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Abstract 

 
We consider the identification of state dependence in a dynamic Logit model with 
timevariant transition probabilities and an arbitrary distribution of the unobserved 
heterogeneity. We derive a simple result that allows us to test for the presence of state 
dependence in this model. Monte Carlo evidence suggests that this test has desirable 
properties even when there are some violations of the model’s assumptions. We also 
consider alternative tests for state dependence that will have desirable properties only 
when the transition probabilities do not depend on time and provide evidence that there is 
an “acceptable” range in which ignoring time-dependence does not matter too much. We 
conclude with an application to the Barker Hypothesis. 
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1 Introduction

Economic data often display serial correlation. This is true in the case of labor force partic-

ipation, accident occurrence and numerous measures of health. However, the source of this

persistence is often unclear. One possibility is an unobserved time-invariant propensity to ex-

perience a given economic outcome or unobserved heterogeneity. Another potential source is

that experiencing a particular event today may alter a person’s preferences or opportunities and,

thus, impact the probability that the same event will occur in the future. Heckman (1981) refers

to this second source of the persistence as “true state dependence.” Identification of true state

dependence is of particular interest to social scientists because its presence implies that policies

that impact an economic outcome today will have dynamic consequences.

Because of this, econometricians have devoted much time and effort towards the identification

of state dependence. Much of this work has used random effects estimators in which the re-

searcher specifies a distribution for the heterogeneity and then maximizes a parametric likelihood

function. However, this approach is limited as it imposes ad hoc distributional assumptions on

the data. More recently, Honoré and Kyriazidou (2000) have relaxed the assumptions of the

random effects approach and developed a fixed effects estimator for a discrete choice model

with lagged dependent variables and unobserved heterogeneity. Their approach builds upon

the conditional Logit model of Chamberlain (1985) and, thus, imposes no assumptions on the

distribution of the heterogeneity.

The Honoré and Kyriazidou estimator requires conditioning on subsets of the data for which
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the exogenous regressors are equal in at least two separate time periods. While this is certainly

a weakness of the estimator, Hahn (2001) and Honoré and Tamer (2006) have speculated that

this conditioning procedure is unavoidable and that point estimation of the model’s parameters

is impossible without it. Nevertheless, this procedure has an undesirable property in that it

precludes the use of many explanatory variables such as age, cohort and/or time effects. Poten-

tially, this is a major drawback since many economic outcomes including labor force participation

and health vary with age.

In this paper, we present a simple result that allows us to detect state dependence in the

presence of time-varying transition probabilities. We then go on to show how this result can be

used to derive a consistent test for the presence of state dependence in Section 3. In Section 4,

we conduct Monte Carlo experiments which suggest that there is an “acceptable” range of time

dependence in which ignoring age or time effects does not matter too much. In this section, we

also show that the test statistic still performs well even when some of the underlying assumptions

of the model fail, although we also show that an egregious violation of the model’s assumption

of exogenous initial conditions will result in poor performance. In Section 5, we employ our test

statistic to better understand the persistence of health. Section 6 concludes.

2 A Very Simple Result

In this section, we establish a simple result that allows us to identify the sign of state dependence

when the underlying process has time-variant transition probabilities. We let {yi,t}Tt=0 denote a

sequence of binary outcomes such that yi,t ∈ {0, 1}. We assume that the data are generated by

the following binary choice model:
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yi,t = 1(αi + yi,t−1γ + ft(xi,t) + εi,t ≥ 0) (1)

for i = 1, ..., N and t = 1, ..., T . In equation (1), αi is an unobserved individual-specific effect, γ

is the state-dependence coefficient, xi,t is a vector of strictly exogenous regressors and εi,t is an

unobserved error term. If γ > 0 (γ < 0), then the process {yi,t}Tt=0 exhibits positive (negative)

state dependence. We allow ft(xi,t) to be a time-varying function of the strictly exogenous

regressors. If xi,t is a constant then ft(xi,t) simply becomes a time dummy (i.e ft(xi,t) = δt).

