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Abstract This paper contributes to the literature on the modeling of survey forecasts using
learning variables. We use individual industry data on yen-dollar exchange rate predictions
at the two week, three month, and six month horizons supplied by the Japan Center for
International Finance. Compared to earlier studies, our focus is not on testing a single
type of learning model, whether univariate or mixed, but on searching over many types of
learning models to determine if any are congruent. In addition to including the standard
expectational variables (adaptive, extrapolative, and regressive), we also include a set of
interactive variables which allow for lagged dependence of one industry’s forecast on the
others. Our search produces a remarkably small number of congruent specifications-even
when we allow for 1) a flexible lag specification, 2) endogenous break points and 3) an
expansion of the initial list of regressors to include lagged dependent variables and use a
General-to-Specific modeling strategy. We conclude that, regardless of forecasters’ ability to
produce rational forecasts, they are not only “different,” but different in ways that cannot
be adequately represented by learning models.
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1 Introduction and Background

To what extent are differences in the performance of exchange rate forecasters reflected in

differences in expectational models? For example, suppose we evaluate performance based on

rationality criteria. If more than one forecaster produces rational forecasts at a given horizon,

does that imply that their forecast generating processes (FGPs) are identical (or similar)

and also identical (or similar) to the data generating process (DGP) of the realization?

Conversely, is the rejection of rationality for at least one forecaster at a given horizon reflected

in a lack of homogeneity in the individual FGPs?

Another motivation for studying the exchange rate FGP is the poor forecasting perfor-

mance of the exchange rate equation in large-scale macroeconomic models. The exchange

rate is typically modeled by an uncovered interest rate parity condition, with the maintained

assumption that the current exchange rate is the rational expectation of the future exchange

rate (see Bryant (1995)).1 In his evaluation of the performance of various structural models

in predicting the direction of exchange rate change, Pilbeam (1995, p. 1013) noted: “What

is far more crucial than the economic model is the expectations mechanism that is applied to

a model. An extrapolative or adaptive expectations mechanism leads to a markedly superior

performance than static, regressive, and rational expectations mechanisms.”

The Japan Center for International Finance (JCIF) biweekly survey of the yen-dollar

exchange rate predictions of Japanese forecasters is one of the few surveys of exchange

rate forecasters that is available in disaggregated form. Using the JCIF industry-level fore-

casts, we conduct a model specification search to study industry-level forecast generating

processes.2

Cohen et al. (2006) find that, for each industry group in the JCIF survey, the ability to

produce unbiased forecasts deteriorates with horizon.3 Exporters consistently perform worse

1A terminal condition normally sets the end of horizon exchange rate to a long-run equilibrium.
2See Appendix 1 for a description of the data. Ito (1990, 1994), Bryant (1995) and Elliott and Ito (1999)

contain detailed descriptions of this database.
3Cohen et al. (2006) are unable to reject unbiasedness for any group at the one-month horizon, but reject

unbiasedness for all groups at the six-month horizon, because the forecast errors at the latter horizon are
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than the other industry groups, with a tendency toward depreciation bias. Using only two

years of data, Ito (1990) found the same result for exporters, which he described as a type

of “wishful thinking”.

Cohen et al. (2006) also find a general failure of weak efficiency, both with respect to

specific information set variables (single and cumulative lags of the mean forecast error, mean

forecasted depreciation, and actual depreciation) and in LM tests for general serial correlation

of order h (the forecast horizon) or greater. And in both unbiasedness and efficiency tests,

they reject micro-homogeneity of industry-group parameters for virtually all regressions.4 In

this paper, we investigate the possibility that the widespread failure of micro-homogeneity

in rationality tests is reflected in diversity of the FGPs.

The extant literature that studies learning processes using survey forecasts has focused

almost exclusively on static specifications of the three basic models—adaptive, extrapolative,

and regressive, and in some cases a mixed model that combines two or more of the basic

processes. This paper extends that literature in several ways. First, we add a fourth type

of learning process. Recognizing the growing literature on the role of strategic interaction

in the individual forecast generating process,5 we include a set of variables for the difference

between one forecaster’s prediction and the most recently available (lagged) forecast of others

(either individually or grouped into a mean).6

nonstationary. They conduct these tests by regressing the forecast error on a constant using a Newey-West-
Bartlett correction for residual serial correlation. Some authors maintain that the tendency of cointegration
tests to over-reject the null of cointegration renders any rejection questionable. In this interpretation, we
simply cannot conduct consistent tests for unbiasedness at the six-month level.

4Their rejection of micro-homogeneity, irrespective of the ability of industry-groups to form unbiased
forecasts, is somewhat counterintuitive. Micro-homogeneity should be more likely if there are no rejections
of unbiasedness. Evidently, there is a sufficient variation in the estimated bias coefficient across groups
and/or high precision of these estimates to make the micro-homogeneity test quite sensitive.

5This literature, in turn, is a subset of the literature on asymmetric loss functions. In this case, the
optimal forecast may not be the minimum means squared error forecast. For example, it may pay for some
forecasters with sufficient reputational capital to produce extreme forecasts, if the forecaster’s brand-name
recognition is enhanced more than his record for forecast accuracy is damaged. Laster et al. (1999) called
this practice “rational bias.” Ehrbeck and Waldmann (1996) tested hypotheses in which a less able forecaster
moderates his personal forecast by weighting it with the prediction pattern of more able forecasters (see also
Batchelor and Dua, 1990a,b). In addition to the literature on strategic interactions cited in the context of
asymmetric loss functions, see also Flieth and Foster (2002).

6Ito (1990) used this type of specification as a dependent variable in his measure of forecaster heterogeneity.
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Second, whether in simple or mixed models, we allow for the fact that the best fit for

each learning process may come from a number of past lags, not simply the most recent.7

Third, in our simple and mixed models of learning processes, we allow for endogenous

structural change in each coefficient.8 As noted by Griliches and Mairesse (1990) in their

seminal study of panel data on firms’ production functions, “[i]nstability may be the main

problem with our data, rather than heterogeneity.” In the exchange rate literature, Goldberg

and Frydman (1996) reject the rational expectations assumption in favor of a “qualitative

rationality” in which inherently imperfect knowledge can be used only to predict the direction

of the exchange rate movement. In their model, adjustment to the permanent component

of shocks is reflected in structural shifts in expectations functions.9 In this vein, Gygax

and Sawyer (2003) claim that “[d]ependence which is stationary does not lead to learning.”

We use the Bai-Perron (BP) method (1998; 2003) to identify, estimate, and test for such

parametric shifts.

Even if the structural breaks do not correspond to identifiable changes in exchange rate

regimes, they may reflect forecaster learning behavior. Linear combinations of conventional

learning models have been used by Frankel and Froot (1987) and subsequent researchers.

