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Abstract 

 
In this paper, we use longitudinal data on Self-Reported Health Status from the Panel Study of Income 
Dynamics to estimate a model of the evolution of health over the life-cycle. The model allows for two 
sources of persistence in health: unobserved heterogeneity, which models an individual’s (unobserved) 
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cope with health shocks depends on health status. We allow for flexibility in both sources of persistence. 
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health today has important antecedents earlier on in life. We also find evidence of state dependence. 
However, its magnitude depends crucially on the individual’s age and unobserved heterogeneity. The 
relative contributions of heterogeneity and state dependence that we uncover have different implications for 
how health policy should be conducted. 
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1 Introduction

This paper explores the notion that an individual’s health follows a persistent stochastic process.

Specifically, we concern ourselves with two tasks. The first is to gain a better understanding of

the appropriate way of modeling the evolution of health over the life-cycle. This is important

because, while many empirical studies in Economics have investigated the dynamics of both

the level of earnings (Lillard and Willis 1978; Abowd and Card 1989) and, more recently, the

variance of earnings (Meghir and Pistaferri 2004), few have investigated the dynamics of health.1

It has been noted by many researchers such as Deaton (1992) and Caballero (1990) that different

assumptions about the stochastic process governing income can imply very different types of

life-cycle consumption behavior. Accordingly, as health status becomes a more common state

variable in structural models, it is becoming increasingly more important that researchers arrive

at a better understanding of health dynamics.2 The second task of this paper is to quantify the

relative contributions of unobserved heterogeneity (fixed effects), and state dependence in the

determination of health. Doing so is important as each will have very different implications for

how health policy should be conducted.

To analyze health dynamics, we utilize data on Self-Reported Health Status (SRHS) from

1Contoyannis, Jones and Rice (2004) and Contoyannis, Jones and Leon-Gonzalez (2004) are notable exceptions.
2For examples of structural model using health as a state variable, see Rust and Phelan (1997) and Arcidiacono,

Heig and Sloan (2004).
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the Panel Study of Income Dynamics (PSID). We observe that SRHS is highly persistent in

the PSID. Indeed, in our data, the first order auto-correlation of a dummy variable indicating

that an individual reports fair or poor health is 0.5661 for men and 0.5643 for women. Simple

linear AR(1) regressions using this dummy variable yield t-statistics of 56.33 for men and 62.87

for women. However, while these correlations do indicate a high degree of persistence, they are

not informative of the underlying stochastic properties of the health process.

To gain additional insight, we model the evolution of health over the life-cycle as a first order

Markov process. The model allows for two sources of persistence: unobserved heterogeneity

and state dependence. Unobserved heterogeneity models an individual’s (unobserved) ability to

cope with idiosyncratic health shocks such as accidents or exposure to disease-causing agents.

In our model, not only is the constant term heterogeneous, but the coefficient on lagged health

and the coefficients on all functions of age are also heterogeneous. Accordingly, we allow for a

great deal of flexibility in heterogeneity. The second source of persistence in the model is state

dependence which models the degree to which an individual’s ability to cope with a given health

shock depends on her health status. State dependence in health captures the idea that people

who are ill are less able to cope with health shocks than people who are well. We model state

dependence in a flexible manner by allowing for heterogeneity in the coefficient on lagged health

as well as heterogeneous interactions between age and lagged health status. This approach

contrasts with much of the applied literature on dynamic panel data models which, typically,

only allows for heterogeneity in the constant term and, usually, models state dependence as a

homogeneous function of the lagged state.3

3For example, see Magnac (2000), Chay, Hoynes and Hyslop (2001), Contoyannis, Jones and Rice (2004) and
Hyslop (1999).
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Estimation yields many interesting findings. First, we see that the data favor models with

simple homogeneous quadratic or linear functions of age over the more complicated (and more

computationally intensive) models with richer forms of heterogeneity and state dependence. This

should be consoling to structural modelers who use health status as a state variable and are con-

cerned about the computational tractability of allowing for richer forms of serial correlation in

the process. Next, we find large variation in health dynamics within both men and women

suggesting that unobserved heterogeneity is an important determinant of health status. The

contribution of heterogeneity suggests that a person’s health status later on in life has impor-

tant antecedents earlier in life. Finally, we find evidence of large degrees of state dependence.

However, its magnitude depends critically on unobserved heterogeneity and age. Specifically, we

find that individuals who are “health-deprived” (i.e. people who are innately less able to cope

with health shocks) exhibit relatively more state dependence earlier in life than their healthier

counterparts. In contrast, in old age, the pattern is reversed so that the degree of state depen-

dence is significantly higher among individuals who are “health-endowed” (i.e. people who are

innately better able to cope with health shocks).

The relative contributions of heterogeneity and state dependence have important implications

for policy. The fact that heterogeneity is an important contributor to health status strengthens

the case for policies that focus on babies and children - whose fixed effects are still in formation.

