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We derive the precise analytic limit of the variance estimator of
g, the concentrated ML estimator of 4, in the adaptive regression
model, and show that the limit and the original estimator generate
vitually identical estimates of the variance of g and the
corresponding significance test statisticé. Then, based on the
limit variance estimator we generate a table for the significance
test of g in the adaptive regression model. The table may well be
used for the same purpose even in the generalized model where g is
extremely robust with respect to alfernative specifications of the

unknown covariance matrices of the parameter vector.

1. INTRODUCTION
Cooley/Prescott introduced the adaptive regression model [1], and
later generalized it (4]. The generalized model henceforth referred

to in short as C/P model may be written as:
Y, = X,‘B, (t=1,2,3,...,T} (1)

where the first element of x,(kx1) is unity, and the time process

of B,(kx1) 1is represented by

B, =B, +u, (2)

P =
BJ'BP:-1+wz .
u, and w, are assumed to be characterized by

2
u, ~ N(Om,au z)
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W, ~ N(0,,,0,Z,) ;

0 = (1-y)o® and 0,2 = vo? (0 < vy=21) (3)

where I, (kxk) and Z,(kxk) are known up to scale factors.

In this model, parameter v plays a pivotal role. If 4y = 0, then §,
is stable over time, and otherwise unstable or drifts. Hence,
testing Hy: v, = 0, 7, the true ¥, is of the prime importance in

application of C/P model.

A consistent estimation of v, can be made by maximizing the log

likelihood function concentrated on 7y:
- T 2 _ 1
L(vy) = Constant - Elns (7) Tln[!‘l| (4)
where

SM(7) = Z1¥ - XBpl @'y ~XB,] ;
Y=[ Yoo ¥l i
X = [X X oo X;17 5
Br,=[X "' X)X’y ;

1 =0a(y) =02 + (1-7)R
in which (i,j)th elements of Q and R are defined, respeci:ively, as

9y = (X,"Z,x) ‘min(T-1i+1,T-j+1) ;

Al
!

5 = 8,0, 2.x) (1,7 = 1,2,3,...,T)



where 65 is Kronecker delta.

It is shown [4] that g, y maximizing (4), is a consistent estimator

of 7,, and has the asymptotic variance of

(5)
Vr(ye) =

1y (d,-1)? - i d-1
T [(d,-1)v*+1]? T (d;-1)7,+1

‘where d, is the i-th eigenvalue of a TxT square matrix P = R™QR™

whose (i,j)th element can be written as

A1
p; = (x,.’znxj/‘/x‘.’z“xi VX % |'min(T-i+1,T-j+1) . (6)

Since asymptotically

VT (g-7,)
_\/V-,-(g)'

~ N(0,1) , (7)

to test Hy: vy = 0 Cooley/Prescott suggest to use

; - \Tg

—_— (8)
\/Vr(g)

which is asymptotically standard normal under the null hypothesis.

2. THE ADAPTIVE REGRESSION MODEL AS A SPECIAL CASE
In the case of adaptive regression model where only intercept is

subject to transitory and permanent variation, py in (6) is reduced
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to p; = min(T-i+1,T-j+1). Consegquently, d; defined in (5) can be
expressed [18, pp.272-273] as

1 1

d, = = (92)
2+2cos?(2¢) 4cos?yp A

where
¢ =9(i) = ITL)
so that
£lre) = 11inVr(y,)
= %[70(4—370) ]3"[\/4—370 + e ]2 (10)

as derived in Appendix A.

However, convergence of V. (g) to {(g) over g = (0,1] as T increases
is remarkably rapid to the extent that {(g) is almost identical to
Vr(g) even for T = 20, -hardly an asymptotic sample size, as

reported in Table 1. Hence, replacing V,.(g) with {(g), we obtain an

analytic expression:

z = \/;g
Vi(g)

- oidlsg - 29 liT57 + 3] (a1

which generates values virtually identical to those by =z, as
1
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reported also in Table 1. However, though drastically simpler than
z,, £ still remains somewhat cumbersome. Hence, a table for
critical values of g for different significance 1levels,
respectively, may be a very useful reference in testing Hy: v, = 0.
Table 2 reports the null critical values of g for 10%, 5%, 1%
significance 1levels for 20 < T < 100. The critical valﬁes are
computer generated solutions for g of Z = z_, where z_,, denotes the
critical value of the étandéfd normal variate for the significance |

level of «.

3. GENERAIL CASE AND CONCLUSION.

C/P model not only has been discussed in econometric text books
[10,11,16], but has been applied in a number of empirical studies
(2,3,5,6,7,9,12,13,14,15,17,18) in which the ML estimatér g and the
corresponding null test statistics have been found to be remarkably
robust with respect to misspecifications of =, end Z,. The
robustness is somewhat well summarized in Cooley and DeCarno [5,

p.12]:

Extensive experiments were carried out with alternative
specifications of &, and X, and the paramerer histories traced out
with these aliernative covariance specifications were all very
similar, with extremely high correlations between both the values
of the parameters ar different base periods (see below) and
changes in the parameter values from one base period to the next.
Comparisons of Baysian posterior odds did not indicate the
superiority of any particular specifications of the ¥ matrices
(Zeller, 1971, pp. 291-302). Thus, the analysis presented below is
quite robust with respect to alternative T specifications. ...

For this very reason of strong robustness with respect to =

matrices, the critical values in Table: 2 for the adaptive
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regression model proper may be used for C/P model in general in
testing Hy: 4, = 0. It is even more justifiable in light of the

fact that both X, and £, are unknown in practice.



