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Abstract

We consider the identification of state dependence in a non-stationary process of bi-

nary outcomes within the context of the dynamic logit model with time-variant transition

probabilities and an arbitrary distribution for the unobserved heterogeneity. We derive a

simple identification result that allows us to calculate a test for state dependence in this

model. We also consider alternative tests for state dependence that will have desirable

properties only in stationary processes and derive their asymptotic properties when the

true underlying process is non-stationary. Finally, we provide Monte Carlo evidence that

shows a range of non-stationarity in which the effects of mis-specifying the binary process

as stationary are not too large.
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1 Introduction

Economic data often display serial correlation. This is true in the case of labor force participa-

tion, crime, accident occurrence and numerous measures of health. However, the source of this

persistence is often unclear. One possible source is an unobserved time-invariant propensity to

experience a given economic outcome or unobserved heterogeneity. Another potential source is

that experiencing a particular event today may alter a person’s preferences or opportunities and,

thus, impact the probability that the same event will occur in the future. Heckman (1981) refers

to this second source of the persistence as “true state dependence.” Identification of true state

dependence is of particular interest to social scientists because its presence implies that policies

that impact an economic outcome today will have dynamic consequences.

Because of this, econometricians have devoted much time and effort towards the identification

of state dependence. Much of this work has used random effects estimators in which the re-

searcher specifies a distribution for the heterogeneity and then maximizes a parametric likelihood

function. However, this approach is limited as it imposes ad hoc distributional assumptions on

the data. More recently, Honoré and Kyriazidou (2000) have relaxed the assumptions of the

random effects approach and developed a fixed effects estimator for a discrete choice model with

lagged dependent variables and unobserved heterogeneity. Their approach builds upon the con-

ditional logit model of Chamberlain (1985) and, thus, imposes no assumptions on the distribution

of the heterogeneity.

The Honoré and Kyriazidou estimator requires conditioning on subsets of the data for which
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the exogenous regressors are equal in at least two separate time periods. While this is certainly

a weakness of the estimator, Hahn (2001) and Honoré and Tamer (2004) have speculated that

this conditioning procedure is unavoidable and that point estimation of the model’s parameters

is impossible without it. Nevertheless, this procedure has an undesirable property in that it

precludes the use of many explanatory variables such as age, cohort and/or time effects. Poten-

tially, this is a major drawback since many economic outcomes including labor force participation

and health vary with age and are, thus, non-stationary processes.

In this paper, we investigate the impact that non-stationarity in the underlying data gen-

erating process has on the identification of state dependence in the dynamic conditional logit

model. To do this, first, we derive a simple result that allows us to identify state dependence in

the presence of time-varying transition probabilities. If the model also includes an unbounded

regressor, the logistic assumption on the unobserved period-specific shocks is not only sufficient,

but also necessary for the identification result to hold. We also show how the result can easily

be used to derive a test for the presence of state dependence. In addition, we consider the

properties of tests for state dependence which erroneously specify the data generating process

as stationary when the true underlying process is non-stationary. Finally, we conduct Monte

Carlo experiments which suggest that there is an “acceptable” range of non-stationarity in which

mis-specifying the data generating process as stationary does not matter too much.

The balance of this paper is organized as follows. Section 2 discusses our main identification

result. Section 3 uses this result to derive a test statistic for the presence of state dependence

in a non-stationary process. Section 4 discusses the asymptotic properties of some mis-specified

tests. Section 5 concludes.

3



2 A Very Simple Identification Result

In this section, we establish a simple result that allows for the identification of state dependence

in non-stationary processes. We let {yi,t}Tt=0 denote a sequence of binary outcomes such that

yi,t ∈ {0, 1}. We assume that the data are generated by the following binary choice model:

yi,t = 1(αi + yi,t−1γ + ft(xi,t) + εi,t ≥ 0) (1)

for i = 1, ..., N and t = 1, ..., T . In equation (1), αi is an unobserved individual-specific effect, γ

is the state-dependence coefficient, xi,t is a vector of strictly exogenous regressors and εi,t is an

unobserved error term. If γ > 0 (γ < 0), then the process {yi,t}Tt=0 exhibits positive (negative)

state dependence. ft(xi,t) is a time-varying function of the strictly exogenous regressors. If xi,t

is a constant then ft(xi,t) simply becomes a time dummy (i.e ft(xi,t) = δt). We assume that

εi,t is i.i.d. across time, is independent of the vector (αi, xi,1, ..., xi,T , yi,0) and follows the logistic

distribution which we denote by Λ(h) ≡ P (εi,t ≤ h). Finally, we assume that we observe i.i.d.

draws of (yi,T , ..., yi,0, xi,1, ..., xi,T ) from some underlying population.