Examples of such policies include improving the health of pregnant mothers as is suggested by

Barker (1997) and Barker, et al (1989) and improving the socioeconomic conditions of households

in which children are reared as is suggested by Case, Lubotsky and Paxson (2002). The fact

that we also find evidence of state dependence suggest that there is also a role for medical
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interventions which target people in adulthood in improving health outcomes. However, our

estimates have important implications for exactly who will benefit from such interventions. If

interventions target people later on in life then their benefits will disproportionately accrue to

people who are health-endowed. If interventions target people in middle age or younger then

their benefits will tend to go to people who are health-deprived. Accordingly, if it is the aim

of medical interventions to affect the health of those who are the most disadvantaged in their

ability to cope with health shocks then it is probably better to act sooner rather than later and

target people who are younger than age 50.

The balance of this paper is organized as follows. Section 2 describes the data. Section 3

sets up our model of health dynamics. Section 4 describes our estimation procedure. Section 5

investigates which models are favored by the data. Section 6 discusses the role that heterogeneity

plays in the determining health. Section 7 quantifies the degree of state dependence in health.

Section 8 concludes.

2 Data

We use data from the PSID from 1984 to 1997. The variables that we work with are SRHS, age

and gender. During these years, the SRHS question was only asked of heads of household and

their spouses and, thus, our sample is restricted to these individuals. In addition, because the

SRHS was not asked prior to 1984, we do not have any data before 1984. The PSID contains an

over-sample of low-income families called the Survey of Economic Opportunity (SEO). Because

the sample was chosen based on income, we follow Lillard and Willis (1978) and drop it due to
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endogenous selection.4

We use SRHS as our measure of health. SRHS is a categorical variable that takes on integer

values between 1 and 5. 1 means that the individual perceives that their health is excellent; 2

is very good; 3 is good; 4 is fair; 5 is poor. While these data are subjective measures, there is

an extensive literature that has shown a strong link between SRHS and health outcomes such as

mortality and the prevalence of disease (Mossey and Shapiro 1982; Kaplan and Camacho 1983;

Idler and Kasl 1995; Smith 2004). To lower the number of parameters that we estimate, we

map the 5-point variable into a 2-point variable. Accordingly, we map all self-reports of fair or

poor into unity and all other reports into zero. This is the conventional way of partitioning the

SRHS variable in the health economics and epidemiology literatures.

We restrict our sample to individuals between ages 22 and 60. We do not include people

younger than age 22 because there are not that many household heads younger than this age.

We do not include people older than age 60 to mitigate any possible bias resulting from attrition

due to mortality. We drop individuals whose age declines across successive survey years. We

also drop individuals whose age increases by more than two years across successive survey years.

Finally, we restrict our sample to white men and women. Table 1 reports the descriptive statistics

from the resulting sample.

4Meghir and Pistaferri (2004) include the SEO in their work. Their reason for its inclusion is that by estimating
linear models in differences, the unobserved heterogeneity is purged from the regression equation and, consequently
the initial condition problem posed by the endogenous selection of the SEO is solved. However, this will not
work in our case as we work with a non-linear model in which it is impossible to purge the model of any fixed
effects.
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3 Model

We let hi,t ∈ {0, 1} denote the health of individual i at age t. Throughout this paper, we refer

to individuals for whom hi,t = 1 as ill and individuals for whom hi,t = 0 as well. We assume

that health evolves according to the following process:

hi,t = 1(αi + γihi,t−1 + ρ
0
iT+ φi(t ∗ hi,t−1) + εi,t ≥ 0) (1)

where T = [t, t2]0. Equation (1) allows for four determinants of health: idiosyncratic risk, aging,

state dependence and heterogeneity. We now describe each determinant of health.

Idiosyncratic Risk Idiosyncratic risk is represented by εi,t. It models illness-causing

agents or events that affect individual i when he is of age t. Throughout this paper, we will

refer to εi,t as a “health shock.” εi,t can include accident occurrence, disease onset and exposure

to bacteria and viruses. Because the effects of these agents and/or events can vary considerably

in their intensity, εi,t can assume a continuum of values. We assume that εi,t is independent of

(αi, γi,ρ
0
i,φi, hi,0) and that it is distributed i.i.d. across time with a logistic distribution.

5 These

assumptions imply that

P (hi,t = 1|hi,t−1, ..., hi,0, θi) =
exp(θ0iZi,t−1)

1 + exp(θ0iZi,t−1)
(2)

where θi ≡ (αi, γi,ρ
0
i,φi)

0 and Zi,t−1 = (1, hi,t−1,T
0,t ∗ hi,t−1)0.

5Attempts have been made by Hyslop (1999) and Contoyannis, Jones and Rice (2004) to relax the i.i.d.
assumption by allowing for serial correlation in εi,t. However, both attempts resulted in negative estimates of
the serial correlation in εi,t. Both papers conclude that this finding is odd and probably reflects an identification
issue in these more complicated models.