We assume that εi,t is i.i.d. across time, is independent of the vector (αi, xi,1, ..., xi,T , yi,0) and

follows the Logistic distribution which we denote by Λ(h) ≡ P (εi,t ≤ h). Finally, we assume

that we observe i.i.d. draws of (yi,T , ..., yi,0, xi,T , ..., xi,1) from some underlying population.

To derive our identification result, we define the events:

A1 = {yi,2 = 0, yi,1 = 1, yi,0 = 1};A2 = {yi,2 = 1, yi,1 = 0, yi,0 = 1} (2)

B1 = {yi,2 = 0, yi,1 = 1, yi,0 = 0};B2 = {yi,2 = 1, yi,1 = 0, yi,0 = 0} (3)

As it turns out, there is a “difference-in-difference” intuition behind choosing these four events.

First, we will show that we will be able to bound an estimable function of the events A1 and A2

by a number which does not depend on αi. This is the first “difference.” A similar argument

holds for the events B1 and B2. However, while this bound will be purged of the heterogeneity,

it will still depend on ft(xi,t) which is an unknown function. Thus, the second “difference” will

subtract the function of A1 and A2 from B1 and B2 to eliminate the dependence on ft(xi,t). We

now make these arguments formal.
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We begin the derivation by noting that, for γ ≥ 0, the assumptions of the model are sufficient

to show that

P (A1|xi, αi)

P (A2|xi, αi)
=

(1− Λ(αi + γ + f2(xi,2)))Λ(αi + γ + f1(xi,1))

Λ(αi + f2(xi,2))(1− Λ(αi + γ + f1(xi,1)))

≥ (1− Λ(αi + γ + f2(xi,2)))Λ(αi + γ + f1(xi,1))

Λ(αi + γ + f2(xi,2))(1− Λ(αi + γ + f1(xi,1)))
(4)

= exp(f1(xi,1)− f2(xi,2)).

where xi ≡ (xi,1, xi,2). Similarly, for γ ≥ 0, we will also have that

P (B1|xi, αi)

P (B2|xi, αi)
=

(1− Λ(αi + γ + f2(xi,2)))Λ(αi + f1(xi,1))

Λ(αi + f2(xi,2))(1− Λ(αi + f1(xi,1)))

≤ (1− Λ(αi + f2(xi,2)))Λ(αi + f1(xi,1))

Λ(αi + f2(xi,2))(1− Λ(αi + f1(xi,1)))
(5)

= exp(f1(xi,1)− f2(xi,2)).

In the presence of negative state dependence, the inequalities in (4) and (5) are reversed. The

inequalities in (4) and (5) provide bounds which are independent of the heterogeneity and, thus,

constitute the first “difference.” Next, denoting Π(xi) ≡ [1 + exp(f2(xi,2)− f1(xi,1))]
−1, we will

have that

P (A1|A1 ∪A2, xi, αi) ≥ Π(xi) ≥ P (B1|B1 ∪B2, xi, αi) for γ ≥ 0 and all αi (6)

P (A1|A1 ∪A2, xi, αi) ≤ Π(xi) ≤ P (B1|B1 ∪B2, xi, αi) for γ ≤ 0 and all αi. (7)

Clearly, when there is no state dependence, the model becomes the static conditional Logit model

and (4), (5), (6) and (7) will hold with strict equality. The system of inequalities in equations
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(6) and (7) shows we how can construct bounds that do not depend on ft(xi,t) and, thus, provide

us with the second “difference.”

We can further expand upon the intuition behind using the two sets of events (A1, A2) and

(B1, B2). First, both sets of events contain the same initial condition which enables us to purge

the ratios in (4) and (5) of the probability of yi,0. Second, the sum, yi,0 + yi,1 + yi,2, is the same

for both events in the pairs (A1, A2) and (B1, B2). For the pair (A1, A2), it is two and for the

pair (B1, B2), it is unity. However, the sum is never zero or three. Thus, if no state dependence

is present then the model simply becomes the static conditional Logit model and yi,0+ yi,1+ yi,2

serves as a sufficient statistic for the unobserved heterogeneity.