One vein of research (Frankel and Froot, 1986, 1990) attempts to fit actual exchange rates

to a time-varying weighted average of a chartists/noise trader variable (for which forecasts

follow a bandwagon or random walk and therefore tend to be destabilizing) and a funda-

mentals variable (for which forecasts satisfy the rational expectations hypothesis and tend

to be stabilizing). The weights are updated each period, shifting in favor of the model

that has been the most accurate recently. The second vein of modeling, which we pursue

here, attempts to fit expectations themselves to the more general set of learning processes.

7Some authors allow for more than one lag of the regressor, but they do not allow a flexible lag specification
with more than just a few lags. Few authors report the results of specification searches with more than a few
lags in their general model. Prat and Uctum (2000) are an exception, but only for the extrapolative model.

8This is an alternative to comparing the estimated coefficients over arbitrary subsamples of the data, as
in, e.g., Ito (1994).

9Their structural variables are based on the monetary model, not solely on ad hoc learning variables
models such as the ones we use.
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This “mixed model” approach subsumes the chartist-fundamentalist approach as particular

coefficient restrictions. Most researchers have confined themselves to estimating a linear

combination of the conventional static extrapolative, adaptive, and regressive specifications

without structural change dummies, using survey forecasts that are aggregated over indi-

viduals. As mentioned above, modeling individual learning processes may reveal specific

differences across forecasters that explain the failure of micro-homogeneity tests for rational

expectations.10

Fourth, for all but the most general specification, we use a two-stage model selection

methodology to choose the variable(s) which provides the best forecasting performance

among the four types of learning models at each stage of analysis. Finally, in the third

stage, we allow the model to be explicitly dynamic by adding lagged dependent variables to

the learning model variables and conducting a general-to-specific model selection process in

the spirit of the LSE school.

For each forecaster and horizon, our goal is to search both locally (for each of four types of

learning models, over three types of regressor specifications—single variable unlagged, single

variable with structural change dummies, and single variable with optimal lag specification)

and globally (over all possible variables in all learning models) for congruent models of

expectations.11

To see the difference between our method and other model selection strategies, consider

the approach used by Frankel and Froot (1987) in their seminal paper. After estimating

10However, even using disaggregated data, mixed FGPs have not been able to separately identify response
coefficients and weights for each learning model. Furthermore, as described by Abou and Prat (2000, p. 291):
“In fact, the weighting coefficients...which are implicitly embedded in the parameters of the three processes
can a priori have two non-exclusive meanings:

• ‘the representative agent’ [they used aggregate forecast data] formulates his expectation by combining
the three basic processes according to subjective proportions (that is, the agent chooses the ERAMLI
[a particular specification of mixed model] at any time);

• [a single simple learning model is used at each point in time, and] the weight of each basic process in
the ERAMLI depends on its frequency over the estimation period.”

Prat and Uctum (2000, p. 265) also discuss this limitation of their mixed process.
11A congruent model is one which passes certain tests for white noise residuals. (For a list of such tests

see the notes at the end of tables 2.1 - 2.6.)
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simple conventional extrapolative, adaptive, and regressive models, these authors then com-

bined these individual learning models into a mixed model. Frankel and Froot (1987) did

not report specific results of this exercise. Their rationale (p. 145) provides an interesting

counterpoint to our own strategy:

Clearly, if a high R2 were our goal, more complicated models could have been
reported. We estimated a more general specification for expectations, expanding
the information set to include simultaneously the current and lagged spot rates,
the long-run equilibrium rate and the lagged expected spot rate . . . The R2s of
these more complex permutations were higher than those [for the simple models.]
However, the best fits were for models which are unfamiliar compared with the
popular formulations above . . . The central point of our analysis is to investigate
the robustness of a rejection of static expectations, not to settle on any single
model of expectations. The goodness of fit statistics . . . , however, give us an
opportunity to compare the fits of these simple alternative specifications.

Our goal of congruency is clearly more challenging than either confirming the rejection

of static expectations against one or more single variable alternatives or maximizing a single

measure of model fit.

2 Specifying the Forecast Generating Processes

Since there is evidence that the spot rate and all forecasts are integrated of order one

(see Cohen et al. (2006)), to achieve stationarity we follow the convention of expressing the

dependent variable in return form, i.e., (se
i,t,h−st), where s is the natural log of the exchange

rate at time t, expressed as yen per dollar, and the superscript “e” represents forecaster i’s

expectation of the spot rate h (biweekly) periods in the future.12 For each of the four industry

groups (i = 1, 2, 3, 4), there are two candidate variables for adaptive expectations regressors,

one based on last period’s expectation (st − se
i,t−1,h), the other based on the expectation h

periods ago (st − se
i,t−h,h). Similarly, there are two extrapolative variables (st − st−1 and

st − st−h). There are also two regressive expectations variables, which measure the deviation

of the current spot rate from a proxy for the long-run equilibrium. The first is based on

12Hth differences of natural logarithms of forecasts are stationary at the 1% level for all groups. See Cohen
et al. (2006).
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defining the long-run equilibrium as the six-month forecast of the exchange rate (se
i,t,12 − st).

(This forecast horizon is chosen because it is the longest in the dataset.) The second is based

on defining the long-run equilibrium as a moving average of the exchange rates over the past

six months (st − st), where st = 1

12

∑
11

l=0
st−l. Finally, there are four interactive expectations

regressors for each of the four forecaster industry groups. A typical regressor takes the form

se
i,t,h − se

j,t−1,h for i = 1, 2, 3, 4, and j(6= i) = 1, 2, 3, 4,m, where m is the mean forecast of the

four groups.13

Table 1 describes the three stages of the specification process. The first two rows (stages

I and II) refer to sequential stages of analysis; the columns (A, B, and C) refer to type of

regression specification. In stage I, we begin by using Hocking’s Sp information criterion to

choose a (single) unlagged optimal regressor for each of the four learning models.14

Then, in IB, we use the same regressor for each learning model that we chose in IA, but

allow for structural change using the technique of Bai and Perron (1998; 2003).15 In IC, we

estimate the optimal lag specification (typically not consecutive) for the regressor selected

in IA.16

13The reason for lagging industry j’s forecast one (two week) period is that, on the day after the forecast,
the JCIF announces the overall mean forecast and each industry’s average forecast.

14Sp = RSS
(T−k)(T−k−1) , where, in the given model, RSS is the residual sum of squares, T is the number

of observations, and k is the number of regressors. See Maddala (1992) for discussion of this and other
information criteria. Unlike R2, R2 and other model selection statistics, Sp does not assume that any
resulting model, including the one which minimizes the criterion, is the true FGP. Nor do we have to know
which regressors are in the true FGP. We only need to estimate the variance of the disturbance term in each
model. Thus, for comparison purposes, we can legitimately identify the best of a set of possibly misspecified
models within each regressor category. We restrict our specification search to the current and lagged values
of each learning variable. In stage III we expand our list of candidate regressors to include all learning
variables and lagged dependent variables in what Hendry has called a General Unrestricted Model.