7



Aging The coefficients ρ0i and φi are our aging coefficients. They allow the effects of

accidents and exposure to illness-causing agents on hi,t to increase with age. In addition, they

account for the fact that many diseases like Alzheimer’s, cancer, hypertension and heart disease

are more likely to manifest later in life. We allow for a quadratic in age to allow for flexibility

in aging. In addition, we allow for additional flexibility in aging by allowing it to depend on the

individual’s health state and to be individual-specific. State dependent aging is modeled by the

term φi(t ∗ hi,t−1) in equation (1).

State Dependence The coefficients γi and φi are our state dependence coefficients. They

model the notion that a person who are ill may be less able to cope with a given health shock

than when that same person is well. To give a concrete (albeit extreme) example, exposure

to a flu virus is more likely to affect a person’s health if she is HIV positive than if she is HIV

negative. We allow for a richer form of state dependence by allowing it to vary with age. If

φi 6= 0, then the degree of state dependence will vary with age. Health will exhibit positive

state dependence at age t if γi + φit> 0.

Heterogeneity Our model allows for a large degree of flexibility in heterogeneity. We do

this by letting the vector, θi, vary across individuals. So, not only is there heterogeneity in

the “constant” term, αi, but there is also heterogeneity in all of the model’s parameters. This

contrasts with the majority of the dynamic panel data literature in which, typically, only αi is

individual-specific. θi model an individual’s resistance to health shocks. Borrowing some jargon

from Epidemiology, sometimes, we refer to these parameters as “host resistance.”

We argue that allowing for more flexibility in the heterogeneity is important when modeling
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the evolution of health for two reasons. First, we can write part of the index in equation (1) as

αi + γihi,t−1 = κi,0(1− hi,t−1) + κi,1hi,t−1 (3)

where γi ≡ κi,1 − κi,0 and αi ≡ κi,0. What this calculation tells us is that, as long as we expect

to see heterogeneity in both the persistence of illness, or the transition from hi,t−1 = 1 to hi,t = 1,

and in the onset of illness, or the transition from hi,t−1 = 0 to hi,t = 1, then we should expect

heterogeneity in both the constant coefficient (αi) and the primary state dependence coefficient

(γi). Second, we allow for heterogeneous aging coefficients (ρ
0
i and φi) to allow for the possibility

that decreases in host resistance with age will vary across individuals.

4 MLE

We estimate the model in equation (1) using an MLE procedure which has been discussed in

Heckman (1981a and 1981b). Individual i ( i = 1, ..., N) experiences hi,t at time t ∈ {0, ..., Ti}.

However, the econometrician only observes hi,t for t ∈ {τ i, ..., Ti} where τ i ≥ 0, and, thus, we

have an initial conditions problem. The procedure that we use accounts for this.

We now construct the likelihood function. The likelihood of a sequence of health outcomes

conditional on (θ0i, hi,τ i) for individual i for t = τ i, ..., Ti is given by

P (hi,Ti , ..., hi,τ i+1|hi,τ i ,θ0i) =
TiY

t=τ i+1

Λ (θ0iZi,t−1(2hi,t − 1)) . (4)
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We assume that the heterogeneity vector has a discrete support where it can take on one of A

values so that θi ∈ {θ1, ...,θA}. The probability weight that is associated with each point of

support is πa. This approach is similar to Heckman and Singer (1984) who use a discrete dis-

tribution to approximate the distribution of unobserved heterogeneity when estimating duration

models in the presence of heterogeneity via nonparametric maximum likelihood.6 With some

abuse of notation, let Pτ i(hi,τ i|θ0a) denote the probability of the first observation conditional on

θi = θa. We can now obtain the unconditional likelihood of observing (hi,τ i , ..., hi,Ti) via

P (hi,Ti , ..., hi,τ i) =

AX
a=1

P (hi,Ti , ..., hi,τ i|θ0a)πa = (5)

AX
a=1

TiY
t=τ i+1

Λ(θ0aZi,t−1(2hi,t − 1))Pτ i(hi,τ i|θ0a)πa.

Summing over the heterogeneity addresses the incidental parameters problem (Neyman and Scott

1948).

Our model implies a recursive definition for Pτ i(hi,τ i|θ0a). To compute this probability, first,

we let the probability of being well in t = 0 conditional on θa be given by pa ≡ P0(hi,0 = 0|θ0a).

6Heckman and Singer (1984) verify that Kiefer-Wolfowitz conditions are satisfied for a general class of duration
models with unobserved heterogeneity. These conditions ensure consistent estimation of the distribution of
unobserved heterogeneity and structural parameters in this class of duration models. In addition, they cite a
theorem from Lindsay (1983) that says that the nonparametric maximum likelihood estimate of the structural
parameters and distribution of the unobserved heterogeneity will be such that the estimate of the heterogeneity
distribution is discrete. Our approach contrasts with Heckman and Singer since we assume that the population
distribution of the heterogeneity is discrete and, hence, we do not need to verify the Kiefer-Wolfowitz conditions.
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The probability of observing hi,t conditional on θa in any subsequent period is then given by

Pt(hi,t|θ0a) =
1X

d=0

Pt(hi,t|hi,t−1 = d,θ0a)Pt−1(hi,t−1 = d|θ0a) (6)

=
1X

d=0

Λ((αa + γad+ ρ
0
aT+ φit ∗ d)(2hi,t − 1))Pt−1(hi,t−1 = d|θ0a).

