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Abstract 

Mankiw (1982) shows that consumer durables expenditures should follow a linear 

ARMA(1,1) process, but the data analyzed supports an AR(1) process instead; thus, a 

puzzle.  In this paper, we employ a more general utility function than Mankiw's quadratic 

one.  Further, the disturbance and depreciation rate are respecified, respectively, as 

multiplicative and stochastic.  The analytical consequence is a nonlinear ARMA(∞,1) 

process, which implies that the linear ARMA(1,1) is a misspecification.  A historical data 

analysis appears to support the nonlinear model.  Since actual data are influenced by 

historical events, we also carry out a Monte Carlo study to strengthen our point. 

 

Keywords: Utility function, multiplicative disturbance, nonlinear ARMA(∞,1) process, 

stochastic depreciation, misspecification error  

 

JEL Classification: C52, E21. 

 

The author wishes to thank Professor Gregory Mankiw for his suggestions on the Monte Carlo study. 

Thanks also go to Professors Byron Gangnes, Ilan Noy, James Roumasset, and Xiaojun Wang for their 

respective comments. 

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Research Papers in Economics

https://core.ac.uk/display/7163275?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


 

 

 

 

     In his seminal paper, Hall (1978) posits that consumption follows a random walk.  

Testing his hypothesis using quarterly data on the U.S. consumer nondurables and 

services expenditures for the period 1948.1-1977.1, he finds that the data support a slight 

variant of his theory, which permits a brief lag between changes in permanent income 

and consumption.  This implies that once the consumption in a period is controlled for, 

no other information in that period helps forecast future consumption.  The Keynesian 

economists have challenged Hall's hypothesis by showing empirically that current 

consumption depends partly on current income in addition to past consumption. 

 

     Mankiw (1982) applies Hall’s theory to consumer durables expenditures, assuming a 

quadratic utility function and an additive error term.  He shows that if Hall’s theory 

holds, consumer durables expenditures should follow an ARMA(1,1) process, which is 

reduced to an AR(1) process for nondurables expenditures.1  Contrary to the theoretical 

expectation, however, the US quarterly data on consumer durables expenditures support 

an AR(1) process instead of an ARMA(1,1).  It appears that depreciation rates play no 

role in determining consumer expenditures.   This is against both Hall's theory and 

common intuition.  Mankiw attributes this puzzling result to the misspecification of the 

utility function.  

                                                           
1 Winder and Palm (1996) and Romer (2001), in their respective contexts, also show that consumer 

durables expenditures do not follow a random walk.   
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     Based on a Taylor expansion, Mankiw (1985) derives a log linear equation, which 

relates consumer durables to consumer nondurables.  He points out that the log of 

consumer nondurables follows a random walk, as shown by Hansen and Singleton 

(1983).  This implies that the log of consumer durables also follows a random walk.  

However, he defines consumer durables as net stock of durables at year-end instead of 

quarterly expenditures, which is a flow variable. Additionally, this approach is a 

multivariate alternative with lagged consumption and interest rate as independent 

variables.  Hence, it does not resolve Mankiw’s puzzle as observed in the univariate 

context. 

 

     In a major attempt to resolve Mankiw’s puzzle, Caballero (1990) hypothesizes that the 

underlying reason for this puzzle lies in consumers' slow adjustment of their durables 

expenditures.  For empirical analysis, Caballero expands the ARMA(1,1) to ARMA(1,5) 

and ARMA(1,8) processes to accommodate this slow adjustment.  He finds that the sum 

of moving average effects is statistically significant, although all individual moving 

average effects are insignificant.  However, there is no theory which justifies that 

insignificant moving average effects in an ARMA(1,5) or ARMA(1,8) combined is 

equivalent to a significant moving average effect in an ARMA(1,1) model.  Therefore, 

Mankiw's puzzle in earnest still remains unresolved .  

 

        In this paper, we attempt to explain Mankiw’s puzzle in a way fundamentally 

different from the previous papers.  Our approach starts from respecifying the quadratic 
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utility function and the additive error term in Mankiw (1982). Further, the depreciation 

rate is assumed to be stochastic over time. Consequently, consumer durables expenditures 

follow a nonlinear ARMA(∞,1).  This implies that the linear ARMA (1,1) is a 

misspecification.  A historical data analysis supports the nonlinear ARMA(∞,1) process.  

