LINEAR UNBIASED ESTIMATORS AS A GLS CLASS AND THE GENERALIZED AITKEN THEOREM AS A COROLLARY

by

Eric Iksoon Im Marcellus S. Snow

Working Paper No. 90-23 February, 1990

LINEAR UNBIASED ESTMATORS AS A GLS CLASS AND

THE GENERALIZED AITKEN THEOREM AS A COROLLARY

Eric Iksoon Im
Department of Economics
University of Hawaii at Hilo
Hilo, Hawaii 96720-4091, U.S.A.

Marcellus S. Snow
Department of Economics
University of Hawaii at Manoa
Honolulu, Hawaii 96826, U.S.A.

1. INTRODUCTION.

This paper introduces two new theorems: one establishes that all linear unbiased estimators are of the GLS class; the other derives the optimal matrix solution of the covariance matrix function. One important consequence is that the Generalized Aitken Theorem is a corollary of the two theorems.

2. THEOREMS.

THEOREM 1:

Let

(1)
$$y = X \beta + u$$
, $0 < k \le n$

be the linear model with all the classical assumptions except $E(uu')=\Omega$, where Ω is an nxn p.s.d. matrix with $\rho(\Omega)\geq k$. Then all linear unbiased estimators can be expressed as a GLS-class estimator:

(2)
$$b_g = b_g(\Sigma) = (X^{\dagger}\Sigma X)^{-1}X^{\dagger}\Sigma Y,$$

where Σ is any nxn matrix with $\rho(\Sigma) \ge k$.

Proof:

Since $b_{ols}=(X'X)^{-l}X'y$ is an unbiased estimator of β in (1), any other linear unbiased estimator, b_{nols} , can be expressed as $b_{nols}=b_{nols}(A)=[(X'X)^{-l}X'+A]y$ where A can be any kxn non-null matrix such that $AX=0_{kxk}$ (Theil, 1971, p.120). Combining b_{ols} and b_{nols} , we can write any linear unbiased estimator as

(3)
$$b_a = b_a(A) = [(X'X)^{-1}X' + A]Y$$

where A, such that $AX=0_{kxk}$, now can be a null matrix.

Since $A=(X'X)^{-1}X'XA$, and also since $X'XAX=0_{kxk}$ directly follows from $AX=0_{kxk}$, we can rewrite b_a as:

$$b_{a} = [(X'X)^{-1}X' + A]y$$

$$= [(X'X)^{-1}X' + (X'X)^{-1}X'XA]y$$

$$= (X'X)^{-1}X'[I_{n} + XA]y$$

$$= (X'X + X'XAX)^{-1}X'[I_{n} + XA]y$$

$$= [X'(I_{n} + XA)X]^{-1}X'(I_{n} + XA)y$$

$$= (X'XX)^{-1}X'Xy = b_{n},$$

where

(4)
$$\Sigma \equiv I_n + XA$$
.

Noting that AX=0, $\rho(\Sigma) \ge k$ easily follows from post-multiplying (4) by X: $\Sigma X = X + XAX = X$ so that $\rho(\Sigma X) = \rho(X)$; since $\rho(X) = k$ and $\rho(\Sigma X) = \min(\rho(\Sigma), \rho(X))$, $\min(\rho(\Sigma), k) = k$ which immediately implies that $\rho(\Sigma) \ge k$.

Let S_g a set of linear unbiased estimators in the form of b_g , and S_a the set of all linear unbiased estimators in the form of b_a . Since any linear unbiased estimators can be expressed in the form of b_a , S_a is the complete set of all linear unbiased estimators; therefore

S_g C S_a.

However, since any linear unbiased estimator in the form of b_a can be transformed into b_g , as shown above,

Sg D Sa.

Therefore

 $S_g = S_a$.

Q.E.D.