15We set the BP algorithm to allow up to five structural changes in each parameter. Given this constraint,
we follow BP’s recommendation for selecting the number of breaks (Bai and Perron, 2003, pp. 15-16) by
first testing the null hypothesis of zero breaks against the alternative of more than one break. If the null is
rejected, we then use a sequential method to test for each incremental break, based upon a 5% significance
level. We allow for different distributions for the data and errors across regimes, although errors are assumed
to be asymptotically independent across regimes. To ensure reliable inference, each regime must contain at
least 15% of the sample observations. (Thus, each regime contains a minimum of about 30 forecasts, i.e., a
15-month period.) Estimators are consistent in the presence of heteroscedasticity and autocorrelation.

16Note that the simple model in column A is nested in column B; we include column A results for com-
parison with the mainstream literature.
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Table 1 Outline of Specification Tests for Learning Models

Stage I: Variable selection
Based on Hocking’s Sp, select one regressor for each of 4 learning model categories
(adaptive, extrapolative, regressive, and interactive; see Appendix 1 for variable definitions); then estimate using OLS

A. Simple (a.k.a “conventional” B. “Conventional” specification C. Optimal lag specification
or single regressor) models (single, unlagged variable) with (single variable with possible

structural change dummies nonconsecutive lags)

Stage II: Mixed learning models
Using the 4 regressors estimated in IA Using the 4 regressors estimated in IA, Using lags of the 4 regressors

with new set of structural change dummies estimated in IC

Stage III: General-to-Specific Model Selection
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In stage II, for each of the three specifications (columns A, B, and C), we estimate a

mixed model comprised of the optimal variables from each of the four types of learning

models.17 For example, in the case of the conventional specification of column A, the mixed

model consists of the optimal extrapolative, adaptive, regressive, and interactive variables as

chosen in stage I. In IIB the structural breaks are re-estimated for the four-variable mixed

model, using the same regressors as in IIA. These structural breaks are not the union of the

sets of structural breaks for each of the four single variable learning models estimated in IB.

Attempting to use the latter would result in overlapping regimes. Similarly, in stage IIC,

rather than simply defining the “best” set of lagged regressors as the one with the minimum

Sp, we use the above-mentioned algorithm due to Hendry and Krolzig (2001) for selecting

the model of the forecast generating process.18

In stage III we conduct an unrestricted general-to-specific search over the current and

lagged values of each of the two extrapolative variables, two adaptive variables, two regressive

variables, one interactive variable (the group forecast less the lagged mean forecast),19 and

the lagged dependent variable. It is important to note that, in the first two stages, should

we find a congruent specification for a given group and horizon, that specification may not

encompass a congruent specification based on the expanded set of candidate regressors in

stage III. Thus, in the earlier stages, we use the Hendry and Krolzig (2001) model selection

algorithm but not the Hendry and Krolzig (2001) methodology, which begins with a general

unrestricted model.

17Thus, each of the three categories of mixed models (in columns A, B, and C) nest their single regressor
counterparts chosen in stage I.

18The possibility of multicollinearity implies that even a path-independent model selection procedure such
as that used in Hendry and Krolzig (2001) may not include certain economically relevant regressors in the
mixed models. This is another justification for estimating single learning processes in stage I. If a learning
process is not significant in either the single learning model of stage I or the mixed model of stage II, then
it was correctly omitted from both models. However, if a learning process is significant in stage I but not
in stage II, there are two possible reasons: mistaken inclusion in stage I due to omitted variable bias in
the single learning model or mistaken exclusion in stage II, due to multicollinearity in the mixed model’s
regressors. The selection method in Hendry and Krolzig (2001) minimizes both types of errors by testing for
the significance of all possible combinations of regressors jointly.

19Unlike the models in the earlier stages, conservation of degrees of freedom dictated that we not include
interactive expectations variables for all permutations of paired groups.

8



A congruent model is one which passes certain tests for white noise residuals. (For a list

of such tests see the notes at the end of tables 2.1 - 2.6.)20 In contrast, based on low Durbin-

Watson statistics for certain learning models and currencies, Frankel and Froot (1987) use

an estimator that includes an AR(1) transformation to whiten the residuals. Of course, this

changes the structure of the learning model. (However, other authors testing conventional

learning models, either simple or mixed, use OLS estimation and do not test for or allow for

departures from i.i.d. Examples include Maddala (1992) and Cavaglia et al. (1993a,b).)21

3 Discussion of Learning Models Results

Tables 2.1 - 2.6 summarize the results of specifications tests on the models in our four

stage procedure. Below we provide an economic interpretation of the estimated parameters

(not reported in the tables). Tables 3.1-3.4 present estimation results for models which pass

all tests for congruency. The variable names used in the tables are defined in Appendix 1.

3.1 Conventional Univariate Learning Models

For the one-month horizon, the adaptive coefficients for groups 1 and 2 are positive frac-

tions, indicating elastic, or destabilizing, expectations. For groups 3 and 4 the coefficients

are negative fractions and statistically significant, indicating inelastic, or stabilizing, expec-

tations. (Three out of four coefficients are significant at the 5% level.) For all groups but 3,

the regressive coefficient is a negative fraction, indicating destabilizing expectations.22 For

all groups but 3, the extrapolative coefficient is a positive fraction, indicating destabilizing

20To save space and also because of specification problems discussed in section 3.5 below, we omit individual
regression results from noncongruent specifications. These results are available from the authors.

21It is also possible to allow for a nonrandom residual structure in the FGP for the wrong reason. See
Benassy-Quere et al. (2003). For instance, even though all JCIF forecasts are multiperiod (since forecasts
are made every two weeks for one, three, and six months), if one uses versions of the learning models in
which the most recently available data are used (e.g., the most recent one-period change in the realization
or the forecast error) for all horizons, there is no lag between the dependent variable (i.e., forecast change)
and the information set used to construct the independent variable(s). For example, forecasters do know
the h− k period forecast at the time they make the h-period forecast. Thus, the data do not overlap in the
Hansen and Hodrick (1980) sense (and so should not have an MA(h−k) structure). Therefore, the residuals
in an FGP should be uncorrelated if the FGP is a congruent specification.

22These regressive variables are measured as the deviation of time t spot rate from the six-month moving
average, whereas the group 3 regressive variable is measured as the deviation of the time t spot rate from
the six-month forecast.
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expectations. Finally, all groups showed positive interaction with group 3’s previous forecast.

