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Abstract This article compares the predictive performance of artificial
neural networks (ANN) and multiple regression analysis (MRA)
for single family housing sales. Multiple comparisons are made
between the two data models in which the data sample size, the
functional specification and the temporal prediction are varied.
ANN performs better than MRA when a moderate to large data
sample size is used. For the application, this moderate to large
data sample size varied from 13% to 39% of the total data
sample (506 to 1,506 observations out of 3,906 total
observations). The results give a plausible explanation why
previous papers have obtained varied results when comparing
MRA and ANN predictive performance for housing values.

Introduction

This study compares the predictive performance of multiple regression analysis
(MRA) and backpropagation feed forward artificial neural network (ANN) for
single family residential property value. The two data models, MRA and ANN,
are compared using different functional model specifications, sample (training)
data and evaluation criteria. The same specification improvements benefits both
the ANNs and the MRAS, and a plausible explanation is provided as to why other
studies that have compared the MRA and ANN data modeling tools to predict the
value of residential property have had varied results.

To fairly compare the data models, one should address the possible methodol ogical
problems associated with each data model that might distort its performance. The
studies that compare the MRA and ANN data models are identified. In addition,
several studies dealing with the MRA data model specification are also identified
and applied to the data set used in this study. Inherent problems (in implementing
the MRA and ANN data models) that may affect the performance of each model
and hence affect the results of previous studies are discussed. These findings are
then applied to a new data set for comparison of the two data models. The
constraints and results of the comparison are then given along with conclusions.
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Although the standard feedforward neural network with backpropagation learning
is used for the comparison in this article, experiments were conducted with
multiple learning variations such as enhanced backpropagation, backpropagation
with weight decay, quickpropagation, resilient backpropagation, backpercolation
and counterpropagation. Various ANN architectures such as ARTMAPR,
GAUSSIAN, regression neural, etc. were also examined. After hundreds of
experiments and multitudes of architectures, the standard backpropagation was
found to perform better than the other neural network architectures examined for
this application. In addition, since several other studies compared standard
backpropagation neural network with MRA with varied results, a change of the
ANN model would not have allowed a direct comparison between the results and
those of previous studies. Thus, the question and focus of this study is why have
some studies concluded MRA is better while others have concluded that standard
backpropagation ANN is better for predicting sold property value.

Implementation Issues

Some studies have demonstrated the superiority of ANN over MRA in predicting
housing values (Tsukuda and Baba, 1990; Do and Grudnitski, 1992; Tay and Ho,
1991/1992; and Huang, Dorsey and Boose, 1994;). Other studies (Allen and
Zumwalt, 1994; and Worzala, Lenk and Silva, 1995), however, have noted that
ANNSs are not necessarily superior. Because of an ANN’s ability to learn and to
recognize complicated patterns without being programmed with preconceived
rules, it can easily be applied with little knowledge (statistically) of the data set.
Unlike regression analysis, an ANN does not need a predetermined functional
form based on the determinants. This feature of an ANN isimportant, since several
studies (Grether and Mieskowski, 1974; Jones, Ferri and McGee, 1981; and Do
and Grudnitski, 1993) found age has a nonlinear relationship with housing value
(for the data set used in their study). Other studies have found that in addition to
age, the square footage of living area has a nonlinear relationship with housing
value (Goodman and Thibodeau, 1995). Because of the findings of previous
studies and the theoretical strength of an ANN, one would anticipate ANN’s
performance to be better than that of MRA.

When using MRA, the methodological problems of functiona form
misspecification, nonlinearity, multicollinearity and heteroskedasticity should be
addressed. When faced with possible nonlinear functional form, often one can
convert anonlinear relationship to alinear one before applying regression analysis
(Kmenta, 1971:454). As noted, some studies have found that age and sguare
footage of living area have a nonlinear relationship with housing value.
Multicollinearity does not affect the predictive ability of MRA or that of ANN
(Neter, Wasserman and Kutner, 1990:300) because the inferences are made within
the jointly defined region of the observations. Multicollinearity, however, does
make it infeasible to disentangle the effects of the supposedly independent
variables, but determining the effects of each variable on selling price is not
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relevant to this article. Heteroskedasticity is normally present when cross-sectional
data is used as in this study. In addition to the model methodological problems,
leaving out a relevant explanatory variable is another source of error when using
MRA and ANN. This is often due to the unavailability of data.