To derive our identification result, we define the events:

A1 = {yi,2 = 0, yi,1 = 1, yi,0 = 1};A2 = {yi,2 = 1, yi,1 = 0, yi,0 = 1} (2)

B1 = {yi,2 = 0, yi,1 = 1, yi,0 = 0};B2 = {yi,2 = 1, yi,1 = 0, yi,0 = 0} (3)
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For γ ≥ 0, the assumptions of the model are sufficient to show that

P (A1|xi, αi)

P (A2|xi, αi)
=

(1− Λ(αi + γ + f2(xi,2)))Λ(αi + γ + f1(xi,1))

Λ(αi + f2(xi,2))(1− Λ(αi + γ + f1(xi,1)))

≥ (1− Λ(αi + γ + f2(xi,2)))Λ(αi + γ + f1(xi,1))

Λ(αi + γ + f2(xi,2))(1− Λ(αi + γ + f1(xi,1)))
(4)

= exp(f1(xi,1)− f2(xi,2)).

where xi ≡ (xi,1, xi,2). Similarly, for γ ≥ 0, we will also have that

P (B1|xi, αi)

P (B2|xi, αi)
=

(1− Λ(αi + γ + f2(xi,2)))Λ(αi + f1(xi,1))

Λ(αi + f2(xi,2))(1− Λ(αi + f1(xi,1)))

≤ (1− Λ(αi + f2(xi,2)))Λ(αi + f1(xi,1))

Λ(αi + f2(xi,2))(1− Λ(αi + f1(xi,1)))
(5)

= exp(f1(xi,1)− f2(xi,2)).

In the presence of negative state dependence, the inequalities (4) and (5) are reversed. Accord-

ingly, denoting Π(xi) ≡ [1 + exp(f2(xi,2)− f1(xi,1))]
−1, we will have that

P (A1|A1 ∪A2, xi, αi) ≥ Π(xi) ≥ P (B1|B1 ∪B2, xi, αi) for γ ≥ 0 and all αi (6)

P (A1|A1 ∪A2, xi, αi) ≤ Π(xi) ≤ P (B1|B1 ∪B2, xi, αi) for γ ≤ 0 and all αi. (7)

Clearly, when there is no state dependence, the model becomes the static conditional logit model

and (4), (5), (6) and (7) will hold with strict equality.

Note that all of our statements, thus far, have been conditional on the unobserved hetero-

geneity. This poses problems because, while the probabilities P (A1|A1 ∪A2, xi) and P (B1|B1 ∪

B2, xi) can easily be estimated non-parametrically, the probabilities P (A1|A1 ∪ A2, xi, αi) and
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P (B1|B1 ∪ B2, xi, αi) cannot be estimated as they depend on αi. However, the fact that Π(xi)

provides both an upper and a lower bound on the unobserved probabilities for all values of αi

and only varies across individuals through observables (i.e via xi) allows us to make a statement

that is no longer conditional on the heterogeneity.

To see this, let G(αi|A1 ∪A2, xi) denote the distribution of the heterogeneity conditional on

(A1 ∪ A2, xi) and let F (αi|B1 ∪ B2, xi) denote the distribution of the heterogeneity conditional

on (B1 ∪B2, xi). We impose no assumptions on either distribution. The inequalities in (6) and

(7) imply that

P (A1|A1 ∪A2, xi) =
Z

P (A1|A1 ∪A2, xi, αi)dG(αi|A1 ∪A2, xi) ≥ Π(xi) for γ ≥ 0 (8)

and

P (B1|B1 ∪B2, xi) =
Z

P (B1|B1 ∪B2, xi, αi)dF (αi|B1 ∪B2, xi) ≤ Π(xi) for γ ≥ 0. (9)

These inequalities will be strict inequalities when γ > 0, but will hold with equality when γ = 0.

When γ < 0, the inequalities will be reversed. This gives us Proposition 1 which is our key

identification result.

Proposition 1 Assume that the data generating process for {yi,t}3t=2 is given by equation (1)

and that εi,t is logistically distributed and independent of (αi, yi,0, xi). Then we will have that

P (A1|A1 ∪A2, xi) R P (B1|B1 ∪B2, xi) forγ T 0.
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One remaining question is whether or not the logistic assumption is necessary, in addition

to sufficient for our results to obtain. Recent work by Magnac (2004) and older work by

Chamberlain (1992) sheds light on this issue. In these papers, it is shown that, in a static

binary choice model with unbounded exogenous covariates, the only distribution function such

that εi,t is independent across time and such that the sum of the binary variables is sufficient

for αi is the logistic distribution. This, in turn, implies that the logistic assumption would also

be necessary for our results to hold provided that some element of xi,t has unbounded support.

The reason is that our results depend crucially on the existence of a sufficient statistic for the

heterogeneity when no state dependence is present since the sufficient statistics allow us to

separate the probabilities P (A1|A1 ∪A2, xi, αi) and P (B1|B1 ∪B2, xi, αi) with Π(xi) which does

not depend on αi. Accordingly, without the logistic assumption, it is not be possible to separate

these probabilities with a constant that does not depend on the unobserved heterogeneity.