(Group 3 showed positive interaction with group 2’s previous forecast.) In short, there is

some evidence for destabilizing expectations at the one-month forecast horizon.

For the three-month horizon, all adaptive coefficients are negative and statistically signifi-

cant, indicating stabilizing expectations. Similarly, all regressive coefficients are positive and

statistically significant, also indicating stabilizing expectations. Three of four extrapolative

coefficients are significantly negative, implying stabilizing expectations. Also, it appears that

groups 1 and 2 have positive interaction with group 4, while groups 3 and 4 have positive

interaction with group 2. In general, then, at the three-month horizon, the regressions show

increasing evidence of stabilizing expectations.

For the six-month horizon, the adaptive coefficients also indicate stabilizing expectations,

and are greater in absolute magnitude and statistical significance than the three-month hori-

zon. Similarly, the regressive and extrapolative coefficients are all stabilizing and statistically

significant. Also, a clear pattern of interaction emerges, in which group 1’s forecasts posi-

tively and significantly influence the forecasts of nearly all other groups. However, no group’s

forecasts significantly influence group 2’s. Thus, compared with the three-month horizon,

stabilizing influences are even more dominant.

Next, we investigate whether these patterns hold when we incorporate all the learning

models in a single mixed model of expectation formation.

3.2 Conventional Mixed Learning Models

At the one-month horizon, all adaptive coefficients are stabilizing and significant. They

are about the same magnitude as the simple learning models at the three-month horizon.

Only two of the extrapolative coefficients are significant, and these are in the destabilizing

direction. All four regressive coefficients are destabilizing, and three are statistically signifi-

cant. Finally, there is a significant positive interaction between group 3 and all other groups.

Group 3’s forecasts are most closely associated with group 2’s.
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At the three-month horizon, all adaptive and regressive coefficients are stabilizing, signif-

icant, and higher than their one-month counterparts. However, all extrapolative coefficients

are now destabilizing at or close to significant levels. There appears to be interaction between

group 2 and two other groups as well as between group 3 and two other groups.

At the six-month horizon, while adaptive expectations appear stabilizing as usual, neither

regressive nor extrapolative expectations show a clear pattern. Three of four groups show

positive interaction with group 1.

In summary, allowing for mixed models of learning weakens the pattern of increasing sta-

bility of expectations with increasing horizon that we found with the corresponding simple

learning models. Our results contrast somewhat with those of Ito (1994), who, using aggre-

gate data, found stronger evidence of destabilizing expectations at the one-month horizon

and stabilizing expectations at the six-month horizon.23

3.3 Learning Models with Structural Breaks

At the one-month horizon, all groups showed statistically significant stabilizing adaptive

coefficients. However, the significant extrapolative coefficients were mostly destabilizing for

groups 1 and 2 and stabilizing for groups 3 and 4. For all groups, the regressive coeffi-

cients were uniformly destabilizing. Groups 3 and 4 exhibited mostly stabilizing adaptive

coefficients, while the results for groups 1 and 2 were mixed.

At the three-month horizon, only group 4 showed consistently stabilizing adaptive coef-

ficients. The others were mixed. Extrapolative effects were also destabilizing; only group 3

showed consistently stabilizing effects. Again, results for the other groups were mixed and/or

insignificant. However, regressive coefficients were nearly all stabilizing across groups.

23However, he used different definitions of the long-run equilibrium. One of his measures was a loglinear
trend fit to the entire sample period. As Ito notes, this not only requires knowledge that is not in the
forecaster’s real time information set, but it would also not be valid if the exchange rate has a unit root.
Using a longer sample period, we found that there is indeed a unit root (see Cohen et al. (2006)). Ito also
used a log linear trend of the exchange rate between two years of current account balance as a measure of the
long-run equilibrium. Since the two years (1973 and 1974) occurred prior to the beginning of the survey, it
was possible for this measure of long run equilibrium to be in forecasters’ information sets, although again,
with a longer data set, the assumption of stationarity is questionable.
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At the six-month horizon, adaptive coefficients were uniformly stabilizing. Extrapolative

coefficients were nearly all insignificant, except for group 1, where they were significant but

mixed. Few regressive coefficients were significant; those that were tended to be stabilizing.

In fact, all models, mixed as well as simple, exhibit at least one structural break. Many

coefficients change sign across structural breaks, illustrating the extreme instability of the

learning models. Ito (1994) divided his eight year sample (1985-1993) into four two-year

subperiods and also found evidence of parameter instability. In short, allowing for structural

breaks does not seem to produce a clearer pattern of short-run destabilizing and long-run

stabilizing behavior of expectations. The interesting result from using the Bai-Perron method

to allow the data to “select” the break points is that there is a much greater similarity of

break points within groups (across learning variables and horizons) than across groups (for

given learning variables and horizons). Thus, differences in temporal instability of coefficients

of learning models may be one manifestation of the heterogeneity of the FGPs.

However, even allowing for structural breaks, we rarely find congruent models. (Congru-

ent models are indicated by a C in tables 2.1 - 2.6.) Hence, an alternative interpretation

is that structural breaks represent evidence of model misspecification. Overall, when con-

sidering all of our “local” (i.e., stages I and II) specifications–(48) simple learning models

with and (48) without structural breaks (tables 2.1 - 2.2), (48) simple learning models with

optimal lag specifications (table 2.3), (12) conventional mixed learning models with and (12)

without structural breaks (table 2.4), and (12) optimal lag mixed models (table 2.5)–we find

only four congruent models out of 180. The output for the four congruent models is shown

in tables 3.1- 3.4. Only one is for a simple learning model with no lags or structural change

(group 3 at a six-month horizon using an adaptive model).24 Three are for the mixed model

with (from one to three) structural breaks (group 1 at the six-month horizon and group 4

at the one- and six-month horizons).25 Although group 1’s regressive coefficient tended to

24The negative coefficient is consistent with stabilizing expectations.
25Because no more than one model is congruent for a given group and horizon, no encompassing tests are

possible.
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be stabilizing, even at the one-month horizon, the overall results for the congruent mixed

models are at least broadly consistent with the chartist-fundamentalist dichotomy of short-

run destabilizing and longer-run stabilizing tendencies. However, these tendencies appear to

reside within a single industry group.