Substituting, we get

Pt(hi,t|θ0a) =
Ã

1X
d=0

Λ((αa + γad+ ρ
0
aT+ φit ∗ d)(2hi,t − 1))

!
Ã

1X
d=0

Λ((αa + γad+ ρ
0
a(T− 1) + φi(t− 1) ∗ d)(2hi,t−1 − 1))

!
... (7)Ã

1X
d=0

Λ((αi + γid+ ρ
0
a1+ φi ∗ d)(2hi,1 − 1)) ∗ (pa)1−d (1− pa)

d

!
.

Using the above recursive formulation, we can calculate Pτ i(hi,τ i|θ0a).7 Of course, this is a bur-

densome task if τ i is large since computation will involve calculating the sum of the probabilities

of all possible sequences of health outcomes that could have led to hi,τ i. Fortunately, the above

recursive formulation simplifies matters greatly.

Our treatment of the initial condition in (7) imposes no additional parametric assumptions

7Heckman (1981a) proposes using this method which involves using the underlying statistical model to calcu-
late Pτ i(hi,τ i |θ0a) which can in turn be used to calculate P (hi,Ti , ..., hi,τ i). This procedure addresses the initial
condition problem that occurs when the stochastic process has been running prior to τ i. Since our underly-
ing statistical model does not have any time varying regressors, we do not need to concern ourselves with the
distribution of the time varying regressors for t < τ i. However, in the presence of time varying regressors,
auxiliary distributional assumptions must be made. In addition, the computations become rather involved. An
alternative to this is provided by Wooldridge (2005) who proposes modeling the distribution of the heterogeneity
conditional on hi,τi and any time varying regressors that may be present. Doing this does not require internal
consistency with the underlying statistical model nor does it require computations that are as involved as the
previous method, but it does require additional distributional assumptions. A third solution to the initial condi-
tions problem assumes that the process has been running sufficiently long prior to the sampling period and that
the process is in equilibrium. It then uses the stationary distribution for the process as the probability of the
first observation. However, this will not work in our case as health is non-stationary process.
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on the model beyond the assumptions that health evolves according to equation (1) and that the

heterogeneity distribution is discrete. The reason is that because equation (1) contains no time

varying regressors, we can roll the model back to t = 0. In addition, because the heterogeneity

has a discrete distribution, we can treat the probability of wellness for heterogeneity type a

at t = 0 (pa) as an additional parameter in the model. In other words, because of these two

assumptions, we do not need to make an additional parametric assumption about P0(hi,0 = 0|θ0a).

Using these probabilities, taking logs and summing over individuals, we obtain the likelihood

function:

L(β) = (8)

NX
i=1

log

Ã
AX
a=1

TiY
t=τ i+1

Λ(θ0aZi,t−1(2hi,t − 1))Pτ i(hi,τ i|θ0a)πa

!
.

where β ≡ (θ01, ...,θ0A, π1, ..., πA−1, p1, ..., pA). β is of dimension 7A− 1. L(β) was maximized

using the Fletcher-Powell algorithm, a variant of Newton’s Method, which only requires the

computation of the the gradient vector ∇L(β).8 Since evaluating the likelihood in (8) can be

time-consuming, we calculated analytical gradients, as opposed to numerical gradients.9 ,10

8Typically, when the distribution of unobserved heterogeneity is treated in the spirit of Heckman-Singer, the
LM algorithm is used for optimization. However, Newton’s method has also been used (see Baker and Melino
2000, for example).

9If we would have worked with the 5-point SRHS variable, the model would have looked something like

1(hi,t = k) =

1(ϕk−1 < αi +
5X

j=2

γji1(hi,t−1 = j) + ρ0iT+
5X

j=2

φji t ∗ 1(hi,t−1 = j) + εi,t ≤ ϕk).

The number of parameters associated with this model is 11A + 4A + (A − 1) + 4 = 16A + 3. 11A parameters
are associated with the index. 4A parameters are associated with the initial condition probabilities. (A − 1)
parameters are associated with the probability weights associated with each point of support of the heterogeneity.
Finally, the are 4 ancillary parameters in the model (the ϕ0ks). For two points of support, this model has 35
parameters.
10All computer programs and data used are available upon request from the author.
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5 Model Selection

In this section of the paper, we estimate our model while imposing various restrictions on θi in

order to investigate which versions of the model are favored by the data. We estimate the model

using two points of support for the heterogeneity with the data described in Section 2. Each point

of support of the heterogeneity corresponds to a different level of host resistance. Individuals

with high levels of host resistance are called “healthy” and individuals with low levels are called

“unhealthy.” We subscript all parameters that correspond to healthy individuals with H and

all parameters that correspond to unhealthy individuals with U . Thus, θi ∈ {θH ,θU}. Note

that the terms “healthy” and “unhealthy” refer to the individual’s level of host resistance or

overall robustness whereas the terms “ill” and “well” refer to the health state that the individual

occupies. To control for gender in a non-parametric fashion, we estimate the model separately

for men and women. The parameter estimates for men and women are displayed in Tables 1

and 2, respectively.