3 Testing for State Dependence without Stationarity

It is a straightforward exercise to use the results of the previous section to derive a test statistic

for the presence of state dependence in a non-stationary binary process. While it is fairly obvious

from Proposition 1 how this can be done simply by constructing a test of a difference in means,

we still provide the details for the sake of completeness. For the sake of simplicity, throughout

the remainder of the paper, we only consider the case where the only element of xi,t is a time

dummy so that f1(xi,1) = δ1 and f2(xi,2) = δ2. In this section, we provide the main ideas

behind the test. In the appendix, we provide a more detailed argument for this section’s main

proposition.
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We start out by defining 1i (A1) and 1i (A1 ∪A2) to be indicators which are turned on when

the events A1 and A1 ∪ A2 occur for individual i. We can easily estimate the probability

P (A1|A1 ∪A2) ≡ πA(γ, δ2, δ1) via

bπA =
NP
i=1

1i (A1)

NP
i=1

1i (A1 ∪A2)
. (10)

We define bπB, the estimate of P (B1|B1 ∪ B2) ≡ πB(γ, δ2, δ1), in an analogous way. Clearly,

equation (10) can easily accommodate discrete regressors simply by counting the number of

times the events A1 and A1∪A2 occur among the sub-population for whom xi = d. Next, we let

bπA1 and bπA12 denote estimates of P (A1) and P (A1 ∪ A2). We define bπB1 and bπB12 in a similar
fashion. In the appendix, we show that the asymptotic variances of bπA and bπB are

bσ2A = bπA1bπ3A12 (bπA12 − bπA1) (11)

and

bσ2B = bπB1bπ3B12 (bπB12 − bπB1) . (12)

Finally, note that because the events A1∪A2 and B1∪B2 are mutually exclusive and because the

sample is i.i.d., the covariance between bπA and bπB is zero. We can now calculate the statistic
sd1(γ, δ2, δ1) =

bπA − bπBµbσ2AB
N

¶1/2 (13)
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where bσ2AB ≡ bσ2A + bσ2B. Next, we note that
sd1(γ, δ2, δ1) =

√
N

⎛⎜⎜⎜⎝
µbπA − πA(γ, δ2, δ1)bσAB

¶
| {z }

XN (γ,δ2,δ1)

−
µbπB − πB(γ, δ2, δ1)bσAB

¶
| {z }

YN (γ,δ2,δ1)

+

µ
πA(γ, δ2, δ1)− πB(γ, δ2, δ1)bσAB

¶
| {z }

ZN (γ,δ2,δ1)

⎞⎟⎟⎟⎠ . (14)

In the appendix, we show that
√
N(XN(γ, δ2, δ1)−YN(γ, δ2, δ1)) will converge to aN(0, 1) random

variable regardless of the values of (γ, δ2, δ1). However, Proposition 1 tells us that ZN(γ, δ2, δ1)

will only be zero when γ = 0; otherwise, it will be positive when γ > 0 and negative when γ < 0.

Consequently, sd1(γ, δ2, δ1) will converge to a standard normal random variable when no state

dependence is present, but will explode otherwise. This gives us Proposition 2.

Proposition 2 Under the hypotheses of Proposition 1, we will have that

sd1(γ, δ2, δ1)
d→ N(0, 1) for γ = 0.

and

sd1(γ, δ2, δ1)→ ±∞ for γ ≷ 0

for all δ1 and δ2.

Proposition 2 can easily be used to construct a one-sided test of size ϕ of H0 : γ = 0

against Ha : γ > 0. Particularly, if we let Φ(.) denote the CDF of a N(0, 1) random variable

and zϕ ≡ Φ−1(1 − ϕ), then a test of size ϕ can be constructed if we reject the null whenever

sd1(γ, δ2, δ1) > zϕ. Because sd1(γ, δ2, δ1) shoots off to positive infinity whenever γ > 0, the
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power of this test will approach unity as the sample size increases. Thus, we have the following

corollary.

Corollary 3 Let ϕ ∈ (0, 1) and zϕ ≡ Φ−1(1 − ϕ). Under the hypotheses of Proposition 1, we

will have that

lim
N→∞

P (sd1(γ, δ2, δ1) > zϕ; γ, δ2, δ1) = ϕ for γ = 0

lim
N→∞

P (sd1(γ, δ2, δ1) > zϕ; γ, δ2, δ1) = 1 for γ > 0

for all δ1 and δ2.

4 Properties of Some Mis-Specified Tests

In this section, we explore the properties of some tests for state dependence which erroneously

specify the data generating process as stationary. The goal of this exercise is to better understand

the consequences of mis-specifying a non-stationary process as stationary. To do this, we consider

two tests:

sd2(γ, δ2, δ1) =
bπA − 1

2µbσ2A
N

¶1/2 (15)

and

sd3(γ, δ2, δ1) =
bπB − 1

2µbσ2B
N

¶1/2 . (16)

When the underlying data generating process is stationary, arguments similar to those above

suggest that sd2(γ, δ2, δ1) and sd3(γ, δ2, δ1) will have desirable properties. Particularly, whenever
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δ1 = δ2, the statistics will have the same asymptotic properties as sd1(γ, δ2, δ1) and, thus,

they will converge to a N(0, 1) random variable when γ = 0, but will explode when γ 6= 0.