Finally, note that all of our statements, thus far, have been conditional on the unobserved het-

erogeneity. This poses problems because, while the probabilities P (A1|A1∪A2, xi) and P (B1|B1∪

B2, xi) can easily be estimated non-parametrically, the probabilities P (A1|A1 ∪ A2, xi, αi) and

P (B1|B1 ∪ B2, xi, αi) cannot be estimated as they depend on αi. However, it is important to

note that Π(xi) provides both an upper and a lower bound on the unobserved probabilities for

all values of αi and only varies across individuals through observables (i.e via xi). Accordingly,

we can make a statement that is no longer conditional on the heterogeneity by integrating out

αi.1 This gives us Proposition 1 which is our key result.2

1To see this formally, let G(αi|A1 ∪ A2, xi) denote the distribution of the heterogeneity conditional on (A1 ∪
A2, xi) and let F (αi|B1 ∪B2, xi) denote the distribution of the heterogeneity conditional on (B1 ∪B2, xi). The
inequalities in (6) and (7) imply that

P (A1|A1 ∪A2, xi) =
Z

P (A1|A1 ∪A2, xi, αi)dG(αi|A1 ∪A2, xi) ≥ Π(xi) for γ ≥ 0

and

P (B1|B1 ∪B2, xi) =
Z

P (B1|B1 ∪B2, xi, αi)dF (αi|B1 ∪B2, xi) ≤ Π(xi) for γ ≥ 0.

These inequalities will be strict inequalities when γ > 0, but will hold with equality when γ = 0. When γ < 0,
the inequalities will be reversed.

2One remaining question is whether or not the logistic assumption is necessary, in addition to sufficient for
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Proposition 1 Assume that the data generating process for {yi,t}2t=0 is given by equation (1)

and that εi,t is Logistically distributed and independent of (αi, yi,0, xi). Then we will have that

P (A1|A1 ∪A2, xi) R P (B1|B1 ∪B2, xi) for γ T 0.

3 The Test Statistic

It is a straightforward exercise to use the result of the previous section to derive a consistent

test for the presence of state dependence. While it is fairly obvious from Proposition 1 how this

can be done simply by constructing a test of a difference in means, we still provide the details

for the sake of completeness. To keep matters simple, throughout the remainder of the paper,

we consider the case where the only elements of xi,t are time dummies so that f1(xi,1) = δ1 and

f2(xi,2) = δ2. In this section, we provide the main ideas behind the test. In the appendix, we

provide a more detailed argument for this section’s proposition.

We start out by defining 1i (A1) and 1i (A1 ∪A2) to be indicators which are turned on when

the eventsA1 andA1∪A2 occur for individual i. We can estimate the probability P (A1|A1∪A2) ≡

our results to obtain. Recent work by Magnac (2004) and older work by Chamberlain (1992) sheds light on this
issue. In these papers, it is shown that, in a static binary choice model with unbounded exogenous covariates,
the only distribution function such that εi,t is independent across time and such that the sum of the binary
variables is sufficient for αi is the logistic distribution. This, in turn, implies that the logistic assumption would
also be necessary for our results to hold provided that some element of xi,t has unbounded support. The reason
is that our results depend crucially on the existence of a sufficient statistic for the heterogeneity when no state
dependence is present since the sufficient statistics allow us to separate the probabilities P (A1|A1∪A2, xi, αi) and
P (B1|B1 ∪ B2, xi, αi) with Π(xi) which does not depend on αi. Accordingly, without the logistic assumption,
it is not be possible to separate these probabilities with a constant that does not depend on the unobserved
heterogeneity.
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πA(γ) via

bπA =
NP
i=1

1i (A1)

NP
i=1

1i (A1 ∪A2)
. (8)

We define bπB, the estimate of P (B1|B1∪B2) ≡ πB(γ), in an analogous way. Clearly, equation (8)

can easily accommodate discrete regressors simply by counting the number of times the events

