages he may be committed to buy (rounds 65-93). The auction stops at round 95

when the price of B rises to the level where buying AB for bidder 1 would mean even a

greater loss of 31 than the loss of 30 from holding A alone. The resulting prices, bidder

surpluses and allocations are marked with asterisks in the table. We note that the prices

exceed the CE prices, pa + pb = 51 + 94 = 145 > 140, the joint bidder surplus is negative,

S1(B) + S2(A) = 5 − 30 = −25, and the resulting allocation is inefficient: bidder 1 buys

item A, and bidder 2 buys item B.

It therefore appears that the exposure problem may be quite severe even in a simple

two-object two-bidder setting with common additive complementarity. However, we note

the following. First, the reasoning behind Lemma 3 and Proposition 3 fully applies to

the approximate mechanism, and hence we obtain that when complementarities are large,

k > v̄, the exposure problem never emerges, and the approximate mechanism leads to

prices essentially equal to the minimal CE price.9 Further, results of our numerical simu-

lations indicate that even when the complementarity is moderate, 0 < k < v̄, the exposure

problem emerges quite rarely. Table 3 reports the results of numerical simulations of hon-

est bidding with two bidders and the bid increment δ = 1 when bidder values are drawn

independently from the uniform distribution, vi ∼ U [0, 100], for k ∈ {10, 20, ..., 90, 101}.

For every value of k, the resulting prices, on average, are very close to the minimal CE

price; over 90% of allocations are efficient. The maximal price deviation and maximal

bidder loss never exceed the value of the complementarity term k, and the exposure prob-

lem is the most noticable, both in terms of frequency and the size of bidder losses, when

complementarities are small to intermediate in values, 30 ≤ k ≤ 50.10 Additional nu-
9BL show that with large complementarities, the honest bidding strategy profile forms a PBE in the

simultaneous ascending bid auction; this leads to an efficient allocation and Vickrey price for the package.
See also footnote 2.

10The latter observation is interesting in relation to the discussion of the exposure problem in FCC
auctions. Ausubel et al. (1997) argue that the exposure problem in FCC auctions was not severe since
the synergiesies were small. We find that in our setting, the exposure problem is most likely to surface
precisely in the case of small to moderate synergies.
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number % efficient Price deviation from minCE % obs. Max loss
k of obs. allocations mean min max with losses per bidder
10 1000 95.5 1.09 -1 10 4.8 10
20 1000 92.8 1.42 -1 20 7.6 20
30 1000 93.3 1.31 -1 30 6.8 30
40 1000 93.6 1.17 -1 34 6.1 34
50 1000 95.1 1.22 -1 32 5.3 32
60 1000 97.6 0.74 -1 31 2.2 31
70 1000 98.3 0.66 -1 14 1.4 14
80 1000 99.3 0.5 -1 9 0.3 9
90 1000 99.4 0.49 -1 6 0.1 6
101 1000 99.5 0.44 -1 2 0 0

Table 3: Results of numerical simulations of the approximate mechanism with two honest
bidders. Bidder values are drawn from the uniform distribution on [0, 100].

merical simulations conducted with five bidders indicate that increasing the number of

bidders neither aggravates nor eliminates the problem. It appears that the disequilibrium

problems of the SIMEA mechanisms manifest themselves quite infrequently, and, overall,

the mechanisms perform quite well in terms of both prices and efficiency.

5 Conclusions

We have demonstrated that the competitive equilibrium exists in a simple class of envi-

ronments with two indivisible objects and a common additive complementarity in bidder

valuations between the objects. This raises an interesting question on whether the equi-

librium existence may be established in a more general framework with positive comple-

mentarities. An obvious way to proceed is to allow a certain degree of variability in the

complementarity term across bidders (as in BL), and to further generalize the setting to

more than two objects. Such generalizations lead to quite complex problems which are

beyond the scope of this paper.

We have also investigated to what extent simple non-combinatorial auctions may be

able to implement competitive equilibrium outcomes in environments with common addi-

tive complementarity if bidders follow honest bidding rules. Here our findings generally

support the viewpoint that applicability of such mechanisms in environments with com-

plementarities is limited. A variation of the simultaneous English auction mechanism

will lead to a competitive equilibrium outcome if there are only two bidders, or if the

complementarity between objects is large enough to ensure that package bidding always

dominates bidding for individual objects. However, in more general cases such auction

may occasionally result in disequilibrium prices and allocations. Even though our nu-

merical simulations indicate that such disequilibrium outcomes may be quite rare, the
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simultaneous English auction mechanism is not guaranteed to perform well in every case.

Further, the problems may become more severe in more general environments. Our results

therefore suggest that simultaneous English auctions may be used in environments with

complementarities if simplicity of the auction is a major concern and occasional failures of

the mechanism are admissible. In situations where achieving the efficient equilibrium out-

come is critical, mechanism designers should turn to more complex combinatorial auctions

that would allow for package bidding (such as in Bykowsky et al., 2000).
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