TABLES 1 AND 2 HERE

In column 1 of both tables, we impose the following restrictions:

ρ0i= [ρ
1, 0]0∀i, φi = 0∀i. (L)

Assumption L imposes a simple homogeneous linear trend on the model, which corresponds to

the log-odds of morbidity being linear in age. Testing restriction L is interesting because we

know that the log-odds of mortality is linear. Looking at the estimates of γH and γU in column

1 of both tables, we see substantial evidence of state dependence for both healthy and unhealthy
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people. Not surprisingly, in both tables, we see that the estimates of ρ1 are positive and highly

significant, indicating a high degree of non-stationarity. Finally, we see that our estimate of the

probability of being a healthy individual (πH) is 0.8227 for men and 0.7692 for women. This

indicates that there is a higher proportion of persistently unhealthy women in our data than

persistently unhealthy men, which is consistent with the body of research showing that women

having higher morbidity (but lower mortality) than men.11

In column 2 of both tables, we allow for a homogeneous quadratic function of age and assume:

ρ0i= [ρ
1, ρ2]0∀i, φi = 0∀i. (Q)

Looking at Tables 1 and 2, three interesting findings emerge. First, the primary state dependence

coefficients (γH and γU) do not change. Second, the probabilities of being healthy (πH) in both

tables do not change either. Third, in Table 1, we see that the log likelihood increases from

-6155.8 in column 1 to -6154.1 which yields a likelihood ratio statistic of 3.4 with a corresponding

p-value of 0.065. In Table 2, the likelihood ratio statistic is 4.6 with a corresponding p-value of

0.032. So, the data do appear to favor the quadratic model over the linear model, but only at

the 90% level for men and the 95% level for women. Thus, relative to the quadratic model, the

linear model still performs surprisingly well.

In column 3, we weaken our assumptions even further and allow for heterogeneous aging

parameters and assume:

φi = 0∀i. (HA)

11For an excellent investigation into this issue, see Case and Paxson (2005).
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Assumption HA allows for heterogeneous aging trends, but does not allow for an interaction

between lagged health and age. As before, the estimates of the primary state dependence

parameters (γH and γU) and the probability of being healthy (πH) remain unchanged. Testing

Assumption L against Assumption HA, we obtain p-values of 0.122 for men and 0.133 for women.

When compared to the simple linear model, the model with heterogeneous aging performs worse

than the quadratic model.

In column 4, we estimate the unrestricted model with heterogeneous aging parameters (ρ0i)

and a heterogeneous interaction between lagged health and age (φi). We now see that the

estimates of the primary state dependence parameters (γH and γU), are affected greatly. How-

ever, this does not necessarily imply that the resulting transition dynamics have changed. We

investigate this issue further on in the paper and show that, in fact, the transition dynamics

are relatively unaffected. Next, we see that the estimate of the probability of being healthy

(πH) remains unchanged for both men and women. Overall, we see that allowing for richer

heterogeneity and state dependence does not affect the estimates of πH . Finally, when we test

the unrestricted model against the linear model, we obtain p-values of 0.136 for men and 0.168

for women. Relative to the linear model, the unrestricted model performs worse than both the

quadratic model and the heterogeneous aging model.

Tables 1 and 2 also report the Akaike Selection Criterion (AIC) for each model. The AIC is

AIC = − 2
N
logL(bβ) + 2p

N
∝ − logL(bβ) + p

where p = dim(bβ) (Amemiya 1985). The selection criterion is to choose the model with the

smallest AIC. The AIC is reported for each model in the last row of Tables 1 and 2. As we would
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expect from our perusal of the likelihood ratios, we find that the AIC criterion favors the quadratic

model above the linear model and the linear model above the other models. Interestingly, the

data favor the simpler linear and quadratic models above the more complicated (and more

computationally intensive) models that allow for richer heterogeneity and state dependence.

This bodes well for researchers who are concerned about computing time.

6 Heterogeneity

This section of the paper investigates the role that heterogeneity plays in determining health.

To do this, we map our parameter estimates into transition probabilities and investigate the

difference in these transitions across healthy and unhealthy people. Figures 1 and 2 display

Pt(hi,t = 1|hi,t−1 = 1,θ0a) for a ∈ {H,U} and t ∈ {23, ..., 60}. Figure 1 corresponds to unhealthy

men and Figure 2 corresponds to healthy men. We graph these profiles for the linear, quadratic,

heterogeneous aging and unrestricted specifications. These figures elucidate the persistence of

illness in the PSID for both heterogeneity types.

FIGURES 1 AND 2 HERE

Figure 1 shows that illness is highly persistent for unhealthy men. Even at age 25, illness

has roughly a 50% chance of remaining at age 26. At age 60, the persistence of illness is greater

than 85%. Interestingly, the estimated profiles do not vary across model specifications.