TABLE 1

g Vr(g) §(g) Ty Z, 2 P
.05 . 09919 .10087 .016992 .70998 70403 .008389
.10 27767 .28225 .016524 .84869 .84176 .008191
.15 .49068 50121 .014463 .95436 «.94753 . 007154
.20 . 72673 .73586 .012570 1.04920 1.04267 . 006226
.25 .96054 .97090 .01078¢6 1.14076 1.13466 . 005350
.30 1.18406 1.19478 .009057 1.23296 1.22742 .004498
.35 1.38837 1.39857 .007347 1.32840 1.32355 .003653
.40 1.56662 1.57544 .005629 1.42920 1.42520 .002803
.45 1.71361 1.72026 .003881 1.53735 1.53437 .001935
.50 1.82561 1.82941 .002080 1.65494 1.65322 .001039
«.55 1.90022 1.90061 .000020 1.78433 1.78415 .000004
.60 1.93621 1.93280 .001764 1.92837 1.93007 .000090
.65 1.93349 1.92603 . 003858 2.09053 2.09458 .001935
.70 1.89300 1.88144 .006108 2.27529 2.28227 .003068
.75 1.81665 1.80111 . 008551 2.48852 2.49923 .004303
.80 1.70728 1.68809 .011239 2.73812 2.75364 .005667
.85 1.56863 1.54630 .014239 3.03510 3.05694 .007197
.90 1.40529 1.38050 .017643 3.39527 3.42562 .008940
.95 1.22267 1.19628 .021581 31.84334 3.88438 .010968
1.00 1.02600 1.00000 .026250 4.41305 4.47214 .013389
T =20; 1,= [{(9) -V (@|/Ve(g); T2= |2 -2,/z,



TABLE 2

Upper  10%, 5%, and 1% null critical values of g

T 10% 5% 1% T 10% 5% 1%

21 .478 .595 .752 61 .146  .243  .422
22 .463 .580 .739 62 .142 .238 .416
23 .448 .566 .728 63 .138 .233 .411
24 .433 .552 .716 64 .135 .229 .405
25 .420 .539 .704 65 -131 .224 .400
26 .406 .526 .693 66 .128 .220 ,395
27 .394 .513 .682 67 .125 .215 .390
28 .381 .501 .672 68 .122 .211 .385
29 .369 .490 .e661 69 112 .207 .380
30 .358 .478 .651 70 .116 .203 .375
31 <347 .467 .641 71 113 .199 .370
32 .336 .457 .632 72 .110 .195 .366
33 .326 .446 .622 73 .107 .191 .361
34 .316 .436 .613 74 .105 .187 .356
35 .307 .426 .604 75 .102 .184 .352
36 .297  .417 ,595 76 .100 .180 ,.347
37 .288 .407 .587 77 097  .177  .343
38 .280 .399 .578 78 .095 .,173 .339
39 .272 .390 .570 79 .093 .170 .334
40 .264 .381 .562 g0 .091 .167 .330
41 .256 .373 .554 81 .089 .i64 .326
42 .248 .365 .546 g2 .087 .160 .322
43 .241 .357 .539 83 .085 .157 ,318
44 .234 .349 .531 84 .083 .155 .314
45 .227  .342 .524 85 .081 .152 .310
46 .221 .334 .51e6 g6 .079 .149 .306
47 <215 ,327  .422 87 .078 .146 .303
48 .209 .320 .502 88 .076 .143 ,299
49 .203 .313 .495 89 .074 .141 .295
50 .197 .306 489 g0 .073 .138 .292
51 .192 .300 .482 91 .071 .136 .288
52 .186 .294 .476 92 .070 .133 .284
53 .181 .288 .46%9 93 .068 ,131 .281
54 .176 .281 .463 94 .067 .129 .278
55 .171  .276 .457 95 .065 .126 ,274
56 .167 .270 .451 96 .064 .124 .271
57 .162 .264 .445 S7 .063 .122 .268
58 .158 .259 .439 98 .061 .120 .264
59 .154 .254 .433 99 .060 .118 .261

60 .150 .248 .427 100 .059 .116 .258




APPENDIX A

Using Equations 858.540 and 858.542 in Dwight [2, p.219), we can

show that for any positive constant a

=2 1 T
Ala) = d = = 2
(2) IO alcosly + 1 ¢ 2/1 + a2 '
_ 1 _ m(2 + a?d )
u(a) = d¢ = —- . (A.1)
IO [azcosch + 1]2 4(1 + a?)’”
Let

Ap = ¢(1) ;¢(T) :

d,-1 _
(di=1)vy, + 1 !

g(e)

(d;-1)*
[(di-1)v, + qz

Il

h(¢) (A.2)

where ¢ and d;, are as in (9).

Then,

2T p=i2
T o]

, ;
Elg(qb) Ap| = g(e)de ;

P

T—ao L—A-a

T 5
lim|—
T-}:an LA¢ .':Z1h (¢) A9

@
[+
I

2T xf2
-ﬂ—jo h(¢)de . (A.3)

.

'g(¢) and h(¢) from (A.2) substituting into the definite integrals

in (A.3), 9, and #, can be expressed in short in terms of A(a) and



p{a) defined in (A.1):

6, = L 1)\ - T ;
1 n(l—yo)[-?o (a) 2

6, = — 2L T - 23 2 -
2 11(1‘70)2% v )T ﬁ,“a)

where a = 2J(1-70)/70

Since without proof

g-('Yo) =

6, and #, from (A.4) substituting into (A.5) results in

_2
(v = %[70(4‘370)]“{\/4—370 *+ V7o ]

after some algebraic manipulations.

10

(A.4)

(A.5)

(A.6)
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