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I. Introduction

In a recent review, Ruttan (1992) observes that academic discourse is
experiencing a “third wave” of heightened post-war sensitivity about the
limits to growth inherent in the finite stocks of natural and environmental
resources.l In these discussions, the concepts of “sustainable growth” and
“éustainable development” have been suggested, reminiscent of “growth with
equity” as an objective that gives appropriate weights to possibly conflicting
goals. Despite _its popularity, however, sustainability has largely eluded any
consensus regarding a precise definition. We suggest that greater precision
could be achieved by drawing from and extending the standard golden rules
from the growth theory literature.

The common concern shared by sustainability proponents is that
present consumption is at the expense of future generations due to its
depletion of natural and environmental resource stocks. Solow (1986) has
proposed that this problem may be appropriately addressed by the criterion of
intergenerational equity, defined as the maximin level of consumption that
can be sustained over all time. Under special assumptions, maximin
consumption can be attained by extracting resources according to the

Hotelling principle and investing the resource royalties thus derived into

* We wish to thank the National Science Foundation for financial support and Partha

Dasgupta, Joseph Stiglitz, T.N. Srinivasan, Stephen Swallow, Harvey Lapan and anonymous
referees for helpful comments on a previous draft.

1 The first such episode was in the late 1940’s and early 50’s when the
manufacturing boom turned the U.S, from a net resource exporter to a net importer. The
second wave followed the boom in resource prices which followed the apparently prophetic
publication of Meadows et al., Limits to Growth, See Goeller and Weinberg (1976), for a
debunking of second wave mythology.



capital accumulation (Hartwick 1978). This rule provides a solution to the
maximin consumption problem and simultaneously shows that, under the
assumptions specified, at least one sustainable consumption path exists.

As discussed by Dasgupta and Heal (1979), however, the maximin welfare
criterion leaves countries at the mercy of their initial capital stock. Countries
that are capital poor are forever constrained to have lower levels of per capita
consumption than more advanced countries that are already capital rich. In
addition, the assumptions used in the derivation are quite stringent, including
zero population growth in the absence of technological change, no capital
depreciation, and output elasticity of capital greater than that of the resource.

Solow (1974) examines intergenerational equity and exhaustible
resources under conditions of zero extraction costs. In Hartwick (1978), the
rule of investing rents from exhaustible resources is derived in the case of
constant, but nonzero, extraction cost. Cairns (1986) extends the Hartwick
investment rule to the case where Ricardian differential rents are generated
through exploitation of a non-homogeneous resource. In the Cairns model,
mineral production costs increase as the quality of ore exploited decreases.
Cairns shows that the basic model can bé modified to incorporate the
possibility that extraction costs increase with cumulative extraction.

In the facé of exponential population growth and limited resources,
Solow (1974) shows that "... no positive constant consumption per worker is
maintainable forever." With respect to the problem of capital depreciation,
Hartwick (1978) notes, "... (the) savings investment rule will not provide for
the maintaining of per capita consumption constant dver time. The current
decline in per capita consumption is simply the amount of the produced
commodity required to offset the current amount of depreciation in

reproducible capital.” Solow (1974), Stiglitz (1974), Dasgupta and Heal (1979),



and Wan (1989) all contain demonstrations that a necessary condition for
maximin consumption is that output elasticity of capital be greater than that of
the finite resource.