When using a feed forward ANN with back propagation learning, methodological
problems such as number of hidden layers, number of neurons in each hidden
layer, selection of training set, size of training set, selection of validation set, size
of validation set and overtraining must be addressed. Generally, the level of
training and number of hidden neurons affect the memorization and generalized
predictability of the model. The more extensive the training and the more hidden
neurons used, then the better the model is able to produce the correct results for
the training set (memorization). On the other hand, the ANN is less likely to
accurately predict new data (generaization), i.e., the ability of the ANN to
generaize is weakened when over training occurs. To avoid over training, a
heuristic method as described in Hecht-Nielsen (1990:117) may be used. Although
limited, there is some theoretical basis to assist one in determining the number of
hidden layers and neurons to use. For further discussion, see Bishop (1995:121—
26). In most situations, there is no way to determine the best number of hidden
units without training several networks and estimating the generalization error of
each. If the ANN has too few hidden units, then the training error and
generalization error will be high due to underfitting and high statistical bias. If
the ANN has too many hidden units, then the training error will be low, but the
generaization error will be high due to overfitting and high variance (for more
details, see Geman, Bienenstock and Doursat, 1992). If the training set is not
representative of the data set (statistically), then there is no basis from which the
ANN can learn. Normally, a representative training set is formed by using a
random sample of the data set. If the training set is too small, then the ANN will
tend to memorize the training patterns too specifically and extreme data points
(noise) will have an inordinate influence on the model. This can be corrected,
however, by using a k-fold cross validation training method (Stone, 1977; and
Goutte, 1997).

Previous Applicable Studies

Do and Grudnitski (1992) used both MRA and ANN to predict residential housing
value based on the eight inputs: age in years, number of bedrooms, number of
bathrooms, square footage of living area, number of garage stalls, number of
fireplaces, number of stories and lot size. Their MRA model is SP; = f(S;) where
SP, is the property i selling price and §; is the set of explanatory housing price
variables for property i. Their ANN model consists of an input layer of eight
neurons (corresponding to the eight explanatory variables of the MRA), a hidden
layer of three neurons and an output layer of one neuron representing the estimated
value of the property. Their results show that the ANN is nearly twice as accurate
as the MRA model in estimating residential property values (an ANN mean
absolute error of 6.9% as compared to the MRA mean absolute error of 11.26%).
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Relative to the ANN, the findings of Do and Grudnitski are reliable only if
specidized training methods were used. Their sample size is very small (58 total
and from just one neighborhood) while the ANN (fully connected) uses 27
weights. Without specialized training, the generalized predictability of the model
is severely limited and questionable (Baum and Haussler, 1989). A special training
method such as k-fold cross validation training is often used for small sample
sizes (Stone, 1977; and Goutte, 1997).

Tay and Ho (1991/1992) used a data set of residential apartment properties in
Singapore to test the predictive performance of ANN and MRA. They found the
ANN model to have a mean absolute error of 3.9% while that of the MRA model
to be 7.5%. However, their study by did not use speciaized training, which is
normally necessitated by a small sample size.

The above-mentioned studies generally support the superiority of ANN over MRA
in predictive ability. There are also studies supporting the superiority of the MRA
over ANN while other studies show inconclusive results. Worzala, Lenk and Silva
(1995) used the same methodology as that of Borst (1992) and Do and Grudnitski
(1992) on a different data set. The study conducted by Worzala et al. did not show
the ANN superior to the MRA.

Relative to data model specification for housing value, several studies have
identified various MRA functional specification improvements for predicting
housing value, whereas studies using ANNSs typically have not addressed the issue
of inputs (functional specification). In what follows, various studies offering
improvements to the MRA data model for predicting housing value are identified.
In return, these are used (in experiments) to show that they also improve the ANN
data model. Typical MRA functional forms used in other studies have been linear,
semi-log and log-log (Goodman, 1978; Pamquist, 1979; Linneman, 1980;
Halvorsen and Pollakowski, 1981; and Goodman and Thibodeau, 1995). Palmquist
actually compared linear, semi-log, and log-linear, inverse semi-log and Box-Cox
transformations to correct house price depreciation and selected the semi-log for
usage in his study. In regard to nonlinearity, other studies have shown a nonlinear
relationship between housing value and age (Grether and Mieszkowski, 1974;
Jones, Ferri and McGee, 1981; and Do and Grudnitski, 1993) and the square
footage of living area (Goodman and Thibodeau, 1995). Generaly, these
investigations used quadratic, cubic and quartic values for age and/or square
footage.

Data

For this study, a total of 3,906 observations of sold single family residentia
properties from the Multiple Listing Service for the Rutherford County, Tennessee
market were collected for the eighteen-month period from January 1, 1993 through
June 30, 1994. The property attributes available and used for this study are: the
square feet of living area (sqgft), the number of bedrooms (bed#), the number of
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baths (bath#), the number of years since the property was built (age), the quarter
the property sold (quarter#) and whether or not the property has a garage or
carport (garage_cp).

From the 3,906 observations, random sample sizes of 306, 506, 706, 906, 1,106,
1,306, 1,506, 1,706, 1,906, 2,106, 2,306, 2,506, 2,706, 2,906, 3,106, 3,306, 3,506
and 3,706 are selected. These sets are referred to as training set one through
eighteen (T1, T2, T3, T4, T5, T6, T7, T8, T9, T10, T11, T12, T13, T14, T15,
T16, T17, and T18), respectively. Each training set is an extension of the previous,
i.e, TL C T2 C T3 C - C T18. The compliment of each training set, relative to
the data set of 3,906 observations, gives a correspond validation set, i.e., V1
through V18, respectively. Exhibit 1 provides some basic statistical information
for the data set. Each of the training sets T1 through T18 contains a uniform
distribution of the quarters of the eighteen-month period (quarter one through
quarter six). These sample sets are used to discount any biases associated with
each data model related to sample size. For both the MRA and ANN models, the
training samples used for each data model are identical, as are the validation
samples. The validation set V1 is used with training set T1; validation set V2 is
used with training set T2; validation set V3 is used with training set T3, etc.