Since actual data are influenced by historical events and an unbiased estimation of this 

nonlinear model may not be simple, we also carry out a Monte Carlo study to strengthen 

our point. 

 

     In Section I we derive the theoretical model, and in Section II, we show analytically 

that the misspecification results in a bias.  In Section III, we present empirical and Monte 

Carlo evidence in support of our theoretical model.  Section IV shows evidence of 

Mankiw's model misspecification using historical data and generated data.  Section V 

concludes the paper. 

 

I. The Theory 

      Mankiw (1982) extends Hall's (1978) utility maximization problem to the case of 

consumer durables.  He applies Hall's first order condition, the renowned Euler equation, 

to the stock of durables, :  tK

 

(1)       ( ) ( ttt KUKUE ′=′ + )λ1 ,  where )1/()1( r++= ρλ , 

                                                                                          

ρ and r are the rate of subjective time preference and real rate of interest, respectively, 

both assumed constant over time.  is the expectation conditional on all information tE
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available in period t; is the instantaneous utility function, which is strictly concave.  

He writes the stochastic counterpart of Equation (1) as:  

( )U

 

(2)        ( ) ( ) 11 ++ +′=′ ttt uKUKU λ .                                                                                         

 
 
 
     Assuming that the utility function is quadratic, he shows that: 

 

(3)       ,                                                       1101 ++ ++= ttt uKaaK

 

where ao and  a1 are constants. 

 

     With the following identity incorporated into Equation (3), 

 

(4)      where δ  is the depreciation rate,  ( )1 1t tK K Cδ+ ≡ − + 1,t+

tu

                                                    

consumer durables expenditures, Ct , is derived as an ARMA(1,1) process: 

 

(5)      . ( )1 1 1 1t o t tC a a C u δ+ += + + + −

 

     In our analysis, there are three major respecifications.  First, we respecify the utility 

function as: 
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(6)     θαξ tt KKU +=)( .2

 

     Second, we respecify the error term ut in Equation (2) as multiplicative3 so that: 

 

(7)        ( ) ( )1 1,t tU K U K uλ+′ ′= t+

 

where  

(8)       

2 2
1

12 2
1

t
t

tu e e e
ε ε

σ σε
ε

+
+

⎛ ⎞
−⎜ ⎟⎜ ⎟ −⎝ ⎠

+ = =  with 2
1 ~ (0, )t N εε σ+ .4

 

     Third, we respecify the depreciation rate to be stochastic around a deterministic 

depreciation rate: 

 

(9)  2, (0,t t te e N )eδ δ σ= + . 

  

     Substituting the derivatives of Equation (6) for t and t+1 into Equation (7) and using 

Equation (8), we obtain a stochastic model in a multiplicative form: 

 

                                                           
2  This functional form covers all four utility functions frequently used in macroeconomics.  

3  Rational expectations theory requires an additive disturbance.  However, if a log linear form is more 

appropriate than a linear one for consumption, then the error term is additive in log form.  For empirical 

evidence that the log linear form is a more likely one, see Vu (2005,a). 

4 Note that .  Hence, taking expectation of Equation (7) reverts it to the optimization condition 1)( 1 =+tuE
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(10)      , where 1
1

+=+
tv

tt eKK ψ
2

1
1

12
1;

1
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εσ θ εψ λ ν

θ

−−
+

+

⎛ ⎞
= =⎜ ⎟⎜ ⎟ −⎝ ⎠

.      

 

     Replacing the deterministic depreciation rate in Equation (4) with the one in Equation 

(9), we obtain: 

 

(11)     ,                                                                                         ( ) 1
1 1 1t tK Bδ

−

+ ⎡ ⎤= − −⎣ ⎦ 1tC +

 

where B is the backshift operator. 

 

     Reflecting Equation (11) on Equation (10), we obtain:  

 

(12)     [ ] [ ]{ } 1
1

1 11 1 t
t t t tk B C k B C e1 νψ +

−
+ −− = − − .  

 

where  1t tk δ≡ − .  

  

     Premultiplying (  to both sides of Equation (12) gives: )1 tk B−

 

(13)     ( ){ } ( ){ }1 1
1

1 1 11 1t tv
t t t t t tC k B C e k B k B C Beνψ ψ 1

+ +
−

+ − −
⎡ ⎤= − − −⎣ ⎦

−

                                                                                                                                                                            

.                                  