An alternative representation of intergenerational equity involves
suppressing to zero the social rate of time preference in intertemporal welfare
maximization. In particular, Ramsey (1928) held that it is “ethically
indefensible for society to discount future utilities” (paraphrased by Solow,
1974).1 “We ought to act as if the social rate of time preference were zero
(though we would simultaneously discount future consumption if we expect
the future to be richer than the present).” [Ramsey, 1928]

In the Hartwick/Solow model, the optimal trajectory of per capita
consumption with a zero social rate of time preference increases indefinitely,
and there is no steady state. Both consumption and growth are sustainable. In
the present paper, we explore an alternative model. Extraction costs are
permitted to rise as a function of the cumulative amount of the non-renewable
resource extracted, in contrast to the constant extraction cost assumption in
the Hartwick/Solow model, and the output elasticity of capital is not required to
exceed that of the resource. Instead, the extraction cost function is assumed to
be bounded from above by a backstop technology. The backstop assumption
may be thought of as an approximation which may be made arbitrarily close to
the actual extraction cost function. This assumption permits the restoration of
steady state results for which both golden and modified golden rules can be
derived. Also, in contrast to additional restrictive assumptions needed to
support maximin consumption, the mode! in this paper allows for both
population growth and capital depreciation.

The paper is organized as follows. The model is described in section Il

The modified golden rule is derived and conditions are stated for whether that



rule violates a sustainability condition that constrains consumption not to fall
below the maximin level. Comparative statics results are also derived showing
that steady state consumption decreases as the backstop cost and rate of time
preference increase. In section Ill, a special case is considered where the
concern for the future is manifested by setting the rate of time preference to
zero and solving for the golden rule. This solution does not violate the
sustainability constraint. These and additional concluding remarks are

summarized in section IV.

II. A Modified Golden Rule

Consider an economy that uses three inputs, capital (K}, labor (L), and a
natural resource (R) to produce a single homogeneous good. Assume that the
production technology is constant returns to scale, so that the production
function, F(K,L,R), is homogeneous of degree one. Following the standard
approach (see e.g., Wan [1989])}, output of production is divided among
consumption, gross investment, and the cost of providing the resource as
input to the production process. let © be the unit cost of the natural resource,
which we take to be a decreasing function of the resource stock, D(t). Capital

depreciation occurs at the rate 8K. Then,

F(K,LLR) = K+ 8K + 8R + C (1)

In the case of oil, for example, oil stocks are drawn down as the economy
grows, until the unit cost, ®, of providing oil as an input to production has
risen sufficiently to warrant the switch to a superabundant, but high cost,
alternative energy source with unit cost, 8, (e.g., coal, solar energy,
geothermal, or nuclear fusion). Following Nordhaus (1973, 1979) and Heal
(1976), we consider such a superabundant energy source to flow from a

backstop technology with constant unit cost. Capital and labor costs alone
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determine the price of the energy resource; i.e., scarcity rents are no longer
significant. In their supply-side study of oil prices, Roumasset, Isaak, and
Fesharaki (1983) conducted a sensitivity analysis showing that the assumption
of an unlimited backstop technology does not introduce a substantial
inaccuracy in the estimation of efficiency prices it the backstop price is set
sufficiently high and if total resources available at and below the backstop
price are abundant. The test of this condition is that the efficiency prices in
the present and projection period of interest (e.g., 50-100 years) are not
sensitive to changes in the backstop price of the ultimate r‘esource. On this
basis, we take the incorporation of the backstop technology as an empirically
sound approach to resource modeling. Moreover, the point at which the
extraction cost reaches its ultimate backstop plateau may be made arbitrarily
remote. For example, if we take the exhaustible resource to be an all-purpose
energy resource, measured e.g. in oil-barrel equivalents, intermediate
plateaus can be taken as various grades of oil, coal, nuclear fission, nuclear
fusion, etc. In such an application, extraction cost would include conversion
costs of the oil-alternative technology as well as the extraction and production
costs of the energy source (see, e.g. Nordhaus, 1979). In this way, the quantity
of the aggregate resource at which the backstop substitute comes in can be
arbitrarily high, limited only by limits on information and estimating
capability.