However, when the underlying data generating process is non-stationary, these statistics will have

less desirable properties as they are predicated upon a mis-specification of the data generating

process. For the remainder of this section, we assume that δ2 > δ1 and investigate the properties

of sd2(γ, δ2, δ1) and sd3(γ, δ2, δ1) under these conditions.

First, we consider the properties of sd2(γ, δ2, δ1). These properties will depend crucially

upon the behavior of πA(γ, δ2, δ1) as the degrees of state dependence and non-stationarity vary.

These properties are summarized in the next lemma. A proof can be found in the appendix.

Lemma 4 πA(γ, δ2, δ1) has the following properties:

∂πA(γ, δ2, δ1)

∂γ
> 0,

∂πA(γ, δ2, δ1)

∂δ2
< 0,

∂πA(γ, δ2, δ1)

∂δ1
> 0

Moreover, we will also have that

πA(γ, δ2, δ1) = Π(δ2, δ1) <
1

2
for γ = 0 and δ2 > δ1

and that

lim
γ→∞

πA(γ, δ2, δ1) ≡ lA(δ2, δ1) < 1 for any (δ2, δ1)

where lA(δ2, δ1) > 1
2
for δ2 = δ1.

These properties of πA(γ, δ2, δ1) can be seen in Figure 1.1 The figure shows πA(γ, δ2, δ1) as

1For all the functions in the figure, we allow δ1 = 0 but we vary δ2 and γ. We assume that αi ∈ {−0.75, 0, 0.75}
where each of the mass points occurs with equal probability.
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a function of γ for varying degrees of non-stationarity (i.e. different values of (δ2, δ1)). The top

function corresponds to (δ2, δ1) = (0.1, 0), the middle function corresponds to (δ2, δ1) = (0.5, 0)

and the bottom function corresponds to (δ2, δ1) = (0.75, 0). We see that πA(γ, δ2, δ1) increases

with γ over the interval [0,∞) and that πA(0, δ2, δ1) < 1
2
and πA(∞, δ2, δ1) < 1. Moreover,

πA(γ, δ2, δ1) decreases as the degree of non-stationarity rises. For example, for the case where

(δ2, δ1) = (0.5, 0) and (δ2, δ1) = (0.75, 0), πA(γ, δ2, δ1) is furthest away from 1
2
when γ = 0 but

becomes gradually closer to 1
2
as the degree of state dependence increases. This is the exact

opposite of we would like if sd2(γ, δ2, δ1) were to be used to test a null of no state dependence

against an alternative hypothesis of positive state dependence. In fact, we will see that tests for

state dependence that use sd2(γ, δ2, δ1) will have extremely low power in the presence of high

degrees of non-stationarity.

Lemma 4 allows us to discuss the asymptotic behavior of sd2(γ, δ2, δ1) when δ2 > δ1. To

facilitate the discussion, we begin by writing

sd2(γ, δ2, δ1) =
√
N

µbπA − πA(γ, δ2, δ1)bσA
¶
+
√
N

µ
πA(γ, δ2, δ1)− 1

2bσA
¶

(17)

First, we consider the case where lA(δ2, δ1) > 1
2
.2 In this case, given the arguments above, there

must exist some γ∗ > 0 such that πA(γ∗, δ2, δ1) = 1
2
since πA(γ, δ2, δ1) increases continuously

from Π(δ2, δ1) <
1
2
to lA(δ2, δ1) >

1
2
with γ. Consequently, the second term in equation (17)

will be zero when γ = γ∗ and sd2(γ
∗, δ2, δ1) will converge to N(0, 1). If γ > γ∗ (γ < γ∗), then

2Formally, a sufficient (but not necessary) condition for lA > 1
2 is

exp(αi + 2δ2 − δ1)

1 + exp(αi + δ2)
< 1 for all αi

which will be true provided that δ2 − δ1 is not too large. This can be seen in equation (37) in the appendix.
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sd2(γ
∗, δ2, δ1) will go to positive (negative) infinity. Next, in the case where lA(δ2, δ1) < 1

2
, we

will have that πA(γ, δ2, δ1) < 1
2
for all γ. Accordingly, if lA(δ2, δ1) < 1

2
, sd2(γ, δ2, δ1) will always

explode to minus infinity.3 These arguments are summarized in Proposition 5.

Proposition 5 Let δ2 > δ1. Under the hypotheses of Proposition 1 and for lA(δ2, δ1) > 1
2
, we

will have that

sd2(γ, δ2, δ1)
d→ N(0, 1) for γ = γ∗

and

sd2(γ, δ2, δ1)→ ±∞ for γ ≷ γ∗ .

where γ∗ is implicitly defined by πA(γ∗, δ2, δ1) = 1
2
. For lA(δ2, δ1) < 1

2
, we will have that

sd2(γ, δ2, δ1)→ −∞ for any γ .