3.4 An Alternative: Implementing Automatic Model Selection via a General-to-Specific

Modeling Strategy

It is more in the spirit of the general-to-specific methodology for selecting a congruent

model to begin “testimation” (c.f. Trivedi 1984) by including lagged dependent variables in

the general unrestricted model (GUM). This allows for learning to be truly dynamic, even if

coefficient interpretation does not fit the conventional learning model framework. The Gets

modeling strategy seems especially well-suited to fitting learning models to forecasts. In this

setting, theory does not impose strong restrictions on the parameters, thereby permitting

emphasis to be placed on explaining a great deal of time-series variation, with little cost of

sacrificing identifying relationships.26,27 Thus, our GUM consists of the current value and

twelve lags each of the two extrapolative variables, two adaptive variables, two regressive

variables, one interactive variable (the group forecast less the lagged mean forecast), and

the lagged dependent variable–a total of 103 variables in all. Given sample sizes of slightly

over 200 biweekly forecasts, initial tests on the GUM generally have about 100 degrees of

freedom. Therefore, we use F tests, since these exhibit better small sample properties than

the χ2. (See Hendry and Krolzig (2001)).

Tables 3.3 - 3.4 report the estimation of each of the congruent models discovered in the

general-to-specific search conducted in stage III. Of the twelve models we fit (four groups

times three horizons), we find congruent models (at the 5% level for all the specification

tests) for five groups–groups 2 and 3 at the one month horizon, and groups 1, 3 and 4

at the three month horizon. (These models have between six and 15 regressors.) These

26See Faust and Whiteman (1997).
27Because our GUM contains so many variables relative to any reasonable learning process, we selected

the “conservative” modeling strategy, which minimizes the non-deletion probabilities of irrelevant variables.
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results represent a vast improvement over the congruency results from the first two stages.

Yet, for the majority of survey forecasts, learning models–even when augmented with lagged

dependent variables–do not pass a battery of standard diagnostic tests.

Next, we examine the stability properties of the coefficients in the general-to-specific

(GTS) estimations. (In models in which there were two of a given type of regressor, e.g.,

current value and third lag of the extrapolative regressor E1, we determined stability using

the sum of the coefficients.) For the two congruent models at the one month horizon, the

coefficients of the adaptive variable are destabilizing in group 2 and stabilizing in group 3.

Similarly, the coefficients of the extrapolative variable are stabilizing in group 2 and desta-

bilizing in group 3. As theory would suggest, at the one month horizon, neither regressive

variable is significant in any of the four final models. For the three congruent models at

the three month horizon, all adaptive variables have net stabilizing coefficients; however,

extrapolative and regressive variables have both stabilizing and destabilizing coefficients.

The lagged forecast appears in nine of the twelve final models, and in three of the five

congruent models. This suggests that, overall, the models exhibit a dynamic component

that is not captured by the learning variables.

Finally, the deviation of a given group’s forecast from the lagged mean appears in all

twelve final models. These interactive variables, including lags, account for between one

fifth and one half the regressors in the GTS congruent models. Thus, regardless of horizon,

a given group’s forecast exhibits a systematic reliance on the (past) forecasts of others–either

individually or as reflected in the mean.

3.5 Conclusion: Model specification problems

In the present context of modeling foreign exchange rate expectations, an important

question is “how well can learning and innovation themselves be modeled by constant pa-

rameter processes?” (Doornik and Hendry, 1994, p. 295) When an FGP involves learning,

modeling strategy would seem to imply some sort of time-variation in parameters, i.e., non-

stationarity, even in series that are I(0). The Bai-Perron technique shows no pattern of
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breaks across forecasters that corresponds to changes in foreign exchange regimes, such as

those that occurred at Plaza meeting in September 1985 (which let the dollar depreciate)

or the Louvre meeting (which agreed to stabilize the exchange rate within a target zone).

Hence, such variation in a given set of regression coefficients is considered suboptimal from

an encompassing perspective. However, Doornik and Hendry (1994) recognize that there is

a type of nonstationarity that cannot be removed by differencing, a cointegrated transfor-

mation, or parameter shifts. This is “inherent non-stationarity owing to innovative human

behaviour or natural processes, which as yet we do not know how to remove or model” (1994,

p. 295). Using a mechanical model selection technique, even with lags of regressors from

standard learning models, runs the risk of settling on “complicated mechanisms dependent

on mixtures of unlikely but time-independent events, which would seem to be non-stationary

despite having constant unconditional moments.” (1994, p. 295)

In the introduction we noted that Cohen et al. (2006) found that micro-homogeneity tests

for equal parameters across groups failed at very low significance levels in both unbiasedness

and efficiency tests. Not only are forecasters “different”, they are different in ways that

cannot be adequately represented by learning models–in most cases, even when augmented

with lagged dependent variables. Modeling forecast generating processes would seem to be

at least as challenging a task as modeling data generating processes.
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Table 2.1 Results of Congruency Tests:

Stage I: Simple Learning Models (one category of learning variable)

IA: “Conventional” specification (single unlagged variable)
Horizon/Specification Group 1 Group 2 Group 3 Group 4

1 mo./Adaptive A2G1 (1,2) A2G2 (1,2,3) A1G3 (1) A1G4 (1,2,3)
Regressive R2 (1,2) R2 (1,3) R1G3 (1,2) R2 (1,2,4,5,6)
Interactive IG13 (1,2) IG23 (1,2) IG32 (1,2) IG43 (1,2,3)
Extrapolative E2 (1,2) E2 (1,2,3) E1 (1,2) E2 (1,2,3)

3 mo./Adaptive A1G1 (1,2) A1G2 (1,2) A1G3 (1) A1G4 (1,2,3,6)
Regressive R1G1 (1,2) R1G2 (1,2,4,5) R1G3 (1,2) R1G4 (1,2,3,4,5)
Interactive IG15 (1,2,3) IG24 (1,2,3) IG32 (1,2) IG43 (1,2,3,4,5)
Extrapolative E2 (1,2) E1 (1,2,3) E1 (1,2,3) E1 (1,2,3)

6 mo./Adaptive A1G1 (1,2,3) A1G2 (3,6) A1G3 (C) A1G4 (1,3,6)
Regressive R2 (1,2,3,4,5) R2 (1,2,4,5,6) R2 (1,2,4,5) R2 (1,2,3)
Interactive IG13 (1,2,3) IG21 (1,2,3,6) IG31 (1,2) IG41 (1,2,4,5)
Extrapolative E2 (1,2,3,6) E2 (1,2,4,5,6) E2 (1,2,4,5,6) E1 (1,2,3)

Note: For each horizon and model, right hand side variables are defined in appendix 1.
Following the variable name, numbers in parentheses indicate congruency (C) or the spec-
ification test(s) which fails at the 5% significance level. Notation for Congruency Tests: C
= congruent model; Failure of congruency due to 1 = AR1-2 test; 2 = ARCH 1-2 test; 3
= Normality; 4= Heteroscedasticity; 5= Heteroscedasticity-X; 6 = RESET. Variable I(t) is
a dummy variable used to remove the effect of an outlier in period t. Numbers(s) in hard
brackets in IB and IIB indicate break points using the Bai-Perron sequential procedure at
the 5% significance level.
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Table 2.2 Results of Congruency Tests Continued