 

 
in Equations (1). 
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     Expanding  within the brackets yields:( 11 tk B −− ) 5

 

(14)      ( )1 1
1 1 2

1
1t tv vi i t i

t t t t t
i t

CC C e k k k e
C

ψ +

∞
−− −

+ − −
=

⎧ ⎫⎡ ⎤⎪ ⎪= + −⎨ ⎬⎢
⎪ ⎪⎣ ⎦⎩ ⎭

∑ 1tv + ⎥

)

                                           

                    , 1
1

tv
t tC e Zψ +
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 where  

 

(15)  ( 11
1 1 2

1
1 t tv vi i t i

t t t t
i t

CZ k k k e
C

+

∞
−− −

+ − −
=

⎡ ⎤
= + −⎢ ⎥

⎣ ⎦
∑ .                 

                                                                                        

     Taking the logarithms of Equation (14) yields:  

 

(16)    1 1ln ( ln )t t t tC Z C v 1φ+ + += + + + , where lnφ ψ=  (a constant). 

 

     Since we are assuming that the depreciation rate is stochastic, t etδ δ= + , from 

Equation (15),  for1ln 0tZ + ≠ ( ]0,1δ∀ ∈ ; and so, 1ln tC +  has a complex nonlinear ARMA 

process that may be described appropriately as a nonlinear ARMA(∞,1).  Thus, 

specifying  as ARMA(1,1) will be a misspecification for both durables and 

nondurables. 

1ln tC +

 

                                                           
5  See Appendix A 
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     As a special case of Equation (15), suppose 2 0eσ = , i.e., the depreciation rate is 

deterministic, then ( ]0,1tδ δ= ∈  in Equation (15).  If 1δ =  as in Hall (1978), then 

, and nondurables expenditures follow an AR(1) process.  However, if 

 as in Mankiw (1982), then 

1ln 0tZ + =

(0,1tδ δ= ∈ ) 1ln 0tZ + ≠ , and durables expenditures follow a 

nonlinear ARMA(∞,1) process, even for , where H is the neighborhood 

region.  Hence, specifying ARMA(1,1) for durables expenditures will be a 

misspecification.  

2 (0)e Hσ ∈

 

 

 

II. Specification Bias 

     Rewriting Equation (16) in vectors for notational economy: 

 

(17)     y w x uφ= + + + ,  

 

where the vectors are of orderT defined as: 1,×

 

2 3 1(ln , ln , ..., ln ) ,Ty C C C + ′=  

( )2 3 1ln , ln ,..., ln Tw Z Z Z +
′= ,   

 1 2(ln , ln , ..., ln )Tx C C C ′=

2 3 1( , ,..., )Tu v v v + ′=     
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(1,1,...,1)l ′= . 

 

     If we misspecify the model in Equation (17) as: 

 

(18)      1 2y l x uβ β≡ + + ,  

 

then the OLS estimates of 2 ( 1)β =  can be written as:  

 

(19)     ( ) 1
2

ˆ x Mx x Myβ −′ ′=   

           ( ) 1
1 2( )x Mx x M l w x uβ β−′ ′= + + +  

           ( ) ( )1 1
2x Mx x Mw x Mx x Muβ− −′ ′ ′ ′= + + , 

             

where 1( )TM I l l l l−′ ′= − . 

 

     Hence, the small sample bias of 2β̂  will be:  

 
(20)     ( ) ( )1

2 2 2
ˆˆ 1x Mx x Mw x Mx x Muβ β −′ ′ ′ ′∆ = − = + − .  

 

     Taking the probability limit of Equation (20) yields: 

 

(21)       ( )
1 1

2
1 1 1 1ˆlim lim lim lim limp p x Mx p x Mw p x Mx p x
T T T T

− −
⎛ ⎞ ⎛ ⎞′ ′ ′ ′∆ = +⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

Mu     

                                                       

 9



 

               1 1(ln , ln ) (ln , )
(ln ) (ln )

t t t t

t t

Cov C Z Cov C v
Var C Var C

+ += + 1(ln , ln ) 0
(ln )

t t

t

Cov C Z
Var C

+= < , 

  

As shown in Appendix B, 1(ln , ln ) 0t tCov C Z + <  for durables, and equals 0 for 

nondurables if , where N is the neighborhood region.   Hence,  2 (0)e Nσ ∈

 