Figure 2 displays the persistence of illness for healthy men. This figure shows much lower

persistence than Figure 1. At age 25, illness has a 5% chance of persisting until the next year.
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By age 60, this probability is somewhere between 0.3 and 0.4. These transition profiles differ

from one-another substantially more than those in Figure 1. However, this is exactly what we

would expect to see since illness tends to be less prevalent among healthier men and, thus, the

data should not contain an abundance of information on Pt(hi,t = 1|hi,t−1 = 1,θ0H). Accordingly,

we would expect greater variation across models in the estimates of this transition probability.

FIGURES 3 AND 4 HERE

Figures 3 and 4 display the probability of moving from hi,t−1 = 0 to hi,t = 1 for healthy and

unhealthy men. These figures depict the probability of the onset of illness or equivalently one

minus the persistence of wellness. Figure 3 shows a very high probability of the onset of illness

among unhealthy men. In contrast, Figure 4 shows a very low probability of illness manifesting

itself among healthy men. Even at age 60, this probability is less than 0.05. So, while we

see that illness is a highly persistent state for unhealthy men, we see that wellness is a highly

persistent state for healthy men. Finally, in both figures, all four models yield similar transition

profiles.

FIGURES 5 AND 6 HERE

Figures 5 displays Pt(hi,t = 1|hi,t−1 = 1,θ0a) for a ∈ {H,U} and Figure 6 displays Pt(hi,t =

1|hi,t−1 = 0,θ0a) for a ∈ {H,U}. These figures gives us a notion of the degree of heterogeneity

that is present in the data. Both figures show large variation across healthy and unhealthy

17



people suggesting that there is substantial heterogeneity present in the data.12

FIGURES 7 AND 8 HERE

Finally, in Figures 7 and 8, we compare the transition dynamics of men to those of women.

Figure 7 displays Pt(hi,t = 1|hi,t−1 = 1,θ0a) for a ∈ {H,U} for both men and women and Figure

8 displays Pt(hi,t = 1|hi,t−1 = 0,θ0a) for a ∈ {H,U} for men and women. Each figure displays

a total of 16 profiles. Interestingly, these figures show very similar profiles for men and women

suggesting that the primary differences in morbidity rates across sexes are being driven by a

relatively higher proportion of of unhealthy women (i.e. a higher πH) rather than substantial

differences in transition profiles.

7 State Dependence

This section of the paper is concerned with quantifying the degree of state dependence in the

health process. This exercise will allow us to assess the dynamic consequences of hypothetical

medical interventions which improve a person’s health at a point in time. The reason for this

is that if the degree of state dependence is large, then medical interventions which move people

from illness to wellnes will have large dynamic benefits or multiplier effects.

12In this paper, we do not provide a formal test of the null that the data contain no heterogeneity. A formal
test for the presence of any unobserved heterogeneity in the data would test the null hypothesis that πH = 0.
However, deriving the distribution theory of this statistic is a non-trivial task since, under the null, there are
unidentified nuisance parameters.
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To do this, we calculate

SD(t;θi) ≡ Pt(hi,t = 1|hi,t−1 = 1,θ0i)− Pt(hi,t = 1|hi,t−1 = 0,θ0i). (9)

SD(t;θi) gives us the reduction in the probability of illness at t resulting from a medical interven-

tion that changes the health state of individual i from illness to wellness at t− 1. Knowledge of

these functions allows us to better understand at what ages and for whom medical interventions

will be most potent.

FIGURE 9 HERE

Figure 9 displays SD(t;θa) for t ∈ {23, ..., 60} and a ∈ {H,U} for men. Prior to age

60, we see that there is more state dependence among the unhealthy than among the healthy.

The implication then is that interventions which target people below 60 years of age will have

greater dynamic effects on the less robust individuals in society than on society’s more robust

individuals. We see that state dependence among unhealthy men is the greatest between ages

40 and 45. In contrast, state dependence for healthy men increases until age 60 suggesting

that it does not peak until sometime thereafter. So, if policy aims to improve the health of

society’s most disadvantaged in terms of health (i.e. those for whom θi = θU) then the case

for medical interventions targeting people in middle age or younger is strengthened as this is

where the degree of state dependence among the unhealthy is greatest.13 Figure 9 shows a

general agreement among the four models in the estimates of SD(t;θU). There is also a general

13In other words, an intervention which targets all middle-aged people will have a greater impact on unhealthy
individuals than on healthy individuals.

19



consensus among models in the estimates of SD(t;θH); although, the unrestricted model with

time-variant state dependence parameters is somewhat of an outlier.

Figure 10 displays SD(t;θa) for t ∈ {23, ..., 85} and a ∈ {H,U} for men. Because we

estimated our models using a sample of people between the ages of 23 and 60, Figure 10 shows

out-of-sample predictions. The figure shows that the degree of state dependence among the

unhealthy declines in old age. In contrast, we see a precipitous rise in state dependence among

the healthy beyond age 60. Among the healthy, we see greater dispersion among the four models

past age 60 than before it. We also see that, for the unrestricted model, the heterogeneous aging

model (Assumption HA) and the quadratic model (Assumption Q), that state dependence is

greatest around 80 years of age. For the linear model, state dependence is increasing until

85 years of age. These out-of-sample predictions suggest that, among the elderly, there is

considerably more state dependence among the healthy than the unhealthy so that medical

interventions which target the elderly will disproportionately affect the most robust people in

society.