IB: “Conventional” specification (single unlagged variable) with structural change dummies
Horizon/Specification Group 1 Group 2 Group 3 Group 4

1 mo./Adaptive A2G1 (1,2,4,5) A2G2 (1,2,3) A1G3 (1,3) AIG4 (1,2,3,4,5)
[66,127,169] [65] [130] [72]

Regressive R2 (1) R2 (1,3) R2 (1,3) R2 (1,4,5)
[69,126] [54,107] [56, 89,130] [116]

Interactive IG13 (1,2,3) IG23 (1,2,3) IG14 (1,2) IG43 (1,2,3)
[69,127,169] [73] [130] [75,116]

Extrapolative E2 (1,2) E2 (1,2,3) E1 (1) E2 (1,2,3,4,5,6)
[69,127,169] [65] [130] [130]

3 mo./Adaptive A1G1 (1,2,4,5) A2G2 (1) A1G3 (1) A1G4 (1,2,4,5,6)
[32, 82,124] [32, 78,120] [107] [78]

Regressive R1G1 (1,2,6) R1G2 (1,2) R1G3 (1,2,3,4,5) R1G4 (1,2,3,4,5)
[68] [65] [120] [72]

Interactive IG14 (1,2,3) IG24 (1,2) IG32 (1,2,4,5) IG42 (1,2)
[79,124,168] [78,120] [51,86,120] [78]

Extrapolative E2 (1,2,4,5) E2 (1) E1 (1,2) E1 (1,2)
[32,82,124] [33,78,120] [51,87,120] [78]

6 mo./Adaptive A1G1 (1,2,4,5) A1G2 (1) A1G3 (4,5) A1G4 (1,3)
[82,140,179] [78] [148] [78,110,142]

Regressive R2 (1,2) R2 (1,2,4,5) R2 (1,2,3,4,5) R2 (1,2,4,5)
[68] [183,151] [32] [32,64,176]

Interactive IG13 (1,2,3,5) IG21 (1,2,4,5) IG32 (1,2,6) IG32 (1,2,3)
[83,144,181] [50,84,149] [50,92,146] [79,118]

Extrapolative E2 (1,2,6) E2 (1,2) E2 (1,2,4,5) E2 (1,2,4,5)
[80,144,181] [78,166] [87,148] [78,151]

Note: For each horizon and model, right hand side variables are defined in appendix 1.
Following the variable name, numbers in parentheses indicate congruency (C) or the spec-
ification test(s) which fails at the 5% significance level. Notation for Congruency Tests: C
= congruent model; Failure of congruency due to 1 = AR1-2 test; 2 = ARCH 1-2 test; 3
= Normality; 4= Heteroscedasticity; 5= Heteroscedasticity-X; 6 = RESET. Variable I(t) is
a dummy variable used to remove the effect of an outlier in period t. Numbers(s) in hard
brackets in IIB and IIIB indicate break points using the Bai-Perron sequential procedure at
the 5% significance level.
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Table 2.3 Results of Congruency Tests Continued

IC: Optimal lag specification (single variable with possible multiple nonconsecutive lags)
Horizon/Specification Group 1 Group 2 Group 3 Group 4
1 mo./Adaptive A1G1 or A2G1 (1,2) A2G2 (1) A1G3 (1) A1G4 or A2G4 (1,2,3)

[INT] [INT,1,3,4;I17,I32,I64] [INT,0,12;I101] [INT]
Regressive R2 (1,2) R2 (1) R1G3 (1,2) R1G4 (1,2)

[INT,0,6,11] [INT,0,5,I32,I64,I155] [INT,0,10] [INT,0]
Interactive E1 (1,2,5) E2 (1) E1 or E4 (1,2) E1 or E2 (1,2,3)

[INT,0,2,4] [INT,0,2,4;I17,I32,I64] [INT] [INT]
Extrapolative IG13 (1,2) IG2M (1,4,5) IG32 (1,2) IG43 (1,2)

[INT,0,1,2,3,4,5] [INT,0,1,2,4;I64] [INT,2,4,5,9] [INT,0,1,2,4,5,7;I106]
3 mo./Adaptive A1G1 (1,2) A1G2 (1) A1G3 (1,2) A1G4 (1,2)

[INT,0,1,8,10;I92,I110] [INT,0,2,8;I103] [0,1,3] [INT,0,1,6,11]
Regressive R1G1 (1,2) R1G2 (1,2,5) R1G3 (1,2,4,5) R1G4 (1,2)

[INT,0,3] [INT,0,5] [0] [INT,0,7]
Interactive E1 or E2 (1,2) E1 or E2 (1,2,3) E1 (1,2,3) E2 (1,2,3)

[INT] [INT] [0,1,2,10] [INT;I58]
Extrapolative IG15 (1,2) IG21 or IG24 IG31 or IG32 IG42 or IG43

or IG25 (1,2,3) or IG35 (1,2,3,4,5,6) or IG45 (1,2,3)
[INT,0] [INT] [] [INT]

6 mo./Adaptive A2G1 (1) A1G2 (1,4,5) IG3 (2) A1G4 (1,6)
[INT,0,1,3;I102] [INT,0,1,7;I37,I101] [0,1,2] [INT,0,1,3]

Regressive R2 (1,2,3,4,5)* R2 (1,2,4,5,6)* R2 (1,2,4,5,6)* R2 (1,2,3,4,5)*
[12] [INT,0] [0,1] [0,5]

Interactive E2 (1,2,3,6) E1 (1,2) E1 (1,2) E1 (1,2,3)
[INT,0] [INT,0,1,3] [0.1,2,3,4,5,6,7] [INT,0,1,3,5]

Extrapolative IG13 (1,2,3) IG2M (1,2) IG32 (1,2) IG42 (1,2,6)
[11] [INT,3] [0] [0,2;I157]

Note: For each horizon and model, right hand side variables are defined in appendix 1. Following the variable name, num-
bers in parentheses indicate congruency (C) or the specification test(s) which fails at the 5% significance level. Notation for
Congruency Tests: C = congruent model; Failure of congruency due to 1 = AR1-2 test; 2 = ARCH 1-2 test; 3 = Normality;
4= Heteroscedasticity; 5= Heteroscedasticity-X; 6 = RESET. Variable I(t) is a dummy variable used to remove the effect of
an outlier in period t. Numbers in hard brackets in IIC and IIIC indicate lag length(s) of optimal specification. An asterisk
indicates that we must use lags of R2 as an optimal regressor, since Y6Gi=R1Gi by construction.
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Table 2.4 Results of Congruency Tests Continued