As a related matter, we briefly comment on the issue of optimal
sequencing of resource extraction with rising unit extraction costs. Solow and
Wan (1976) considered a simple two-period, two-deposit model of an
exhaustible resource and showed that it is preferable to fully exploit the low
cost deposit first before extracting from the high cost deposit in period one,

while deferring some extraction program. Subsequently, Kemp and Long



(1980) developed a more general model wherein it may be preferable to exploit
high and low resoufce deposits simultaneously for the purpose of smoothing
consumption over time. Commenting on the wbrk by Kemp and Long, Lewis
(1982) derived sufficient conditions under which strict sequencing of
extraction (from low cost to high cost) becomes optimal, consistent with the
model of Solow and Wan: extracted resources can be converted into productive
capital.

A different problem arises in the case of physical mining constraints
which prevent optimal sequencing of resource extraction per Solow and Wan
(1976). Hartwick {1978) and Cairns (1986) examined situations where sources
of varying quality must be exploited at a single time. While yielding important
insights related to the generation of Ricardian rents, the Hartwick/Cairns
model would add little to our consideration of the steady state golden rules made
possible by the existence of a backstop technology, beyond the modifications
of trajectories leading to the steady state. We therefore adhere to the simpler
model of extraction costs rising with cumulative extraction.

The basic model in the present paper, as represented by dynamic
equation (1), is consistent with the sufficient condition established by Lewis
(1982). We therefore assume that the backstop resource will not be used until
unit extraction cost, @, rises to the backstop cost, .

Until the transition to the backstop resource, there is a finite constraint

on the resource stock:

80

J‘ R(t)dt < Dy < =, (2)
0

Assume that the labor force grows at rate n from an initial level of

L(0) = Lp. Given the homogeneity of F(K,L,R}, labor can be factored out to yield

a production function of the form, f(k,r), where k is the capital to labor ratio,



and r is the resource to labor ratio. The dynamic equation of growth now
becomes
k = f(k,r) - pk - Or -, @ < O, (3)
Here, c is per capita consumption, p = n + 3, and ©p, is the constant unit
cost of supplying the backstop resource.
A modified golden rule can be obtained when we include time
preference in the model and maximize the conventional measure of social
welfare. With p as the rate of time preference and U{(c) as the utility of

consumption of the representative agent, the planner solves

Max W = f exp(-pt) U(c)dt (4)

c>0 °

r>0

st.  k=f(kr)-pk-0r-c - (4a)
D= -rL, 8 < B (4b)
k(0) = ko, D(0) = Dy. (4c)

At some endogenous time, T, the unit cost, 8, of the exhaustible resource
reaches the backstop cost, @, and a transition is made to the substitute
resource.?2 Because of the inequality constraint on 8, the Hamiltonian, H, must
be augmented to form the lLagrangian function, L:

L=H+Y[®b‘8]’

where H = exp(-pt)U(c) + A[f(k,r) -pk -@r-c] - y¢[rl]. (5)
The complementary slackness condition associated with the inequality

constraint is

oL
vy ~ep-0]=0



Standard application of the maximum principle yields the

following efficiency conditions:

frf_rg =fc-8,forO<t<T (6)
fr=0p fort=T (6")
R

Ll - e . (7)

Equation (6) is essentially Hotelling’s rule in a general equilibrium context.?
Equation (7), the Ramsey rule, can be simplified by introducing the
consumption elasticity of marginal utility,

n(Q) = ¢ SGa- (8)

Using this definition, equation (7) becomes

n(c) ¢ =fi- (u+ o). | (9)

For a production technology, F, that is constant returns to scale in all inputs,
the only possible steady state growth rate is zero (see e.g., Sala-i-Martin

[1990]). Therefore, along the steady state path, g— = 0,and

fx = (w+p)
Two conditions now define the modified golden rule for growth and
capital accumulation when a backstop natural resource, essential to

production is available in infinite supply:

fx =(u+p)andf, =@y, t2T. (10}

There is no presumption in this formulation that the backstop and the steady
state are reached simultaneously.