A1 and A1 ∪ A2 occur among the sub-population for whom xi takes on some discrete value.3

Next, we let bπA1 and bπA12 denote estimates of P (A1) and P (A1 ∪A2). We define bπB1 and bπB12
in a similar fashion. In the appendix, we show that the asymptotic variances of bπA and bπB can
be estimated with

bσ2A = bπA1bπ3A12 (bπA12 − bπA1) (9)

and

bσ2B = bπB1bπ3B12 (bπB12 − bπB1) . (10)

In the appendix, we also show that the covariance between bπA and bπB is zero. We now define
the statistic

sd(γ) =
bπA − bπBµbσ2AB
N

¶1/2 (11)

3The probabilities P (A1|A1 ∪ A2, xi) and P (B1|B1 ∪ B2, xi) can also be estimated non-parametrically when
xi,t is continuous via kernel or sieve estimation. However, because xi = (xi,1, x,2), the dimension of the estimated
expectation will be twice the dimension of xi,t and, thus, the “curse of dimensionality” is likely to be a major
problem with continuous regressors.
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where bσ2AB ≡ bσ2A + bσ2B. Next, we note that
sd(γ) =

√
N

⎛⎜⎜⎜⎝
µbπA − πA(γ)bσAB

¶
| {z }

XN (γ)

−
µbπB − πB(γ)bσAB

¶
| {z }

YN (γ)

+

µ
πA(γ)− πB(γ)bσAB

¶
| {z }

ZN (γ)

⎞⎟⎟⎟⎠ . (12)

In the appendix, we show that
√
N(XN(γ) − YN(γ)) will converge in distribution to a N(0, 1)

random variable regardless of the values of (γ, δ2, δ1). However, Proposition 1 tells us that

ZN(γ) will only be zero when γ = 0; otherwise, it will be positive when γ > 0 and negative when

γ < 0. Consequently, sd(γ) will converge to a Standard Normal random variable when no state

dependence is present, but will explode otherwise. This gives us Proposition 2.

Proposition 2 Under the hypotheses of Proposition 1, we will have that

sd(γ)
d→ N(0, 1) for γ = 0.

and

sd(γ)→ ±∞ for γ ≷ 0.

Proposition 2 can easily be used to construct a one-sided test of size ϕ of H0 : γ = 0 against

Ha : γ > 0. Particularly, if we let Φ(.) denote the CDF of a N(0, 1) random variable and

define zϕ ≡ Φ−1(1 − ϕ), then a test of size ϕ can be constructed if we reject the null whenever

sd(γ) > zϕ. Because sd(γ) shoots off to positive infinity whenever γ > 0, the power of this test
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will approach unity as the sample size increases. Thus, we have a consistent test.4

4 Monte Carlo Evidence

In this section, we investigate the performance of three tests for state dependence using Monte

Carlo experiments. The first is based on the statistic sd(γ) from the previous section. The

second is based on the statistic

sdA(γ) ≡
bπA − 1

2µbσ2A
N

¶1/2 (13)

and the third is based on the statistic

sdB(γ) ≡
bπB − 1

2µbσ2B
N

¶1/2 . (14)

Note that the last two statistics will provide us with a consistent test for state dependence only

if the transition probabilities do not depend on time or equivalently if δ1 = δ2. In such a

scenario, we will have that πA(0) = 1
2
= πB(0), but πA(γ) > 1

2
> πB(γ) for γ > 0. However, if

the transition probabilities do depend on time, then these tests will have undesirable properties

which we will see later on in this section.

The goals of the Monte Carlo exercises in this section are threefold. First, we want to

better understand how time-variant transition probabilities will affect our ability to detect state

4In the presence of a vector of strictly exogenous regressors, we can use the statistic in this section as an ad
hoc specification test. The reason is that the inequality in Proposition 1 must hold for all xi. Accordingly, if
we find that the statistic sd(γ) is positive and significantly different from zero for some values of xi, but negative
and significantly different from zero for other values of xi, then it would suggest that the model in equation (1)
may not be appropriate for all the possible values of xi. Rather it may suggest that a more complicated model in
which the state dependence parameter depends on the strictly exogenous regressors is a more appropriate model
for the data. I am grateful to an anonymous referee for pointing this out.
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dependence in a finite sample. Second, we want to explore how a mis-specification of the

distribution for εi,t will affect the properties of tests based on sd(γ). Third, we want to investigate

the performance of our statistic as the sample size becomes small.