Stage II: Mixed Learning Models

IIA: ”Conventional” mixed model
using regressors separately fitted in IA

Horizon Group 1 Group 2 Group 3 Group 4

1 mo. (1,2) (1,3) (1) (1,5)

3 mo. (1,2,5) (1,2,4,5) (1,4,5) (1,6)

6 mo. (1,3,4,5,6) (1,3) (1) (1,3)

IIB: ”Conventional” mixed model with structural change dummies
using regressors separately fitted in IA

Horizon Group 1 Group 2 Group 3 Group 4

1 mo. (1) (1,3) (1,2,3,6) (C)
[62,123] [64,111] [123,170] [52,84,130]

3 mo. (1,2,6) (1,3) (1,3) (1,3)
[65,141] [70] [51 85 117] [33,70]

6 mo. (C) (3,4,5,6) (3) (C)
[79 119 183] [81] [71] [70]

Note: For each horizon and model, right hand side variables are defined in appendix 1.
Following the variable name, numbers in parentheses indicate congruency (C) or the spec-
ification test(s) which fails at the 5% significance level. Notation for Congruency Tests: C
= congruent model; Failure of congruency due to 1 = AR1-2 test; 2 = ARCH 1-2 test; 3
= Normality; 4= Heteroscedasticity; 5= Heteroscedasticity-X; 6 = RESET. Variable I(t) is
a dummy variable used to remove the effect of an outlier in period t. Numbers(s) in hard
brackets in IB and IIB indicate break points using the Bai-Perron sequential procedure at
the 5% significance level.
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Table 2.5 Results of Congruency Tests Continued

IIC: Optimal Lag Mixed Model
using regressors separately fitted in IC
Horizon Group 1 Group 2 Group 3 Group 4

(1,2) (1) (1) (1,2,3)
1 mo. [INT,R2(0,6,11), [INT,A2G2(1,3,4),R2(0,5), [INT,A1G3(0,12), [INT,R1G4(0),

E1(0,2,4),IG13(1,2,3,4,5)] E2(0,2,4),IG2M(0,1,2,4); R1G3(0,10),IG32(2,4,5,9); IG43(0,1,2,4,5,7);I106]
I17,I32, I64, I155] I101]

(1,5,6) (1,2) (1,4,5) (1,2)
3 mo. [INT,A1G1(0,1,8,10), [INT,A1G2(0,2,8), [A1G3(0,1,3),R1G3(0), [A1G4(0,1,6,11,12),

R1G1(0,3),IG15(0); R1G2(0,5);I103] E1(0,1,2,10)] R1G4(0,7),I58]
I92,I102]

(1,5) (4,5) (1,2,5) (1)
6 mo. [INT,A2G1(0,1,3),R2(12), INT,A1G2(0,1,7),R2, [A1G3(0,1,2),R2(0,1), [INT,A1G4(0,1,2,3),

E2(0),IG13(11);I102] E1(0,1,3),IG2M(3); E1(0,1,2,3,4,5,6,7),IG32(0)] R2(0,5),E1(0,1,3,5),
I37,I101] IG42(0,2) ;I57]

Note: For each horizon and model, right hand side variables are defined in appendix 1. Following the variable name, numbers
in parentheses indicate congruency (C) or the specification test(s) which fails at the 5% significance level. Notation for Con-
gruency Tests: C = congruent model; Failure of congruency due to 1 = AR1-2 test; 2 = ARCH 1-2 test; 3 = Normality; 4=
Heteroscedasticity; 5= Heteroscedasticity-X; 6 = RESET. Variable I(t) is a dummy variable used to remove the effect of an
outlier in period t. Numbers in hard brackets in IC and IIC indicate lag length(s) of optimal specification. An asterisk indicates
that we must use lags of R2 as an optimal regressor, since Y6Gi=R1Gi by construction.
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Table 2.6 Results of Congruency Tests Continued

Stage III: General-to-Specific Models
Horizon Group 1 Group 2 Group 3 Group 4

(1) (C) (C) (4,5)
1 mo. [INT,A1G1(0,1), [Y1G2(1,2,3),A1G2(1), [A1G3,E1(1,2) [Y1G4(1),E1(0,1),

E2(1),IG1M(0,1)] E1(0,3),IG2M(0,1,3)] IG3M(0,1,2)] IG4M(0,1)]

(C) (2,3) (C) (C)
3 mo. [Y3G1(1),A1G1(0,1), [Y3G2(1),A1G2,R1G2, [A1G3,R1G3,R2,E1(1), [Y3G4(1,2,3),A1G4(0,1,2),

R1G1,E1(0,1),IG1M(0,1)] E1(0,1),IG2M(0,1)] IG3M(0,1,10)] R1G4,R2(1,2,3),
E1(0,3),IG4M(0,1,2)]

(4,5) (5) (5) (1)
6 mo. Y6G1(1,2),A1G1(0,3,4,9), [Y6G2(1,2),A1G2(0,1), [Y6G3(1),A1G3(0,1), [Y6G4(4),A1G4(0,3),R2(1),

E1(1),E2(9),IG2M(0,1,5)] R2(0,1),IG2M(0,1)] E1(0,1),IG3M(0,1)] E1(1,3),IG4M(0,1)]

Note: For each horizon and model, right hand side variables are defined in appendix 1. Following the variable name, numbers
in parentheses indicate congruency (C) or the specification test(s) which fails at the 5% significance level. Notation for Con-
gruency Tests: C = congruent model; Failure of congruency due to 1 = AR1-2 test; 2 = ARCH 1-2 test; 3 = Normality; 4=
Heteroscedasticity; 5= Heteroscedasticity-X; 6 = RESET. Variable I(t) is a dummy variable used to remove the effect of an
outlier in period t.
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Table 3.1 Output for Congruent Models

IA: “Conventional” specification (single unlagged variable)

Horizon/Group Regressor Coefficient SE t-stat
6 mo./Group 3 A1G3 -0.753 0.024 -30.820
N=209

IIB: “Conventional” mixed model with structural change dummies

Horizon/Group Regressor Coefficient SE t-stat
1 mo./Group 4 A1G4-1 -0.338 0.048 -6.994
N =215 A1G4-2 -0.494 0.081 -6.078
No. Var = 20 A1G4-3 -0.473 0.058 -8.127

A1G4-4 -0.451 0.046 -9.808
R2-1 -0.048 0.014 -3.378
R2-2 -0.026 0.026 -1.010
R2-3 -0.069 0.015 -4.601
R2-4 0.005 0.008 0.643
IG43-1 0.512 0.047 10.858
IG43-2 0.624 0.096 6.527
IG43-3 0.361 0.054 6.659
IG43-4 0.494 0.045 10.936
E2-1 -0.069 0.028 -2.491
E2-2 -0.109 0.042 -2.589
E2-3 0.003 0.035 0.097

Break dates E2-4 -0.048 0.024 -1.995
52 Constant-1 -0.002 0.001 -1.155
84 Constant-2 -0.006 0.001 -4.515
130 Constant-3 -0.003 0.001 -3.665

Constant-4 0.001 0.001 1.397

Note: number after dash in regressor name represents subset of data determined by structural
breaks. The number of subsets of data is one more than the number of structural breaks.