Efficient evolution of the economy toward the modified golden rule

steady state growth path is governed by equations (6) and (7). In particular,

resource extraction should be governed by Hotelling’s rule. Overuse of the
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resource, counter to this rule, would be inefficient in both the short run and
the long run. But, just as important, underuse would be inefficient as well.

We now consider conditions under which the modified golden rule is
consistent with the notion of sustainable development. The approach we
propose relies on comparison of consumption trajectories rather than capital
stocks. If one accepts the premise that consumption is the ultimate goal of
economic activity, then this approach goes to the heart of the matter. We may
define a consumption trajectory to be sustainable relative to cmijn iff there
exists some T such that C¢=2Cpin’ ¥V t=T. In particular, it is interesting to
consider the case where Cpin= ¢, the maximin constant level of consumption
that could be attained in the absence of a backstop, since ¢ has been previously
singled out as a possible benchmark for intergenerational equity (Hartwick,
1977; Solow, 1986). Other benchmark levels of Ciin are possible, such as some
agreed upon subsistence level. However, the specification of subsistence level
may be somewhat arbitrary.

The computation of ¢ can be formulated as a standard optimization
problem (see Wan [1989]):

¢ =Maxcg (11)
r=0

s.t. ¢ =0 and (4a), (4b), and (4¢c).
The solution to this problem, if it exists, yields
¢ = ¢ (kg,Dp). (12)
The dependence of ¢ on kg and Dy reinforces the idea that economies
constrained to maximin per capita consumption are at the mercy of initial
conditions. Solow (1974), Dasgupta and Heal (1979}, and Wan (1989) derive
solutions to versions of problem (11), showing the specific dependence of per

capita consumption, ¢, on the initial capital stock, Ko, and resource stock, Dy.



In contrast, we advance the following proposition concerning the modified
golden rule steady state.

Proposition 1: Given an economy governed by dynamic equation (3), let
c* be the steady state modified golden rule level of per-capita consumption
associated with condition (10). Then c* is independent of the initial per capita
capital stock, kg, and resource stock, Dyg.

Proof: The modified golden rule (10) defines the steady state marginal
products fx and f;, which in turn determine the well-defined steady state
values k* and r*. Consumption level, ¢*, can then be computed as
f(k*,r*) - pk* - @pr*.

As noted by Wan (1989), there is no guarantee that a solution exists for

production functions other than Cobb-Douglas functions of the form,
f(k,r) = AK?r®, Even in this case, a necessary condition for existence of a
maximin solution is that b>a. Moreover, both population growth and capital
depreciation must be zero, so that u= 0. The behavior of extraction costs, as a
function of the resource stock, D, may also affect the existence of a maximin
solution.

The relationship between c¢* and c (assuming c exists} will depend on
the rate of time preference, p, and on the backstop cost, 8,. The following
proposition verifies that, as expected, the steady state level of per capita
consumption, c*, declines with an increase in p and with an increase in 6y.

Proposition 2: Under the assumptions of proposition 1, let p be the rate

of time preference and @y, be the unit cost of the backstop resource. Then
* *

i) %‘; <0, and ii) Oa;b <Q.

Proof: i) In the steady state k= 0, so that
c* = f(k*,r*) - puk* - Opr*. (13)

Differentiating with respect to p we obtain
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oc* ok* or* ok* or*

3p "k gp * 5 W5, O,
ok* or*
= [ - 4] o0+ [f: - o0] PR (14)
Using the modified golden rule, condition (10), we can rewrite equation (14) as
oc* ok*
dp =p dp (15)

*
The partial derivative (31; can be signed by differentiating the two modified

golden rule conditions:
ok* or*
f:kk ap + f:l(r ap = 1: (16)

ok* or*
fkr ap +frr ap =O.