(22)  ,  2 20; 0d nd∆ < ∆ =

 

where the superscripts d and nd stand for durables and nondurables expenditures, 

respectively.  From Equation (16), l  has a unit root, and so, , 

which implies:  

n tC (ln ) T
tVar C →∞⎯⎯⎯→∞

 

(23)      . 2
ˆlim( ) 0Tp →∞∆ ⎯⎯⎯→

  

 

III. Nonlinear ARMA (∞, 1) as Data Generating Process 

     A. Empirical Evidence 

     To see the small sample bias, we estimate the AR(1) model in log linear form for five 

different periods, each containing 40 quarterly observations.  The historical data set 

consists of real expenditures on durables and nondurables from the U. S. National Income 

and Product Accounts: quarterly, per capita, seasonally adjusted, and chained to 2000 

dollars.  Nondurables expenditures are defined as combined expenditures on nondurable 

goods and services.  Following Mankiw (1982), we exclude the Korean War period to 
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avoid extra constraints on the theory.  The starting points of the five series are ten years 

apart.  As reported in Table 1, the slope estimates for durables expenditures appear to be 

consistently lower than their counterparts for nondurables, whereas the reverse is the case 

for the intercepts.  This implies that the bias of 2β̂  for nondurables is smaller than the one 

for durables. 

 

 

 

 

Table 1. Small Sample Estimation: Historical Data  

[Evidence of the bias resulted from estimating Equation (18)] 

 

Slope estimates 2
ˆ( )β  Intercept estimates ( 1̂β ) Estimation 

Period Nondurables Durables Nondurables Durables 
1955.1-1964.4 1.0116 .94437 -.14429 .35599 
1965.1-1974.4 .97349 .94990 .25317 .64213 
1975.1-1984.4 .98860 .92973 .11394 .50816 
1985.1-1994.4 .96505 .88188 .34479 .89131 
1995.1-2004.4 1.0006 .98696 -.03547 .12385 

 

    To evaluate whether the bias approaches zero as sample size increases, we estimate the 

slope and intercept for six different sample sizes with the same starting point, the size 

increasing from 20 quarterly observations to 200.  As shown in Table 2, the bias of 2β̂  

for durables appears to taper off as the sample size increases, as expected in light of 

Equation (23).   
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Table 2.  Increasing Sample Estimation: Historical Data  

[Evidence supporting Equation (23)] 

 

Slope estimates 2
ˆ( )β  Intercept estimates ( 1̂β ) Sample 

Size Nondurables Durables Nondurables Durables 
1955.1-1959.4 .97997 .75530 .04350 .9275 
1955.1-1964.4        1.0166 .94437 -.14429 .35599 
1955.1-1974.4 1.0006 .98965 .00007 .07536 
1955.1-1984.4 .99895 .99775 .01554 .02421 
1955.1-1994.4 99781 .99777 .02604 .02427 
1955.1-2004.4 .99837   1.0014 .02092 .00003 

 

      However, historical data may have been affected by other exogenous events, which 

may have obliterated what otherwise would have been a clearer manifestation of the 

nonlinear ARMA(∞,1) process. Therefore, reconfirmation of the theoretically expected 

bias through a Monte Carlo experiment will strengthen the evidence from historical data.  

 

    B. Monte Carlo Evidence 

     Using our theoretical model in Equation (14), we generate 232 observations which 

match the historical data for quarterly expenditures on durables and nondurables for the 

period 1947.1-2004.4.  Theoretically 1ln 0tZ + ≠  for durables; hence, the first few 

generated observations of  are volatile as the new innovations are added, until 

already cumulated past innovations dominate over the new addition.   Thus, we generate 

a total of 244 observations and remove the first twelve.  Since for nondurables, 

, volatility is not a problem; thus we generated 232 observations⎯exactly the 

same number as in the historical data set.   

1tC +

1ln 0tZ + =
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     In generating the time series, we choose the values for  and  and variances of  

and  in such a way that the generated series simulates the historical data as closely as 

possible.  For durables, we follow Mankiw (1982) in assuming that the deterministic 

component of the depreciation rate is 

0C 1C te

tv

0.05δ = .  For φ, we use the estimated growth rate 

of the historical : approximately 1 percent for durables, and 0.55 percent for 

nondurables.  The generated data simulates the historical data fairly well, as shown in 

Figure 1 and Figure 2 for durables and nondurables expenditures, respectively.    

tC

 

Figure 1. Data Comparison: Durables Expenditures 
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Figure 2.  Data Comparison: Nondurables Expenditures 
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     To compare the small sample biases, we iterate estimation of the AR(1) model for 

 5000 times for different sample periods of size 40.  Table 3 shows the means of 

5000 slope and intercept estimates for each of the five sample periods. As expected 

theoretically, the mean slope coefficient for the durables expenditures is smaller than its 

counterpart for nondurables. The reverse appears to be the case for the mean intercept. 