To better understand the ramifications that Proposition 4 has for the detection of state

dependence, once again, we consider a one-sided test of H0 : γ = 0 against Ha : γ > 0 where we

reject the null whenever sd2(γ, δ2, δ1) > zϕ where zϕ ≡ Φ−1(1− ϕ). Clearly, ϕ is the size of this

test when δ1 = δ2.4 ϕ is what the size of the test would be if the data generating process were

correctly specified. A direct implication of Proposition 5 is Corollary 6 which summarizes the

properties of this test’s power function.

Corollary 6 Let ϕ ∈ (0, 1), zϕ ≡ Φ−1(1−ϕ) and δ2 > δ1. Under the hypotheses of Proposition

3There is a degenerate case in which there exists a pair (δ2, δ1) such that lA(δ2, δ1) = 1
2 . However, if lA(δ2, δ1) =

1
2 then this means that πA(γ, δ2, δ1) is only

1
2 in the limit i.e. πA(∞, δ2, δ1) =

1
2 . In this event, we will have that

sd2(∞, δ2, δ1)
d→ N(0, 1). While this is a theoretical possibility, it really is not of practical concern to us.

4If δ1 = δ2 = δ, then sd2(0, δ, δ)
d→ N(0, 1). Consequently, with stationary transition probabilities, the size of

this test will be given by ϕ = 1− Φ(zϕ).
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1 and for lA(δ2, δ1) > 1
2
, we will have that

lim
N→∞

P (sd2(γ, δ2, δ1) > zϕ; γ, δ2, δ1) = 0 for γ < γ∗

lim
N→∞

P (sd2(γ, δ2, δ1) > zϕ; γ, δ2, δ1) = ϕ for γ = γ∗

lim
N→∞

P (sd2(γ, δ2, δ1) > zϕ; γ, δ2, δ1) = 1 for γ > γ∗

where γ∗ is implicitly defined by πA(γ∗, δ2, δ1) = 1
2
. For lA(δ2, δ1) < 1

2
, we will always have

lim
N→∞

P (sd2 > zϕ; γ, δ2, δ1) = 0 for any γ.

The above corollary tells us that asymptotically, for lA(δ2, δ1) > 1
2
(which should be true when

the degree of non-stationarity is not too large), tests based on sd2(γ, δ2, δ1) will fail to detect

any state dependence for γ ∈ (0, γ∗). If γ∗ is small, this should not be problematic particularly

in smaller samples when the second term in (17) will not be that large. However, because γ∗

gets larger as the process becomes more non-stationary, large degrees of non-stationarity will

have more pernicious ramifications. In the case where lA(δ2, δ1) < 1
2
, the test will always fail to

detect state dependence even when γ is large. In summary, when the process is non-stationary,

tests based on sd2(γ, δ2, δ1) will not detect state dependence often enough and will, thus, have

low power.

Finally, we turn the discussion to the behavior of sd3(γ, δ2, δ1). The behavior of this statistic

will depend critically on the properties of πB(γ, δ2, δ1) which we state in the next lemma. The

proof is trivial. Nevertheless, it still can be found in the appendix.
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Lemma 7 πB(γ, δ2, δ1) has the following properties:

∂πB(γ, δ2, δ1)

∂γ
< 0,

∂πB(γ, δ2, δ1)

∂δ2
< 0,

∂πB(γ, δ2, δ1)

∂δ1
> 0

Moreover, we will also have that

πB(γ, δ2, δ1) = Π(δ2, δ1) <
1

2
for γ = 0 and any (δ2, δ1)

and that

lim
γ→∞

πB(γ, δ2, δ1) = 0 for any (δ2, δ1).

These properties of πB(γ, δ2, δ1) are illustrated in Figure 2. As was the case for Figure 1,

this figure shows πB(γ, δ2, δ1) as a function of γ for varying degrees of non-stationarity. Once

again, the top function corresponds to (δ2, δ1) = (0.1, 0), the middle function corresponds to

(δ2, δ1) = (0.5, 0) and the bottom function corresponds to (δ2, δ1) = (0.75, 0). We see that

πB(0, δ2, δ1) = Π(δ2, δ1) <
1
2
and that πB(γ, δ2, δ1) decreases with γ thereafter over the interval

[0,∞) until it asymptotes to 0. As was the case with πA(γ, δ2, δ1), πB(γ, δ2, δ1) is decreasing in

the degree of non-stationarity. Consequently, πB(γ, δ2, δ1) < 1
2
for all γ ≥ 0 whenever δ2 > δ1

and, thus, a calculation similar to the one in equation (17) suggests that sd3(γ, δ2, δ1) will go to

negative infinity as the sample size increases. Proposition 8 summarizes this result.