To accomplish these ends, we generate data from the model

yi,1 = 1(αi + εi,0 ≥ 0) (15)

and

yi,t = 1(αi + yi,t−1γ + ρ ∗ t/10 + εi,t ≥ 0) for t = 1, 2. (16)

The residual, εi,t, is i.i.d. across time and, in most of the exercises, is independent of αi. We

experiment with different distributional assumptions on εi,t such as the Logistic as well as Normal

distributions both with and without exogenous initial conditions. We allow αi to take on values

in {−0.75, 0, 0.75} with equal probability. We simulate the model 1000 times and use a sample

size of N = 1500 for all but the last three experiments. For each simulation, we consider a

test of H0 : γ = 0 against Ha : γ > 0. We calculate the power functions for each of the three

statistics for different values of ρ. Each figure plots the percentage of times that the test statistic

surpasses the 95% critical value as a function of the parameters γ and ρ. Figures 1 through 12

each correspond to a separate experiment.

First, we consider Figures 1 through 3. In Figure 1, we plot the power function for a test

that uses sd(γ), the test statistic from the previous section. We allow ρ to vary between 0.0 and

1.0 in increments of 0.25 and we assume Logistic disturbances. As can be seen in the figure, the

test has desirable properties. However, this is not too surprising since everything is correctly
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specified. In Figures 2 and 3, we plot the respective power functions for sdA(γ) and sdB(γ) using

the same values of ρ that were used in Figure 1 and, once again, assuming Logistic disturbances.

Both figures show that these alternative tests have desirable properties when ρ = 0, but when ρ

is large, the properties of the tests become highly undesirable.

However, this is not too surprising given that we are allowing ρ to take on rather large values.

Perhaps a more interesting exercise would be to investigate the properties of sdA(γ) and sdB(γ)

when we confine ρ to values between 0.0 and 0.20 so that the transition probabilities only have

a small degree of time dependence. We report the results of this exercise in Figures 4 and 5 for

sdA(γ) and sdB(γ), respectively. Once again, we have assumed Logistic disturbances. What

we now see is that these alternative tests have far better properties than before. This suggests

that ignoring time-dependent transition probabilities may not matter too much provided that

the degree of time dependence is small.5

We now investigate the properties of sd(γ) when the distribution of εi,t is mis-specified. We

consider four different mean zero Normal distributions with variances equal to π2/3, 1, 1yi,051−yi,0

and 2.5yi,03.51−yi,0 . The results of these exercises are reported in Figures 6 through 9 for each of

the respective distributions.6 Note that the initial condition is no longer exogenous in the last

two distributions. In Figure 6, we see that our test still has desirable properties. However, this

is not too surprising since this distribution is very close to a Logistic distribution. In Figure

7, we assume a Standard Normal distribution for the residuals. We still see that the test has

5These two simulations suggest an ad hoc criterion to use when deciding whether or not the Honoré and
Kyriazidou estimator is appropriate in which the dependent variable should be regressed on a time trend (divided
by ten). If the parameter estimate is less than 0.2, then we hypothesize that the performance of the dynamic
conditional Logit model may not be too bad. An interesting exercise would be to investigate this hypothesis
using Monte Carlo experiments.

6The initial condition in for the simulations in each of these figures was generated using a normal distribution
with mean zero and variance π2/3.
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desirable properties which, perhaps, is slightly more surprising. In Figure 8 and 9, we allow for

heteroskedasticity. In Figure 8, where the variance of the residual is 1yi,051−yi,0, we now see that

the desirable properties of the test are starting to break down. In Figure 9, we allow for a more

muted degree of heteroskedasticity and allow the variance of the residual to be 2.5yi,03.51−yi,0 .