Application of Cramer’s rule yields

ok* frr
Op  fykfrr - (frx)? -

By assumption, f(k,r) is concave (diminishing returns to scale), so that f;< 0

(17)

and fyyfrr - (Frx )2> 0. Hence forp > 0,

dc*  Ok*
op Fop

0.

ii) Differentiate equation (13) with respect to @y

ac*_f ok* ¢ or*  ok* 6 or*
20,  *9@p, *'roe, o0, “btoep T
ok* or
- [fk-p] J00 * [f,-@b] so. " (18)

- With the modified golden rule, equation (18) can be written

dc*  ok*
()@b'“pagb

*

ok
0@p

r*, (19)

To sign we differentiate the two modified golden rule conditions with

respect to Oy

ok* or*
fkk a@)b + fkr a@b =0, (20)

ok* or*
Fie 00y + e 00} -

I.
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By Cramer’s rule and concavity of f(k,r),

ok* -fxr
205 ~ fader - (FZ <O (21)
oc* ok*

Therefore, oop = Poep r- < 0.

Assuming the maximin solution, ¢, exists, it is reasonable to suspect that

it will depend on backstop unit cost, 8,, as well as kg and Dy, if €, serves as an
upper bound to rising unit cost, ®. We conjecture that when ¢ does depend on
ocC

®p , E< 0. If the upper bound on rising unit resource cost increases,

resource royalties eventually decrease, so that, under the Hartwick savings
rule, investment in capital accumulation is not as great as it otherwise would
have been. The constant level of per capita consumption, ¢, that can be
sustained at the reduced rate of capital accumulative must decline.

Figure 1 provides a schematic of the possible relationships between c*
and c for different values and p and €4, For a fixed value of @y, ¢* = ¢*(p,0y) is
a declining function of p. The maximin level of consumption, c(®p), then
determines the maximum rate of time preference, p(©p), consistent with
sustainable consumption. As illustrated in Figure 1, the defining relationship
is

c*(p(@),8p) = E(By). (22)

If p < p for a given backstop unit cost, @, then the modified golden rule
path of per capita consumption, c*, will satisfy sustainability relative to c. The
case, p> p (i.e., sustainability is not satisfied), leaves the planner with at least
two options. The planner could reduce the social rate of time preférence top
or less. (Section Il considers the case where p=0, yielding a golden rule).
Alternatively, the planner could incorporate directly into problem (4) the
constraint ¢(t) > ¢ for all t > tp, while retaining the prevailing rate of time

preference, p. This forces the consumption trajectory to eventually dominate
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0 C*(p,e;))
¢(p,6,)

Figure 1. Steady State Consumption and the Rate of Time Preference



the maximin consumption path. The planner may choose tg>0 so as initially to
allow ¢ < ¢, thereby building up the capital stock to sustain greater
consumption in the future.

In Figure 2, we sketch plausible trajectories of per capita consumption
leading to modified golden rule growth paths. These trajectories are analogous
to those depicted in Diagram 10.3 of Dasgupta and Heal (1979}, with the addition
of a backstop substitute. With a Cobb-Douglas production function, Dasgupta
and Heal (1974, 1979) showed that the consumption trajectory, for the case of
an exhaustible resource, will have at most one peak. Moreover, the lower the
rate of time preference, p, the further in the future will be the peak.
Trajectory 2, in Figure 2, satisfies the condition of sustainability relative to

maximin consumption, while trajectory 1 does not.

III. Intergenerational Equity and Time Preference: A Golden Rule

A central critique of ecologists and ecological economists to maximizing
aggregate discounted welfare is that discounting necessarily prejudices the
case against future generations. Some authors have suggested (see e.g., Pearce
and Turner [1990]) that the present generation is properly viewed as a steward
for the future. Setting p = 0 in the model introduced above is one way of
representing these concerns. Setting the social rate of time preference equal
to zero also provides an alternative criterion for intergenerational equity.
Instead of requiring consumption in all periods to be equal, this approach
simply removes any a priori discrimination between generations.