Figures 11 and 12 display SD(t;θa) for a ∈ {H,U} for women. Figure 11 displays until age

60 and Figure 12 displays until age 85. As we see for unhealthy men, we also see that state

dependence for unhealthy women is the greatest between ages 40 and 45. However, unhealthy

women exhibit slightly less state dependence than unhealthy men, overall. In addition, we see

that the highest degree of state dependence for healthy women does not occur until past age

60 just as it does for healthy men. In contrast to healthy men, however, state dependence for

healthy women peaks between ages 70 and 75 and is lower overall than it is for men.
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8 Conclusions

The paper investigated the dynamics of health status in the PSID. To do this, we estimated

several specifications of a flexible model describing the evolution of health over the life-course

which allowed for two sources of persistence: unobserved heterogeneity and state dependence.

The data favored the models with the simpler forms of heterogeneity and state dependence above

the more complicated models. In addition, we found that both unobserved heterogeneity and

state dependence play important roles in the determination of health. However, the magnitude

of state dependence depended critically on the individual’s age and unobserved characteristics.

The results of this paper shed light on how health policy should be conducted and, thus,

have implications for the gradient: the much-studied but little-understood statistical correlation

between health and socioeconomic status (Adler, et al 1994). If it is the case that the gradient

is largely determined by the causal impact of health status on earnings and wealth - as suggested

by Smith (1999) - then the relevant policy prescription is to directly target health via medical

interventions (Deaton 2002). The argument for medical interventions is further strengthened if

health exhibits a high degree of state dependence as this implies that the intervention will have

large dynamic effects which operate through the causal effect of health on itself.

Our results indicate that, among the “health-deprived” or those who are innately less-able

to cope with health shocks, there is a large degree of state dependence through middle age, but

its magnitude dissipates greatly in old age. However, among the “health-endowed” or those

who are innately better-able to cope with health shocks, we find the opposite so that there is

very little state dependence early in life, but a large degree of it in old age. The implication is
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then that interventions which target people earlier on in the life-course will have benefits that

disproportionately accrue to the disadvantaged. In contrast, interventions that target the elderly

will disproportionately benefit those who are advantaged in terms of their heterogeneity. Now, if

it is the case that being health-endowed is correlated with socioeconomic status as is suggested by

Halliday (2004), then interventions which target the elderly would likely improve the health of the

rich while leaving the health of the poor relatively unaffected, thereby, exacerbating the gradient.

This is not to argue that health policies which target the elderly are undesirable Indeed, any

policy that improves health - whether it is the health of the advantaged or disadvantaged - is

good. We merely want to point out that health policies that target people at different points in

the life-cycle are likely to have different effects on the gradient.

This paper suggests several further research topics. First, additional work should be done

to incorporate mortality into the existing framework, while addressing the selection bias that

it induces. As discussed by Wooldridge (2000), correcting selection bias due to non-random

attrition - which encompasses mortality - is difficult, particularly, when the econometrician is

unwilling to make stringent assumptions. The reason is that while the sample may be random

in the initial time period, the sample is, generally, non-random for every subsequent period.

Consequently, we expect any estimates of a transition probability in these subsequent periods to

suffer from selection bias even if mortality were to be added as a third (absorbing) state.

Second, further work should estimate models with higher orders of state dependence. The

main challenge of working with models with higher orders of state dependence concerns treating

the initial condition. In the case of first order state dependence calculation of the probability

of the first observation involves the summation of 2τ i probabilities. In the case of second order
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state dependence, we would have to sum 4τ i−1 probabilities. Generally, for Kth order state

dependence, we have to sum over
¡
2K
¢τ i−K sequences. Thus, allowing for higher orders of state

dependence is likely to increase the computational burden by a fairly large margin.

Finally, additional work should estimate structural models that incorporate health as a state

variable. While there have been some studies that have done so such as Rust and Phelan (1997)

and Arcidiacono, Heig and Sloan (2004), this is still a relatively new field. Particular attention

should be paid to how assumptions about the health process affect estimation results. Typically,

in structural models, assumptions are made for the sake of computational tractability. Such an

exercise would allow us to see how innocuous these assumptions are and, thus, would shed light

on the issue of identification in structural estimation.
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Figure 1: Persistence of Illness, Unhealthy Men
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Figure 2: Persistence of Illness, Healthy Men
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Figure 3: Onset of Illness, Unhealthy Men
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Figure 4: Onset of Illness, Healthy Men
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Figure 5: Persistence of Illness, Men
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Figure 6: Onset of Illness, Men
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Figure 7: Persistence of Illness, Men and Women
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Figure 8: Onset of Illness, Men and Women
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Figure 9: State Dependence, Men
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Figure 10, State Dependence, Men, Out-of-Sample
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Figure 11: State Dependence, Women
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Figure 12, State Dependence, Women, Out-of-Sample
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Table 1: Descriptive Statistics
Women