We observe, once again, that the properties of the test are desirable.

These experiments suggest that heteroskedasticity of the form discussed above is a potentially

large threat to the performance of the test statistic from Section3. This is not too surprising since

it violates the assumption that the disturbances must be independent of the initial condition.

When the variance of the residual depends on the initial condition, the probabilities πA(γ) and

πB(γ) will be generated by two distinct data generating processes. Thus, under the null of

no state dependence, these two probabilities are apt to be quite different from each other and,

consequently, we would expect the performance of the test statistic to be poor.

We conclude the Monte Carlo exercises by investigating the impact of smaller sample sizes

on the performance of sd(γ). In Figures 10 through 12, we allow the sample size to be 1000,

500 and 250, respectively. In all three figures, we assume Logistic disturbances. We see that

the test still performs well when the sample size is 1000. However, when the sample sizes are

either 500 or 250, the power of the test is diminished substantially.

5 Empirical Application: The Barker Hypothesis

In this section, we use our test for state dependence to better understand the determinants of

adult health. Health provides us with an excellent application since it is persistent and its

transition probabilities are highly dependent on age. Following Halliday (2005), we decompose
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the persistence of health into two components: state dependence and unobserved heterogeneity.

If the former source of persistence is important then idiosyncratic shocks to health today will

have large dynamic consequences. If the latter source is important then an adult’s health is

primarily determined by unobserved individual characteristics. This would lend credence to the

Barker Hypothesis (1997) which states that health in adulthood is to a large degree determined

by events that have occurred in early childhood and, perhaps, in utero. Recent work by Almond

(2006) and Case, Lubotsky and Paxson (2004) has provided considerable evidence in favor of

these early childhood factors. On the other hand, a relatively important role for state dependence

would suggest that adult health is largely determined by idiosyncratic events that have occurred

in adulthood.

The two different sources of persistence have different implications for how health policy

should be conducted. If unobserved heterogeneity is relatively more important then policy

should focus on pregnant mothers and young children. However, in such a scenario, interventions

that target adults will not have large impacts on health. On the contrary, a large role for state

dependence suggests that health policy can still target adults and have large effects on societal

health.

The data that we employ come from the years 1984 to 1997 of the Panel Study of Income

Dynamics (PSID). Our measure of health is Self-Reported Health Status (SRHS) which is a

categorical variable that takes on integer values between one and five. One is the best category

and five is the worst category. We map SRHS into a binary variable that equals one when SRHS

is either four or five, but is otherwise zero. While these data are subjective, Halliday (2006)

has shown that they are highly informative of mortality in the PSID. We use data on people
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between ages 30 and 32 and ages 50 and 52. We calculate the statistics by gender, by age and

by race.

We report the results of calculating the statistics sd(γ), sdA(γ) and sdB(γ) in Table 1. We

report the latter two statistics to see what happens if a researcher uses tests that only have

desirable properties if the transition probabilities do not depend on time. In addition, we report

NA and NB which are the number of times that the events A1 ∪ A2 and B1 ∪ B2 occur in our

sub-samples. We call these numbers the “effective” sample sizes. These numbers are important

because they will have a large impact on the power of our test. The results of this exercise

reveal several interesting findings.

First and perhaps most importantly for applied researchers, is that, despite having more than

500 individuals in most of our sub-samples, the “effective” sample size is very low. For example,

we see that for white men between ages 30 and 32, A1∪A2 is only observed 12 times and B1∪B2

is only observed 35 times. These small “effective” sample sizes suggest that the test statistic

may have low power.