Proposition 8 Let δ2 > δ1. Under the hypotheses of Proposition 1, we will have that

sd3(γ, δ2, δ1)→−∞ for all γ ≥ 0.
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The above proposition suggests that the power of a one-sided test of H0 : γ = 0 against

Ha : γ > 0 will have power that approaches unity as the samples size increases. To see this, once

again, we let ϕ ∈ (0, 1) and consider a test where we reject H0 whenever sd3(γ, δ2, δ1) < −zϕ

where zϕ ≡ Φ−1(1 − ϕ). As was the case for sd2(γ, δ2, δ1), when the process is stationary,

this test will have size ϕ under the null. However, Proposition 8 tells us that if δ2 > δ1 then

sd3(γ, δ2, δ1) will explode to minus infinity as the sample grows and, thus, asymptotically, this

test will always reject H0. This gives us the following corollary.

Corollary 9 Let ϕ ∈ (0, 1), zϕ ≡ Φ−1(1−α) and δ2 > δ1. Under the hypotheses of Proposition

1, we will have that

lim
N→∞

P (sd3(γ, δ2, δ1) < −zϕ; γ, δ2, δ1) = 1 for all γ ≥ 0

5 Monte Carlo Evidence

In this section, we conduct some Monte Carlo experiments to investigate the performance of

the statistics sd1(γ, δ2, δ1), sd2(γ, δ2, δ1) and sd3(γ, δ2, δ1). The goal of this exercise is to better

understand how non-stationarity will affect the ability to detect state dependence in a finite

sample. To do this, we generate data from the model

yi,1 = 1(αi + εi,0 ≥ 0) (18)

and

yi,t = 1(αi + yi,t−1γ + ρ ∗ t/10 + εi,t ≥ 0) for t = 1, 2. (19)
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εi,t has a Logistic distribution, is i.i.d. across time and is independent of αi. We allow αi to

take on values in {−0.75, 0, 0.75} with equal probability. We simulate the model 1000 times and

use a sample size of N = 1500. For each simulation, we consider a test of H0 : γ = 0 against

Ha : γ > 0. In Figures 3 through 5, we calculate the power functions for each of the three

statistics when ρ varies between 0.0 and 1.0.

Figure 3 plots the percentage of times that sd1(γ, ρ) exceeds 1.645 = Φ−1(0.95) as a function of

(γ, ρ). Accordingly, the figure shows P (sd1(γ, ρ) > 1.645; γ, ρ) for N = 1500. Not surprisingly,

the figure shows that the power function for this statistic is well behaved. Under the null, we

see that the probability of rejection is 5% regardless of the size of ρ. For γ > 0.7, the probability

of rejecting the null is essentially unity for all values of ρ.

Figure 4 displays P (sd2(γ, ρ) > 1.645; γ, ρ). The top function shows the power function

when ρ = 0. Because the data generating process is correctly specified when ρ = 0, we see that

the size of this test is 5%. However, as ρ increases, the power and size of the test are greatly

diminished which is exactly what we would expect given Proposition 5 and its corollary. In fact,

for ρ = 1.0, we observe that the probability of detecting state dependence is less that 5% for

γ < 0.25.

Figure 5 displays P (sd3(γ, ρ) < −1.645; γ, ρ). It is noteworthy that even when the process

is stationary this test has significantly more power than the previous test. The reason for

this is that, according to Lemma 4, for a sufficiently large γ, sd2(γ, ρ) will explode at rate

√
N
¡
lA(ρ)− 1

2

¢
where lA(ρ) < 1 for any ρ whereas Lemma 7 tells us that sd3(γ, ρ) will explode

at rate
√
N
¡
1
2

¢
. Consequently, test statistics based on sd3(γ, ρ) will explode at a faster rate

than tests based on sd2(γ, ρ) and, thus, in a finite sample, they will will tend to have more power
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which is exactly what Figures 4 and 5 depict. In fact, for ρ = 1.0, the figure shows that the

probability of rejecting the null of no state dependence when γ = 0 is around 25%.

While Figures 4 through 5 show us that large degrees of non-stationarity can have harmful

effects on the ability of sd2(γ, ρ) and sd3(γ, ρ) to detect state dependence, this is not at all

surprising given that both tests are predicated upon an erroneous assumption. A slightly more

interesting exercise is to investigate how smaller degrees of non-stationarity will affect the ability

of these two statistics to detect state dependence. Such an exercise may shed some light on

whether or not there is an acceptable range of non-stationarity in which erroneously assuming

stationarity does not have too large of an impact on the detection of state dependence.