In general, however, maximizing undiscounted aggregate welfare
presents a technical problem that was recognized by Ramsey in his classic
paper on optimal savings (see Ramsey [1928]). With p = 0, the integral in

equation (4} becomes infinite, so that there is no way to discriminate among
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Figure 2. Plausible Consumption Trajectories Leading to the Modified Golden Rule



alternative paths of sustainable consumption; all such paths produce infinite
social welfare. Ramsey cleverly tackled this problem by incorporating into
the integrand a postulated bliss point. Koopmans (1965) refined this approach
by showing that the golden rule path for capital accumulation could be taken
as the Ramsey bliss point, i.e., the comparison path against which to measure
utility as the economy evolves over an infinite time horizon.

In the resource context, an analogous bliss point can be derived from
the dynamic equation of growth, equation (3). Once the shift to the backstop

has been made, the strict concavity of f(k,r), and the conditions,

fx(0,0) = =, £(0,0) = =, lim =0, lim =0, (23)

will be sufficient to guarantee the existence of a steady state for which k = Q.
Equation (3) then becomes

c = f(k,r) - pk - Opr. (24)

The golden rule is now obtained as the set of first order conditions for

maximizing steady state per capita consumption. The symbol “*” designates
golden rule levels:

f(k,ry=p,  fi(k,1) =0 (25)
Golden rule levels of per capital consumption and utility are then given by

¢ = f(k,r) - pk-o,r and U= U(c), (26)

The welfare criterion for this problem can be written as

o0

] = fo [U(c) - U 1dt, (27)

which is bounded above when both the production technology and the utility
function are concave (see Burmeister and Dobell [1970]). The criterion ],

therefore, has a maximum, and the first order conditions show that this
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maximum will be attained along the growth path of per capita consumption

governed by the equation,

c
- =f-n (28)

n(c)
Moreover, the dynamic equations of the marginal product, f,, for this problem
are identical to equation (6) and (6'). Burmeister and Dobell (1970) show that,
in general, maximizing the welfare criterion, J, is equivalent to maximizing
discounted social welfare with time preference, p (such as solving the problem
represented by equation (4)), and then letting p tend to zero. The golden rule
path for capital accumulation and resource management can therefore be

defined by the conditions,

fp =pandf, = Oy (29)

We may now compare the golden rule to the maximin rule as alternative
standards of intergenerational equity. One plausible scenario is illustrated in
Figure 3. By definition, the golden rule path yields the maximum possible
level of steady state consumption per capita. Hence, maximin justice
necessarily implies a level of constant per capita consumption less than or
equal to that rendered by the golden rule steady state. As the figure shows,
this may result in large and sustained (and therefore infinite) losses in the
future in order to raise consumption in the present and near future by small

increments.

IV. Concluding Remarks

We believe that the results above help to illuminate the nature of
sustainable consumption. Relative sustainability is linked to the idea of
eventually meeting or exceeding the maximin level of per capita consumption,

¢, or some other level of per capita consumption, ¢ <¢, chosen by the planner.
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Figure 3. Golden Rule Turnpike vs. Maximin Path as Alternative
Trajectories of Sustainable Consumption



The existence of a superabundant backstop natural resource admits the
possibility of deriving golden rules that govern efficiency in both capital
accumulation and resource management. These golden rules can be
conveniently related to the issue of sustainabilivty through comparative
analysis of per capita consumption trajectories. While the notion of a
backstop technology as a basis for resource management remains
controversial, we submit that the existence per se of a backstop is not the
critical issue. Virtually limitless and renewable resource substitutes do exist
(e.g. solar energy). The critical issue is at what unit costs can they be made
effective substitutes for non-renewables.

An important implication of the analysis in this paper is that, given a
backstop technology, the conditions for existence of the modified golden rule
are less stringent than conditions for the existence of a maximin consumption
path. In particular, existence of the modified golden rule does not require that
the elasticity of output with respect to man-made capital exceed the elasticity
with respect to natural resources. Moreover, population growth and capital
depreciation are both allowable.