These Monte Carlo results are quite consistent with the empirical results using the 

historical data. 

ln tC

 

Table 3. Small Sample Estimation: Generated Data  

(Evidence supporting the empirical results in Table 1) 
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Slope estimates 2
ˆ( )β  Intercept estimates ( 1β̂ ) Estimation 

Period Nondurables Durables Nondurables Durables 
1955.1-1964.4 .99019 .93264 .10236 .29672 
1965.1-1974.4 .99011 .92942 .20137 .52630 
1975.1-1984.4 .97248 .90753 .20351 .81724 
1985.1-1994.4 .95823 .91677 .31324 .62837 
1995.1-2004.4 .98975 .96258 .16479 .20144 

 
 
    To see whether the bias approaches zero as the sample size increases, we also iterate 

estimation of the AR(1) model 5000 times for six increasing sample sizes similar to Table 

2 for the historical data.  Table 4 reports the means of 5000 slope and intercept estimates, 

which show that the downward bias of the slope estimate tapers off as the sample size 

increases.  This result is also consistent with the results using the historical data.    

 

 

Table 4. Increasing Sample Estimation: Generated Data 

(Evidence supporting the empirical results in Table 2) 

 

Slope estimates 2
ˆ( )β  Intercept estimates ( 1̂β ) Sample 

Size Nondurables Durables Nondurables Durables 
1955.1-1959.4 .93968 .88937 .49629 .61174 
1955.1-1964.4 .99274 .94181 .06341 .35546 
1955.1-1974.4 .99772 .97939 .02186 .13821 
1955.1-1984.4 .99929 .98994 .01002 .07803 
1955.1-1994.4 .99963 .99492 .00699 .07804 
1955.1-2004.4 .99965 .99665 .00672 .03226 

 

     The consistency of the estimation results based on the generated data with those based 

on the historical data appears to give strong evidence for our nonlinear ARMA(∞,1) 
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model as the underlying data generating process for the historical data on durables 

expenditures.  

 

IV.  Mankiw's Puzzle as a Misspecification 

     In Section III, we have shown the consistency in the estimation results between the 

historical and generated data, establishing the ARMA(∞,1) as the possible data process 

that drives the expenditures on both durables and nondurables.  This implies that the 

ARMA(1,1) is a possible misspecification of the ARMA(∞,1), which explains Mankiw’s 

failure to find an ARMA(1,1) process as expected, i.e., Mankiw’s puzzle.  

 

     In order to strengthen this observation, we test whether Mankiw’s estimation result is 

robust with respect to sample size. We estimate the ARMA(1,1) for six subsamples of 

different sizes over the period from 1964.1 to 2004.1 as reported in Table 5.  The first 

sample period  (1955.1 to 1980.1) is identical with the one in Mankiw (1982).  The 

estimation results are consistent with Mankiw’s: the moving average coefficient is 

negative and insignificant.  However, we have inconsistent results across samples.  We 

have a statistically significant moving average coefficient for the second and third sample 

sizes, but an insignificant moving average for the last two sample sizes.  In other words, 

Mankiw’s model is not robust to changes in sample sizes.  This can be attributed to the 

ARMA(1,1) as a possible misspecification of the ARMA(∞,1).  

 

Table 5. ARMA(1,1) Estimation: Historical Data 

 (Evidence that Mankiw's model is not robust to changes in sample sizes. The first sample 
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period is the same as the one used by Mankiw.)  

 
Sample Size MA(1) Standard error t-statistics 

1955.1-1980.1 -.04251 .1006 -.4224 
1964.1-2004.1 .1873*** .07827 2.398 
1969.1-2004.1 .16133** .08415 1.917 
1974.1-2004.1 .12999 .09131 1.424 
1979.1-2004.1 .06349 .1008 .6297 
1984.1-2004.1 .01413 .1130 .1251 

 

 

 

 

The ** and *** indicate five and one percent significance levels, respectively 

 

     In order to evaluate the empirical results, we generate ten times the data sets driven by 

ARMA(∞,1) process for the time period from 1954.1 to 2004.1, each time creating six 

subsamples corresponding to those in Table 5, and estimated Mankiw's ARMA(1,1) 

model.  Table 6 reports the means of the MA coefficient estimates and t-ratios.  The 

results are quite similar to their empirical counterparts in Table 5.  The estimation results 

for the first sample period shows a negative and insignificant moving average as in 

Mankiw (1982).  Further, the statistical significances in Table 6 coincide with those in 

Tables 5. 