Mean 25% Quantile 75% Quantile Standard Deviation
SRHS (5-Point) 2.22 1 3 0.99
SRHS (2-Point) 0.10 0 0 0.30
Age 39.10 31 46 9.82
Panel Duration∗ 8.21 4 14 4.45
N = 4186∗∗

Men
SRHS (5-Point) 2.10 1 3 0.98
SRHS (2-Point) 0.08 0 0 0.27
Age 39.34 32 46 9.56
Panel Duration∗ 8.44 4 14 4.46
N = 3923∗∗

∗Panel duration refers to the length of time that the individual was in the panel.
∗∗N is the number of individual observations, not individual-time observations.
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Table 2: Parameter Estimates - Men

Parameter Variable (1) (2) (3) (4)

αH

αU

Cons

−6.5898
(0.2107)
−3.3280
(0.2034)

−5.5831
(0.6644
−2.2256
(0.6654)

−6.2433
(1.2888)
−2.3281
(0.7636)

−6.3772
(1.3299)
−2.3608
(0.7853)

γH

γU

hi,t−1

2.3309
(0.2711)
1.6855
(0.1210)

2.3056
(0.2602)
1.6885
(0.1194)

2.2657
(0.2662)
1.6972
(0.1163)

0.0586
(1.4489)
1.6811
(0.5061)

ρ1H

ρ1U

age/10
0.5661
(0.0512)

0.0449
(0.3309)

0.2674
(0.6056)
0.1209
(0.3810)

0.3583
(0.6294)
0.1426
(0.3823)

ρ2H

ρ2U

(age/100)2 − 6.3697
(4.0547)

4.6724
(6.8829)
5.1034
(4.6566)

3.3898
(7.1765)
4.7766
(4.6534)

φH

φU

(age/10) ∗ hi,t−1 − − −

0.4285
(0.2716)
0.0050
(0.1193)

πH
0.8227
(0.0031)

0.8246
(0.0030)

0.8224
(0.0042)

0.8226
(0.0042)

pH

pU

0.9828
(0.0002)
0.8847
(0.0078)

0.9812
(0.0002)
0.8919
(0.0070)

0.9807
(0.0002)
0.8958
(0.0079)

0.9796
(0.0042)
0.9000
(0.0073)

L(bβ) −6155.8 −6154.1 −6152.9 −6151.6

Likelihood Ratio∗ − 3.4
(0.065)

5.8
(0.122)

8.4
(0.136)

AIC∗∗ 6163.8 6163.1 6163.9 6164.6

∗The likelihood ratio statistic comparing columns (2), (3) and (4) to column (1).
∗∗AIC = −L(bβ) + dim(bβ) ∝ −2

N
L(bβ) + 2

N
dim(bβ)

+Standard Errors are given in parentheses.
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Table 3: Parameter Estimates - Women

Parameter Variable (1) (2) (3) (4)

αH

αU

Cons

−6.7052
(0.2049)
−3.4484
(0.1864)

−5.6806
(0.5511)
−2.4152
(0.5475)

−4.7666
(1.1776)
−2.6885
(0.6343)

−4.9900
(1.2609)
−2.5774
(0.6437)

γH

γU

hi,t−1

2.1615
(0.2434)
1.5781
(0.0958)

2.1273
(0.2442)
1.5834
(0.0953)

2.1182
(0.2500)
1.5894
(0.0956)

1.8592
(1.2819)
1.1173
(0.4257)

ρ1H

ρ1U

age/10
0.6440
(0.0443)

0.1090
(0.2748)

−0.3237
(0.5418)
0.2533
(0.3271)

−0.2295
(0.5677)
0.2585
(0.3245)

ρ2H

ρ2U

(age/100)2 − 6.5370
(3.3753)

11.3870
(6.0463)
4.7052
(4.0856)

10.4251
(6.2427)
3.8708
(3.9990)

φH

φU

(age/10) ∗ hi,t−1 − − −

0.0440
(0.2658)
0.1180
(0.1051)

πH
0.7692
(0.0073)

0.7709
(0.0072)

0.7708
(0.0047)

0.7710
(0.0072)

pH

pU

0.9781
(0.0002)
0.8537
(0.0103)

0.9767
(0.0003)
0.8580
(0.0099)

0.9767
(0.0002)
0.8575
(0.0076)

0.9776
(0.0002)
0.8537
(0.0106)

L(bβ) −7556.5 −7554.2 −7553.7 −7552.6

Likelihood Ratio∗ -
4.6

(0.032)
5.6

(0.133)
7.8

(0.168)
AIC∗∗ 7564.5 7563.2 7564.7 7565.6

∗The likelihood ratio statistic comparing columns (2), (3) and (4) to column (1).
∗∗AIC = −L(bβ) + dim(bβ) ∝ −2

N
L(bβ) + 2

N
dim(bβ)

+Standard Errors are given in parentheses.
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