In Figures 6 and 7, we plot the power functions for sd2(γ, ρ) and sd3(γ, ρ) when ρ varies

between 0.0 and 0.20. In Figure 6, we see that the size of tests based on sd2(γ, ρ) is not

greatly affected as ρ varies in this range. Moreover, unlike Figure 4 where higher values of ρ

systematically reduced the power of the test, in Figure 6, we do not see this type of a systematic

relationship. In Figure 7, we see that higher values of ρ have a larger effect on the properties

of sd3(γ, ρ). For ρ = 0.20, we see that the size of the test is almost 10% which is double what

it should be. However, for values of ρ between 0 and 0.15, the properties of the test improve

somewhat and we see that the size of the test is closer to 5%. Overall, Figures 6 and 7 suggest

that values of ρ between 0.0 and 0.15 do not adversely impact the properties of the mis-specified

tests too much.
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6 Conclusions

In this paper, we explored the identification of state dependence in the presence of non-stationary

transition probabilities. We presented a very simple result that allows us to identify state

dependence in the dynamic conditional logit model with fixed effects. We then showed how it is

a straight-forward exercise to use this result to derive a test for the presence of state dependence

in a non-stationary process. Finally, we concluded the paper with an investigation of the impact

of non-stationarity on tests for state dependence which erroneously specify the underlying data

generating process as stationary in both large and finite samples.

One future research avenue that is suggested by this note is an investigation into whether or

not it is possible to point-estimate the parameters of a dynamic binary choice model when the

underlying process is non-stationary and without imposing assumptions on the heterogeneity.

Recent work by Honoré and Tamer (2004) sheds some light on this issue. In their paper, they

construct bounds on the parameters of the model in equation (1). While the identified regions

in their exercise are often small, they are never singletons. This suggests that the matching

strategy of Honoré and Kyriazidou (2000) is essential for point-identification and, thus, that it

is not possible to point-estimate the parameters of such a model.

7 Appendix - Proofs

7.1 Proposition 2
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Proof. We begin by defining πA1 ≡ P (A1), πA12 ≡ P (A1 ∪ A2), πB1 ≡ P (B1) and πB12 ≡

P (B1 ∪B2). Next, using the notation from the body of the paper, we will have that

√
N

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

bπA1 − πA1

bπA12 − πA12

bπB1 − πB1

bπB12 − πB12

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
d→ N

⎛⎜⎜⎝0,
⎛⎜⎜⎝ ΣA 04

04 ΣB

⎞⎟⎟⎠
⎞⎟⎟⎠ . (20)

where

ΣA ≡

⎛⎜⎜⎝ πA1(1− πA1) πA1(1− πA12)

πA1(1− πA12) πA12(1− πA12)

⎞⎟⎟⎠ , (21)

ΣB ≡

⎛⎜⎜⎝ πB1(1− πB1) πB1(1− πB12)

πB1(1− πB12) πB12(1− πB12)

⎞⎟⎟⎠ (22)

and 04 is a 4 by 4 matrix of zeros. The asymptotic covariance is block diagonal since the events

A1 and A12 and the events B1 and B12 are mutually exclusive and because the sample is random.

If we define the mapping f(x1, y1, x2, y2) = (x1y1 ,
x2
y2
) and apply the δ-method to (20), we obtain

√
N

⎛⎜⎜⎝ bπA − πA(γ, δ2, δ1)

bπB − πB(γ, δ2, δ1)

⎞⎟⎟⎠ d→ N

⎛⎜⎜⎝0,
⎛⎜⎜⎝ σ2A 0

0 σ2B

⎞⎟⎟⎠
⎞⎟⎟⎠ . (23)

where

σ2A =
πA1
π3A12

(πA12 − πA1) (24)
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and

σ2B =
πB1
π3B12

(πB12 − πB1) (25)

Equations (11) and (12) are simply the sample analogues of the asymptotic variances above.

Next, we write

√
N (bπA − bπB) = (26)

√
N

⎛⎜⎝(bπA − πA(γ, δ2, δ1))| {z }
AN (γ,δ2,δ1)

− (bπB − πB(γ, δ2, δ1))| {z }
BN (γ,δ2,δ1)

+ (πA(γ, δ2, δ1)− πB(γ, δ2, δ1))| {z }
CN (γ,δ2,δ1)

⎞⎟⎠ (27)

Now, because Proposition 1 tells us that πA(γ, δ2, δ1) = πB(γ, δ2, δ1) when γ = 0 and because

the asymptotic covariance between bπA and bπB is zero, in the absence of state dependence, we
will have that

√
N (bπA − bπB) d→ N(0, σ2AB) for γ = 0 (28)

where

σ2AB ≡
πA1
π3A12

(πA12 − πA1) +
πB1
π3B12

(πB12 − πB1) . (29)

The Slutsky Theorem then gives us that

sd1(0, δ2, δ1)
d→ N(0, 1). (30)

Next, in the case where γ is not zero,
√
N(AN(γ, δ2, δ1)−BN(γ, δ2, δ1)) will converge toN(0, σ2AB)

random variable, whereas
√
NCN(γ, δ2, δ1) will explode since πA(γ, δ2, δ1) 6= πB(γ, δ2, δ1) in

the presence of state dependence. In particular, if γ > 0, then Proposition 1 tells us that
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πA(γ, δ2, δ1) > πB(γ, δ2, δ1) and, thus,
√
NCN(γ, δ2, δ1) will go to positive infinity. If γ < 0,

then the reverse is true. Consequently, we will have that

sd1(γ, δ2, δ1)→ ±∞ for γ ≷ 0. (31)

7.2 Lemma 4

Proof. We begin by noting that

P (A1|A1∪A2, αi) =
1 + exp(αi + δ2)

1 + exp(αi + δ2) + exp(αi + 2δ2 − δ1) + exp(−γ + δ2 − δ1)
≡ πA(γ, δ2, δ1, αi).