 

Table 6.  ARMA (1,1) Estimation: Generated Data  

  (Evidence supporting the empirical results in Table 5. The first sample period is the 

same as the one used by Mankiw.)                                                             
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Sample Size MA(1) Standard error t-statistics 

1955.1-1980.1 -.1224 .1102 -1.1477 
1964.1-2004.1 .3700*** .07494 4.938 
1969.1-2004.1 .2483*** .08423 2.948 
1974.1-2004.1 -.1104 .09076 -1.216 
1979.1-2004.1 -.1128 .1002 -1.125 
1984.1-2004.1 -.1823 .1115 -1.652 

  The *** indicates one percent significance level. 

                                                                                                                                                                              

     Given the similar estimation results with respect to sample size found in this section in 

addition to the consistency in Section III, comments are in order.   

 

     First, Mankiw’s (1982) conjecture that his puzzling finding on durables expenditures 

is due to a specification error of the utility function appears to be partly correct.  

Additionally, misspecification of the disturbance term and the depreciation rate also seem 

responsible for Mankiw’s puzzle.  Based upon our results, depreciation rates do play an 

important role in determining durables expenditures.  This is consistent with both Hall's 

theory and common intuition. 

 

     Second, Caballero’s (1990) failure to find statistical significance of the individual 

moving average coefficients, though the sum of the moving average coefficients is 

significant, may be attributed as well to the misspecification of the nonlinear 

ARMA(∞,1).  

 

    Finally, the inconsistent empirical results elsewhere in the literature, e.g., Hall (1978), 
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where nondurables expenditures follow an I(1) process and Ermini (1988), where they 

follow an IMA(1,1) may be also attributable to a misspecification of the nonlinear 

ARMA(∞,1) herein discussed.  

 

V. Conclusion 

     Since Mankiw’s paper in 1982, several attempts have been made to address the 

inconsistency between the theoretical model and empirical results as observed by 

Mankiw, but none of them has resolved the issue satisfactorily.   

 

     In this paper, we have modified the model in a fundamental way.  As a result, we find 

that the true underlying data generating process is a complex nonlinear ARMA(∞,1) 

process.  Therefore, the standard linear ARMA(1,1) process might be a misspecification.  

The historical data analysis and the Monte Carlo experiment appear to support our model 

as the data generating process. Our approach is strictly univariate as in Mankiw (1982) 

and produces the empirical and Monte Carlo results consistent with the model derived.  

This seems also to confirm Mankiw’s conjecture that his puzzle may be due to 

misspecification of the utility function.   

 

      In this research, we limit ourselves to resolving Mankiw’s puzzle on consumer 

durables in particular and giving some insight into on the existing conflicting results in 

consumption literature in general.  A multivariate approach would be interesting though 

more challenging, which is beyond the scope of this paper. 
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Appendix A. Proof for Equation (14) 
 

     From equation (13): 

 

(A1)      [ ]{ } [ ]{ }1 1
1

1 1 11 1t tv
t t t t t tC k B C e k B k B C Beνψ ψ 1

+ +
−

+ − −= − − − −                               

 

                    [ ]{ } [ ]{ }1
1

11 1t tv
t t t t tk B C e k B k B C eνψ ψ+

−
−= − − − 1

1
−

−                                   

 

     Since   

 
 
 

(A2)      [ ] ( )1 2 2 3 3
1 1 1 11 1t t t t tk B C k B k B k B−
− − − −− = + + + L+  

 

                                     2 3
1 1 1 2 1 3 ,t t t t t t tC k C k C k C− − − − − −= + + + +L

 

          [ ] ( )1 2 3
1 1 1 1 2 11 t t t t t t t t tB k B C B C k C k C k C−
− − − − − −− = + + + L3− +  

 
 
                                    = ,                                              2 3

1 2 2 3 3 4 4t t t t t t tC k C k C k C− − − − − − −+ + + +L

 

substituting Equation (A2) into Equation (A1) gives  

 
 