The modified golden rule yields a steady state level of per capita
consumption, c¢*, that depends on the prevailing social rate of time
preference, p, and the unit cost of the backstop resource, 8, but not on initial
capital and resource stocks. This result is in stark contrast with maximin
constant per capita consumption (when it exists) which is at the mercy of
initial conditions. The consumption level, c¢*, declines with an increase in p.
For a given backstop unit cost, 8y, there is a maximum social rate of time
preference, below which the modified golden rule yields a level of per capita
consumption that exceeds the maximin level. Thus for p < p, the modified

golden rule satisfies sustainability relative to maximin consumption. The
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golden rule is a special case of the modified golden rule where the social rate
of time preference is set to zero. The golden rule also solves the problem of
finding than consumption trajectory which is sustainable relative to the
highest possible cmin. That is, the golden rule gives the eventually sustainable
maximin.

An objection might be raised to the strong dependence of the modified
golden rule and golden rule levels of consumption, c*, on the backstop unit
cost, @,. A high backstop cost might threaten the dominance of c* (modified
golden rule) or ¢ (golden rule) over the maximin level ¢. We suggest,
however, that the backstop unit cost, ), serves as an upper bound on rising
extraction costs for the primary resource, so that a high @y will depress ¢ as
well as c* or €.

Moreover, the model could be readily extended to allow for a composite
resource along the lines of Nordhaus (1979). This would require specifying
the extraction costs of oil, coal, natural gas, uranium and other resources and
the conversion costs of each and of solar radiation into usable energy. In this
way a minimum cost schedule can be calculated that extends thousands of
years into the future. Even though this extraction/conversion cost function
may also be unbounded (e.g. even photovoltaic cells would face a rising rental
cost for the space they occupy), it can always be approximated by a rising
extraction/conversion cost function and an arbitrarily high backstop price.
Thus tﬁe critical issue is not whether a backstop technology exists, but how
high and how far into the future the analyst calculates the rising function.

As a final remark, we recommend that policy discussions not put undue
emphasis on results arising from long run steady state conditions. Despite the
existence of golden rules under the assumptions set forth in this paper, the

concern of most relevance to policy is what happens in the interim on the way
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to the steady state. In the final analysis, it is the trajectory to the steady state,

rather than long run sustainability, that captures concern for the future.
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Endnotes

1. As cited in the same paper (1974), Solow notes his ambivalence toward

the maximin rule.

2. Equivalent formulations of the problem expressed by (4) are possible.
Heal (1976) tackles a similar problem by solving two separate problems and

piecing the resulting solution together. In the notation of the present paper,

the two problems are:

i) max f exp(—ptu(c)dt
0

s.1. k=f(k,r)—uk—@br—c
D=-rf, ©=0, .

i) max f exp(-pt)u(c)dt
0

s.t. k= flkyr)-uk-0©,r-c.

Heal shows that any optimal path must link the two solutions together.

Alternatively, let r; denote per capita use (at time t} of the primary
natural resource, and let ry denote per capita use of the backstop resource (at
time t). Then assuming that the two natural resources are prefect substitutes,

the problem may be written,

max }exp( —ptu(c)de

st k= flkr +r,)—uk-0r6,r,—c
D=-rL, ©<06,.
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3. Given that the unit cost, ©,is a function of the resource stock, D, one
might expect that the derivative of © with respect to D would appear in
necessary condition (6). The appearance of such a derivative would, in fact,
occur in the case of a more general total cost function, 2 (r,D}, depending on
both the resource extraction rate, r, and resource stock, D. In this more
general case, covered by Fisher (1981), pp. 28-33, the necessary condition
becomes,
f=fy=3)f,-8,)+6,-10,
When the cost function, ©, can be written less generally as

O(r, D) = ro(D),

the last two terms on the right hand side cancel each other; ie., ©, =79, .

The remaining expression is equivalent to (6).
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