To better understand how low the power of the test might be, we conduct some simple

calculations and refer back to Figure 11 and 12 from the Monte Carlo experiments. If we

simulate the model in equations (15) and (16) five times with Logistic disturbances and the same

distribution for αi that we assumed in Section 4, we obtain average values for NA and NB of

74.6 and 91.8 when γ = 1.0, ρ = 0.6 and N = 500. When N = 250 and for the same parameter

values, the average values of NA and NB drop to 36.6 and 41.4. The values of NA in Table 1

for the pooled samples (i.e. those that are not stratified by race) are broadly consistent with the

simulations when N = 250, whereas the values of NB for the pooled samples are closer to the
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simulations when N = 500. Accordingly, we would expect the power of sd(γ) in this application

to be somewhere between the power functions which are depicted in Figures 11 and 12 which is

not terribly high.

Second, looking at the statistics that are calculated with the sub-sample that pools all races,

we do not find strong evidence for state dependence. The only significant evidence of positive

state dependence is for men between ages 30 and 32. All other statistics cannot reject the null

of no state dependence. However, it is important to emphasize once again that the “effective”

sample sizes are still on the low end. It is also important to mention that the calculation

of sdB(γ) for women between ages 30 and 32 rejects the null of no state dependence, whereas

the calculation of sd(γ) does not which suggests that tests that are not robust to time-variant

transition probabilities may yield incorrect conclusions.7

6 Conclusions

In this paper, we explored the identification of state dependence in the presence of time-variant

transition probabilities. We presented a very simple result that allows us to detect state depen-

dence in the dynamic conditional Logit model with fixed effects. We then showed how it is a

straight-forward exercise to use this result to derive a test for the presence of state dependence

when age or time effects are present. We conducted Monte Carlo experiments that suggested

that this test statistic still has nice properties when some of the assumptions of the model fail.

7The findings in Table 1 are consistent with results in Halliday (2005) who adopts a random effects approach
to estimate a model of health dynamics similar to equation (1). While he did find that the estimates of the
state dependence parameters were statistically different from zero, he also showed that the difference between
the probabilities Λ(αi + γ + ft(xi,t))− Λ(αi + ft(xi,t)) was quite small for a large percentage of the population.
In addition, he found that there was a lot of variation in the distribution of the heterogeneity suggesting an
important role for unobservables.
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We also provided evidence that ignoring time effects may not matter too much provided that

the degree of time dependence is modest. We concluded by using our test statistic to better

understand the persistence of health. The test did not uncover evidence of state dependence in

health. However, we are careful to subject the reader to the caveat that the power of the test

in this application is likely to be low.

One future research avenue that is suggested by this note is an investigation into whether or

not it is possible to point-estimate the parameters of a dynamic binary choice model when the

underlying process is non-stationary and without imposing assumptions on the heterogeneity.

Recent work by Honoré and Tamer (2006) sheds some light on this issue. In their paper, they

construct bounds on the parameters of the model in equation (1). While the identified regions

in their exercise are often small, they are never singletons. This suggests that the matching

strategy of Honoré and Kyriazidou (2000) is essential for point-identification and, thus, that it

is not possible to point-estimate the parameters of such a model.

7 Appendix - Proof of Proposition 2

Proof. We begin by defining πA1 ≡ P (A1), πA12 ≡ P (A1 ∪ A2), πB1 ≡ P (B1) and πB12 ≡

P (B1∪B2). By the Central Limit Theorem and using the notation from the body of the paper,
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we will have that

√
N

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

bπA1 − πA1

bπA12 − πA12

bπB1 − πB1

bπB12 − πB12

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
d→ N

⎛⎜⎜⎝0,
⎛⎜⎜⎝ ΣA ΣAB

Σ0
AB ΣB

⎞⎟⎟⎠
⎞⎟⎟⎠ . (17)

where

ΣA ≡

⎛⎜⎜⎝ πA1(1− πA1) πA1(1− πA12)

πA1(1− πA12) πA12(1− πA12)

⎞⎟⎟⎠ , (18)

ΣB ≡

⎛⎜⎜⎝ πB1(1− πB1) πB1(1− πB12)

πB1(1− πB12) πB12(1− πB12)

⎞⎟⎟⎠ and (19)

ΣAB ≡

⎛⎜⎜⎝ −πA1πB1 −πA1πB12

−πA12πB1 −πA12πB12

⎞⎟⎟⎠ . (20)