22



Table 3.2 Output for Congruent Models Continued

IIB: “Conventional” mixed model with structural change dummies (continued)

Horizon/Group Regressor Coefficient SE t-stat
6 mo./Group 1 A1G1-1 -0.603 0.056 -10.812
N=209 A1G1-2 -0.312 0.074 -4.216
No. Var = 20 A1G1-3 -0.655 0.069 -9.526

A1G1-4 -0.303 0.108 -2.814
R2-1 0.041 0.039 1.056
R2-2 0.130 0.059 2.222
R2-3 -0.074 0.076 -0.971
R2-4 0.062 0.059 1.046
IG12-1 0.482 0.060 7.977
IG12-2 0.465 0.071 6.527
IG12-3 0.349 0.061 5.681
IG12-4 0.344 0.154 2.232
E2-1 -0.058 0.029 -1.974
E2-2 0.072 0.040 1.801
E2-3 -0.086 0.043 -2.020

Break dates E2-4 0.016 0.040 0.400
79 Constant-1 -0.014 0.002 -5.919
119 Constant-2 -0.001 0.001 -0.778
183 Constant-3 0.001 0.002 0.305

Constant-4 0.010 0.002 4.691

Horizon/Group Regressor Coefficient SE t-stat
6 mo./Group 4 A1G4-1 -0.543 0.040 -13.541
N=209 A1G4-2 -0.623 0.029 -21.492
No. Var = 10 R2-1 0.050 0.038 1.315

R2-2 0.006 0.029 0.208
IG41-1 0.470 0.043 10.806
IG41-2 0.357 0.031 11.503
E2-1 0.012 0.029 0.412

Break dates E2-2 0.025 0.022 1.154
70 Constant-1 -0.014 0.002 -6.115

Constant-2 0.000 0.001 0.262

Note: number after dash in regressor name represents subset of data determined by structural
breaks. The number of subsets of data is one more than the number of structural breaks.
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Table 3.3 Output for Congruent Models Continued

III: General-to-Specific Models

Horizon/Group Regressor Coefficient SE t-stat
1 mo./Group 2 Y1G2 1 0.941 0.064 14.600
N=203 Y1G2 2 0.245 0.048 5.130

Y1G2 3 0.123 0.040 3.070
A1G2 1 0.416 0.063 6.570
E1 -0.839 0.036 -23.100
E1 3 0.157 0.045 3.450
IG2M 0.851 0.031 27.500
IG2M 1 -0.406 0.061 -6.610
IG2M 3 -0.144 0.041 -3.500

Horizon/Group Regressor Coefficient SE t-stat
1mo./Group 3 A1G3 -0.847 0.025 -34.000
N = 203 E1 1 0.415 0.035 11.900

E1 2 0.232 0.031 7.450
IG3M 0.841 0.027 31.500
IG3M 1 -0.347 0.034 -10.300
IG3M 2 -0.197 0.031 -6.420

Horizon/Group Regressor Coefficient SE t-stat
3 mo./Group 1 Y3G1 1 0.476 0.091 5.250
N = 201 A1G1 -0.478 0.083 -5.780

A1G1 1 0.125 0.041 3.040
R1G1 0.104 0.017 5.980
E1 -0.335 0.082 -4.090
E1 1 0.217 0.030 7.180
IG1M 0.849 0.030 28.500
IG21 1 -0.433 0.049 -8.920

Note: number after underscore in regressor name corresponds to number of lags.
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Table 3.4 Output for Congruent Models Continued

III: General-to-Specific Models (continued)

Horizon/Group Regressor Coefficient SE t-stat
3 mo./Group 3 A1G3 -0.774 0.030 -25.900
N = 201 R1G3 0.107 0.024 4.500

R2 -0.058 0.008 -7.150
E1 1 0.399 0.037 10.700
IG3M 0.735 0.033 22.500
IG3M 1 -0.464 0.041 -11.300
IG3M 10 -0.065 0.019 -3.380

Horizon/Group Regressor Coefficient SE t-stat
3 mo./Group 4 Y3G4 1 0.432 0.121 3.590
N=201 Y3G4 2 0.276 0.066 4.150

Y3G4 3 0.094 0.046 2.060
A1G4 -0.489 0.099 -4.940
A1G4 1 0.279 0.069 4.050
A1G4 2 0.147 0.062 2.380
R1G4 0.086 0.020 4.370
R2 1 -0.124 0.033 -3.800
R2 2 0.105 0.048 2.200
R2 3 0.008 0.032 0.268
E1 -0.271 0.102 -2.660
E1 3 0.044 0.016 2.730
IG4M 0.783 0.036 21.900
IG4M 1 -0.425 0.067 -6.340
IG4M 2 -0.060 0.061 -1.980

Note: number after underscore in regressor name corresponds to number of lags.
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Appendix 1: Data Description and Variable Definitions
Every two weeks, the JCIF in Tokyo conducts telephone surveys of yen/dollar exchange

rate expectations from 44 firms. The forecasts are for the future spot rate at horizons
of one month, three months, and six months. Our data cover the period May 1985 to
March 1996. This data set has very few missing observations, making it close to a true
panel. For reporting purposes, the JCIF currently groups individual firms into four industry
categories: 1) banks and brokers, 2) insurance and trading companies, 3) exporters, and 4)
life insurance companies and importers. On the day after the survey, the JCIF announces
overall and industry average forecasts. (For further details concerning the JCIF database,
see the descriptions in Ito (1990, 1994), Bryant (1995), and Elliott and Ito (1999).)

Below we define each of the variables used in the models in the text. Unless otherwise
indicated, all variables are in natural logs.

Dependent variables

Y kGi = se
i,t,h − st for group i = 1, 2, 3, 4, m for mean

and horizon k = 1 month, 3 month and 6 month.

Adaptive Expectations Regressors

A1Gi = st − se
i,t−1,h

A2Gi = st − se
i,t−h,h

Extrapolative Expectations Regressors

E1 = st − st−1

E2 = st − st−h

Regressive Expectations Regressors

R1Gi = si,t,12 − st

R2 = s̄t − st where s̄t = 1

12

∑
11

l=0
st−l

Interactive Expectations Regressors

IGij = se
i,t,h − se

j,t−1,h for i = 1, 2, 3, 4, and i 6= j = 1, 2, 3, 4,m.

28