( ) ( )12
1 1 1 1 2 1 2 2

t tv v
t t t t t t t t t tC C k C k C e k C k C eψ ψ+
+ − − − − − − −= + + + − + +L L  
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       = 1 1 121 2 1 2 2
1 11 ...t t t t tv v vt t t t t

t t t t t
t t t t

C C C k CC e k k k e k e
C C C C

ψ + + +− −− − − − −
− −

⎡ ⎤
+ + + − − −⎢ ⎥

⎣ ⎦
Lv v  

 
 

       ( ) ( )1 1 121 2
1 1 21t t t t tv v v v vt t

t t t t t t
t t

C CC e k k e k k k e
C C

ψ + + +− −− −
− − −

⎡ ⎤
= + − + − +⎢ ⎥

⎣ ⎦
L , 

 
 

     ( )1 11
1 2

1
1t tv vi i t i

t t t t
i t

CC e k k k e
C

ψ + =

∞
−− −

− −
=

⎧ ⎫⎡ ⎤⎪ ⎪= + −⎨ ⎬⎢ ⎥
⎪ ⎪⎣ ⎦⎩ ⎭

∑ tv  

 
 
 
which yields Equation (14) in the text. 
 
 
 
 
Appendix B. Proof for ( )1ln , ln 0t tCov C Z + <  
     

      For two variables p and q, we can write  

 

(B1)      2

( )(
( )

t p t p t qt

t t q t q

q q pq
p p p

)µ µ µ
µ µ

− − −∆
≡ =

∆ − −
 

 

     Since we can rewrite (B1) as  

 

(B2)     2( ) ( )(p q t
q p q p
p

)pµ µ µ
⎛ ⎞∆

− = − −⎜ ⎟∆⎝ ⎠
, 

(B3)      ( ) ( , )t
t t

t

qE Var p Cov p q
p

⎛ ⎞∆
=⎜ ⎟∆⎝ ⎠

t .  
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     However, if  for all / 0t tdq dp > tp , / 0t tq p∆ ∆ >  which implies . 

Hence, to show , it suffices to show 

( / ) 0t tE q p∆ ∆ >

( , ) 0t tCov p q < / 0t tdq dp < . 

 

     In view of (B3), to prove 1(ln , ln ) 0t tCov C Z + < , we only need to prove  

 

1ln 0
ln

t

t

d Z
d C

+ < .   Since 

(B4)      111
1 2 2

1
( )t tv vi it t

t t t
it t

dZ Ck k k e
dC C

+

∞
−−+ −

− −
=

⎡ ⎤⎛ ⎞
= − −⎢ ⎥⎜ ⎟

⎢ ⎥⎝ ⎠⎣ ⎦
∑ i ,   

(B5)      111 1
1 2

11 1

ln 1( )
ln

t tv vi it t t t i
t t t

it t t t

d Z dZ C Ck k k e
d C dC Z C Z

+

∞
−−+ + −

− −
=+ +

⎡ ⎤⎛ ⎞
= = − −⎢ ⎜

⎢ ⎥⎝ ⎠⎣ ⎦
∑

t
⎥⎟ .  

                            

     If 1δ = , i.e., 0tk = , (B5) become zero, which implies that  for 

nondurables.  However, if ,i.e., in the case of durables,  (B5) can be expressed 

as 

1(ln , ln ) 0t tCov C Z + =

(0,1tδ ∈ )

 

1 1

1

ln 1
ln

t t

t t

Z Z
C Z
+ +

+

−
= − . 

 

Suppose that  

1

1

1

1lim lim
lnlim 1 0
ln lim

t

t

tt

Zp p
Z T Tp

ZC p
T

+

+

+

⎛ ⎞ ⎛ ⎞− ⎜ ⎟⎜ ⎟⎛ ⎞ ⎝ ⎠⎝ ⎠= − = − <⎜ ⎟ ⎛ ⎞⎝ ⎠ ⎜ ⎟
⎝ ⎠

 

 23



 

 

which implies that 1( , ) 0t tCov C Z + <  for durables. 

 

 

     B.2. Proof for 1(ln , ) 0t tCov C v + =  

 

Since vt+1 is not contained in ln Ct, 1ln / 0t tC v +∂ ∂ = , hence . 1(ln , ) 0t tCov C v + =
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