(32)

If we integrate over G(αi|A1 ∪A2) we obtain that

πA(γ, δ2, δ1) =

Z
πA(γ, δ2, δ1, αi)dG(αi|A1 ∪A2). (33)

Differentiating πA(γ, δ2, δ1, αi) with respect to δ2, δ1 and γ, we obtain

∂πA(γ, δ2, δ1, αi)

∂δ2
=
− exp(αi + 2δ2 − δ1)(exp(αi + δ2) + 2)− exp(−γ + δ2 − δ1)

(1 + exp(αi + δ2) + exp(αi + 2δ2 − δ1) + exp(−γ + δ2 − δ1))2
< 0, (34)

∂πA(γ, δ2, δ1, αi)

∂δ1
=

exp(αi + 2δ2 − δ1)(1 + exp(αi + δ2) + exp(−γ + δ2 − δ1))

(1 + exp(αi + δ2) + exp(αi + 2δ2 − δ1) + exp(−γ + δ2 − δ1))2
> 0 (35)
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and

∂πA(γ, δ2, δ1, αi)

∂γ
=

(1 + exp(αi + δ2)) exp(−γ + δ2 − δ1)

(1 + exp(αi + δ2) + exp(αi + 2δ2 − δ1) + exp(−γ + δ2 − δ1))2
> 0. (36)

This verifies the first part of the lemma. To verify the second part of the proposition, it suffices

to note that Proposition 1 together with the fact that δ2 > δ1 imply that

πA(γ, δ2, δ1) = Π(δ2, δ1) <
1

2
for γ = 0

since Π(δ2, δ1) = [1 + exp(δ2 − δ1)]
−1. The final part of the theorem can be proven by letting γ

approach infinity in equation (32). Doing this, we see that

lim
γ→∞

πA(γ, δ2, δ1) = lA(δ2, δ1)

=

Z
1 + exp(αi + δ2)

1 + exp(αi + δ2) + exp(αi + 2δ2 − δ1)
dG(αi|A1 ∪A2) (37)

≡
Z

lA(δ2, δ1, αi)dG(αi|A1 ∪A2)

Clearly, we will have that lA(δ2, δ1, αi) < 1 for all αi and (δ2, δ1) and, thus, we will have that

lA(δ2, δ1) < 1 for all (δ2, δ1), as well. In addition, for δ1 = δ2 = δ, we can write

lA(δ, δ, αi) =

µ
1 +

exp(αi + δ)

1 + exp(αi + δ)

¶−1
>
1

2
for all αi (38)

which, in turn, gives us that lA(δ, δ) > 1
2
which proves the final part of the lemma.
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7.3 Lemma 7

Proof. The proof of this lemma is almost the same as Lemma 4. We start out by writing

P (B1|B1∪B2, αi) =
1 + exp(αi + δ2)

1 + exp(αi + δ2) + exp(αi + 2δ2 − δ1) + exp(γ + δ2 − δ1)
≡ πB(γ, δ2, δ1, αi)

(39)

and

πB(γ, δ2, δ1) =

Z
πB(γ, δ2, δ1, αi)dF (αi|B1 ∪B2). (40)

Simple calculations reveal that

∂πB(γ, δ2, δ1, αi)

∂δ2
=
− exp(αi + 2δ2 − δ1)(exp(αi + δ2) + 2)− exp(γ + δ2 − δ1)

(1 + exp(αi + δ2) + exp(αi + 2δ2 − δ1) + exp(γ + δ2 − δ1))2
< 0 (41)

∂πB(γ, δ2, δ1, αi)

∂δ1
=

exp(αi + 2δ2 − δ1)(1 + exp(αi + δ2) + exp(γ + δ2 − δ1))

(1 + exp(αi + δ2) + exp(αi + 2δ2 − δ1) + exp(γ + δ2 − δ1))2
> 0 (42)

and

∂πB(γ, δ2, δ1, αi)

∂γ
=

−(1 + exp(αi + δ2)) exp(γ + δ2 − δ1)

(1 + exp(αi + δ2) + exp(αi + 2δ2 − δ1) + exp(γ + δ2 − δ1))2
< 0 (43)

which verifies the first part of the lemma. The second part of the lemma follows from Proposition

1 and the observation that Π(δ2, δ1) = [1 + exp(δ2 − δ1)]
−1 < 1

2
whenever δ2 > δ1. Finally, the

third part of the lemma follows from allowing γ to go to infinity in (39)
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∗In both figures, δ1 = 0.
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Figure 3
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Figure 6
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