Then, $Var(b_g) = (X'\Sigma X)^{-1} X'\Sigma \Omega \Sigma' X (X'\Sigma X)^{-1}$ can be optimized with respect to the variable matrix Σ , which is discussed as a separate theorem which may well be useful in some other contexts in econometric theory:

THEOREM 2:

Define $V = V(\Sigma) = (X'\Sigma X)^{-1}X'\Sigma \Omega \Sigma' X(X'\Sigma X)^{-1}$ where Σ , X, and Ω are all as defined in Theorem 1. Then, under $dV(\Sigma) = O_{kxk}$, and $d^2V(\Sigma) \ge O_{kxk}$ (i.e., p.s.d.); and $\Sigma = \Omega^+$, with Ω^+ denoting

the Moor-Penrose inverse, is a unique solution for Σ of the first derivative.

Proof:

Let the differential operator d operate only on the immediately following matrix. Then, using d(AB) = dAB + AdB and $dA^{-1} = -A^{-1}dAA^{-1}$ (Graham, 1980, p.79),

(7)
$$dV = Q^{-1}X' \phi XQ'^{-1} + Q^{-1}X' \phi' XQ'^{-1}$$
$$= Q^{-1}[X' \phi X + (X' \phi X)']Q'^{-1}.$$

with the matrices defined as:

(8)
$$Q = Q(\Sigma) = X'\Sigma X$$

$$\Phi = \Phi(\Sigma) = d\Sigma M\Omega \Sigma'.$$

$$M = M(\Sigma) = I - XQ^{-1}X'\Sigma.$$

For V in (7), $dV = 0_{kxk}$ obviously requires

$$(9) X' \phi X = O_{kxk}.$$

Differentiating dV in (7) with respect to Σ ,

(10)
$$d^{2}V = d(dV)$$

$$= dQ^{-1}[X' \phi X + (X' \phi X)']Q'^{-1}$$

$$+ Q^{-1}[X' d\phi X + (X' d\phi X)']Q'^{-1}$$

$$+ Q^{-1}[X' \phi X + (X' \phi X)']dQ'^{-1}.$$

Substituting $d\phi = -d\Sigma XQ^{-1}X' + d\Sigma M\Omega d\Sigma'$ (Appendix A) into (10), then reflecting (9), we can show that $d^2V(\Sigma)$ is p.s.d.:

(11)
$$d^{2}V = Q^{-1}X^{\dagger}d\Sigma[M\Omega + \Omega^{\dagger}M^{\dagger}]d\Sigma^{\dagger}XQ^{\dagger}^{-1}$$
$$= (Q^{-1}X^{\dagger}d\Sigma)(M\Omega + \Omega^{\dagger}M^{\dagger})(Q^{-1}X^{\dagger}d\Sigma)^{\dagger}$$
$$\geq 0_{kxk},$$

noting that both M,idempotent, and Ω are p.s.d. for all Σ .

Substituting ϕ defined in (8) into (9),

(12)
$$X'd\Sigma M\Omega\Sigma'X = O_{kxk}$$
.

Since $d\Sigma$ is a non-null arbitrary matrix, it can not be that $X'd\Sigma \neq 0_{kxn}$. Hence, (12) requires

(13)
$$d\Sigma M\Omega \Sigma' X = O_{nxk}$$
.

Substituting $d\Sigma = d(\Sigma G)\Sigma + \Sigma G d\Sigma$, G denoting a generalized inverse of Σ , into (13) yields (Appendix B)

(14)
$$d(\Sigma G)\dot{M}\Sigma\Omega\Sigma'X = O_{nxk}$$

where $\dot{M} \equiv I - \Sigma XO^{-1}X^{\dagger}$.

Since $\dot{M}\Sigma X = (I - \Sigma X(X'\Sigma X)^{-1}X')\Sigma X = 0_{nxk'}$ (14) is satisfied if $\Sigma \Omega \Sigma' = \Sigma$ of which $\Sigma = \Omega^+$ is a unique solution for Σ (Appendix C).

Q.E.D.

GENERALIZED AITKEN THEOREM AS A COROLLARY:

For $c'b_g$ a linear combination of b_g in Theorem I where c is an arbitray kxl column vector, we can easily show that

(15)
$$q \equiv var(c'b_g) = c'V(\Sigma)c.$$

Then, the first- and second-order conditions for minimization of ${\bf q}$ will be

(16)
$$dq = c'dV(\Sigma)c = 0, \text{ and}$$

$$d^2q = c'd^2V(\Sigma)c \ge 0.$$

Both the first- and second-order conditions require $dV(\Sigma) = 0_{kxk}$ and $d^2V(\Sigma) \ge 0_{kxk}$, respectively, which in turn are satisfied uniquely by $\Sigma = \Omega^+$ as established in Theorem 2.