Next, if we define the mapping f(x1, y1, x2, y2) = (x1
y1
, x2
y2
) and apply the δ-method to (17), we

obtain

√
N

⎛⎜⎜⎝ bπA − πA(γ)

bπB − πB(γ)

⎞⎟⎟⎠ d→ N (0,VΣV0) . (21)

where

V ≡

⎛⎜⎜⎝ 1
πA12

− πA1
π2A12

0 0

0 0

1
πB12

− πB1
π2B12

⎞⎟⎟⎠ ≡ µ VA VB

¶
. (22)
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Consequently, we will have that

VΣV0 = VAΣAV
0
A+VBΣBV

0
B+VAΣABV

0
B+VBΣ

0
ABV

0
A. (23)

The sum of the first two terms can be shown to equal

VAΣAV
0
A +VBΣBV

0
B =

⎛⎜⎜⎝ σ2A 0

0 σ2B

⎞⎟⎟⎠ (24)

where

σ2A =
πA1
π3A12

(πA12 − πA1) (25)

and

σ2B =
πB1
π3B12

(πB12 − πB1) . (26)

Because each of the last two terms can be shown to be a matrix of zeros, we will have that

VΣV0 = VAΣAV
0
A+VBΣBV

0
B. (27)

Equations (9) and (10) are simply the sample analogues of the asymptotic variances above.

Next, we write

√
N (bπA − bπB) = (28)

√
N

⎛⎜⎝(bπA − πA(γ))| {z }
AN (γ)

− (bπB − πB(γ))| {z }
BN (γ)

+ (πA(γ)− πB(γ))| {z }
CN (γ)

⎞⎟⎠ (29)
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Now, because Proposition 1 tells us that πA(γ) = πB(γ) when γ = 0 and because the asymptotic

covariance between bπA and bπB is zero, in the absence of state dependence, we will have that
√
N (bπA − bπB) d→ N(0, σ2AB) for γ = 0 (30)

where

σ2AB ≡ σ2A + σ2B. (31)

The Slutsky Theorem then gives us that

sd(0)
d→ N(0, 1). (32)

Next, in the case where γ is not zero,
√
N(AN(γ)−BN(γ)) will still converge to a random variable

with distributionN(0, σ2AB), whereas
√
NCN(γ) will explode since πA(γ) 6= πB(γ) in the presence

of state dependence. In particular, if γ > 0, then Proposition 1 tells us that πA(γ) > πB(γ) and,

thus,
√
NCN(γ) will go to positive infinity. If γ < 0, then the reverse is true. Consequently, we

will have that

sd(γ)→ ±∞ for γ ≷ 0. (33)
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Test 1, 2 and 3 refer to the statistics sd(γ), sdA(γ) and sdB(γ), respectively.
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Table 1: Empirical Application
N N1

A N2
B sd(γ) sdA(γ) sdB(γ)

Men Ages 30 to 32
- White 925 12 35 -0.09 0.00 0.17
- Black 475 13 35 1.36∗ 0.86 -1.21
- All 2025 33 94 1.50∗ 1.25 -0.83
Women Ages 30 to 32
- White 940 13 43 -0.67 -0.86 -0.15
- Black 569 20 60 1.31∗ 0.00 -2.74∗∗

- All 2270 44 152 1.13 -0.30 -3.01∗∗

Men Ages 50 to 52
- White 305 14 15 -0.54 0.00 0.79
- Black 105 5 15 0.00 -0.46 -0.79
- All 691 29 39 -0.53 -0.56 0.16
Women Ages 50 to 52
- White 346 20 33 0.54 0.00 -0.88
- Black 180 18 18 -2.18 -0.47 2.83
- All 836 50 73 -0.07 0.00 0.12

∗Denotes significance at the 90% level.
∗∗Denotes significance at the 99% level.
1NA is the number of times that either A1 or A2 occurred in the data.
2NB is the number of times that either B1 or B2 occurred in the data.
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