Substituting $\Sigma = \Omega^+$ into b_a in (2) yields

(17)
$$b_{gls} = (X^{\dagger} \Omega^{\dagger} X)^{-1} X^{\dagger} \Omega^{\dagger} Y$$

as the BLUE of β in (1), which proves the Generalized Aitken Theorem (Aitken, 1935; Theil, 1971, pp.278-280).

APPENDIX A:

Differenting M defined in (8) with respect to Σ ,

$$(A.1) dM = -XdQ^{-1}X^{\dagger}\Sigma - XQ^{-1}X^{\dagger}d\Sigma$$
$$= XQ^{-1}X^{\dagger}d\Sigma XQ^{-1}X^{\dagger}\Sigma - XQ^{-1}X^{\dagger}d\Sigma$$
$$= - XQ^{-1}X^{\dagger}d\Sigma M.$$

Differentiating defined in (8), using (A.1), with respect to Σ ,

$$(A.2) d\varphi = d(d\Sigma M\Omega \Sigma')$$

$$= d^2\Sigma M\Omega \Sigma' + d\Sigma dM\Omega \Sigma' + d\Sigma M\Omega d\Sigma'$$

$$= -d\Sigma (XQ^{-1}X' d\Sigma M) \Omega \Sigma' + d\Sigma M\Omega d\Sigma'$$

$$= -d\Sigma XQ^{-1}X' \varphi + d\Sigma M\Omega d\Sigma',$$

noting that $d^2\Sigma = 0_{nxn}$ since $d\Sigma$ is arbitrary.

APPENDIX B:

Denoting a generalized inverse of Σ by G, we can express Σ as $\Sigma = \Sigma G \Sigma$. Then, $d \Sigma$ easily follows:

$$d\Sigma = d(\Sigma G \Sigma)$$

$$= d((\Sigma G) \Sigma)$$

$$= d(\Sigma G) \Sigma + \Sigma G d\Sigma.$$

Substituting (B.1) into (13),

$$(B.2) d\Sigma M\Omega \Sigma'X = [d(\Sigma G)\Sigma + \Sigma G d\Sigma]M\Omega \Sigma'X$$

$$= d(\Sigma G)\Sigma M\Omega \Sigma'X + \Sigma G(d\Sigma M\Omega \Sigma'X)$$

$$= d(\Sigma G)\dot{M}\Sigma \Omega \Sigma'X$$

$$= 0_{nxk}$$

noting that the third equality is based on $\Sigma M = \dot{M}\Sigma$ in which M and \dot{M} are as defined in (8) and (14), respectively, and also equation (13) itself.

APPENDIX C:

Since Ω is p.s.d., so is $\Sigma\Omega\Sigma'=\Sigma$. Therefore, Σ and Σ^+ can be decomposed (Theil, 1971, p. 276) as

(C.1)
$$\Sigma = F \Lambda F';$$

$$\Sigma^{+} = F D^{-1} F'$$

where F is a nxr full-column matrix whose columns consisting of eigenvectors corresponding to the non-zero eigenvalues of Σ , so that F'F=I, where $r=\rho(\Sigma)\ge k$; and D is a rxr diagonal matrix consisting of the r non-zero eigenvalues of Ω . Hence, substituting (C.1) into $\Sigma\Omega\Sigma'=\Sigma$,

Pre- and post-multiplying FD-1F' to (C.2),

$$(C.3) \qquad \Omega = FD^{-1}F' = \Sigma^*;$$

subsequently

$$(C.4) \Sigma = (\Sigma^+)^+ = \Omega^+.$$

REFERENCES:

- Aitken, A.C. (1935): "On Least Squares and Linear Combination of Observations," Proceedings of the Royal Society of Edinburgh, 55, pp. 42-48.
- Graham, A. (1980): Kronecker Products and Matrix Calculus: with Applications,
 Chichester, England: Ellis Horwood.
- Theil, H. (1971): Principles of Econometrics, New York: Wiley and Sons.