Description of MRA and ANN Models

To contrast the predictive performance of the MRA and ANN models, 108
comparisons were made in which the training size, the functional specification
and the temporal prediction were varied. The MRA and ANN models (used in
this study) address the issues noted earlier. These include functional form
misspecification, nonlinearity and heteroskedasticity for MRA models. For ANN
models, these include number of hidden layers, number of neurons in each hidden
layer, selection of training set, size of training set, selection of validation set, size
of validation and over training.

As noted, previous studies have provided several improvements to the MRA data
model when predicting selling price. ANN improvements have been used to
predict selling price. In what follows, six MRA functiona specifications (based
on previous studies) are used to design corresponding ANN models. This process
is used to show that improvements to the MRA model also improve the ANN
model (see Exhibit 2). The resulting data models are compared using the eighteen
training sets and corresponding eighteen validation sets. The MRA functional
forms used in this study are linear, semi-log and log-log.

Whenever cross-sectional data is used as in this study, one does not expect the
same variance of residual errors across the sample, and hence heteroskedasticity
is possible. To test for heteroskedasticity, the Goldfield and Quandt test (Goldfield
and Quandt, 1965) is performed. Heteroskedasticity in age was found for each
training set. After correcting for heteroskedasticity, the improved quantified
relationship for each training set is shown in Exhibit 3 (T1, T9 and T18 for MRA)
and Exhibit 4 (for ANN).
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Exhibit 1 | Basic Statistical Information

Selling Price
Minimal
Maximum
Mean

Median

Std. Dev.

Square Footage
Minimal

Maximum

Mean

Median

Std. Dev.

Bedrooms
Minimal
Maximum
Mean
Median

Std. Dev.

Bathrooms
Minimal
Maximum
Mean
Median

Std. Dev.

Age
Minimal
Maximum
Mean
Median
Std. Dev.

120,000
385,000
87,644
79,500
3,814

250
9,254
1,652
1,450

604

12
3.1

0.60

2.2

0.62

1

125
9.9

6
12.4

parent population.

Note: The randomly selected training and validation subsets were representative of this larger 3,906

Six model specifications are given for both the MRA and the ANN. The model
specifications offer a series of improvements and a comparison of the data models
under various conditions. The MRA data models are applied to the corresponding
validation data sets V1 through V18. In a similar manner, the ANNSs specified in
Exhibit 4 are trained individually on the data sets T1 through T18 and applied
to the corresponding validation data set V1 through V18. The comparisons are
made between each data model’s performance on the validation data sets (see

Exhibit 2).
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Exhibit 2 | The Comparative Forecasting Performance of MRA and ANN

Superior
Model*

Data Train Set  Validation Set MAPE
Model (quantity)  (quantity) MAPE (%) FE 5% (%) FE 15% (%) Over 15% (%) FE
MRA M1 T1(306) V1 (3600) 14.1 252 48.0 26.8 MRA
ANN M1 TI Vi 14.9 26.8 41.2 32.1 MIXED
MRA M1 T2 (506) V2 (3400) 16.8 28.7 36.8 34.6 ANN
ANN M1 T2 V2 13.9 31.8 41.6 26.6 ANN
MRA M1 T3(706)  V3(3200) 16.7 29.5 37.1 33.4 ANN
ANN M1 T3 V3 14.5 32.1 40.6 27.3 ANN
MRA M1 T4(906)  V4(3000) 17.7 30.0 37.3 327 ANN
ANN M1 T4 V4 1.7 36.6 39.8 23.7 ANN
MRA M1 T5(1106) V5(2800) 17.1 30.6 38.2 31.3 ANN
ANN M1 T5 V5 12.3 35.0 40.5 24.5 ANN
MRA M1 Té(1306) V6(2600) 16.8 322 37.4 30.4 ANN
ANN M1 T6 Vé 11.2 36.4 42.1 21.5 ANN
MRA M1 T7(1506) V7(2400) 17.2 31.1 37.8 31.1 ANN
ANN M1 T7 V7 11.3 34.5 441 21.4 ANN
MRA M1 T8(1706) V8(2200) 18.0 32.4 36.3 32.3 ANN
ANN M1 T8 \'%:] 10.0 38.2 437 18.0 ANN
MRA M1 T9(1906) V9(2000) 18.2 31.1 35.9 32.9 ANN
ANN M1 T9 V9 10.0 39.0 42.6 18.4 ANN
MRA M1 T10(2106) V10(1800) 17.8 304 36.9 32.6 ANN
ANN M1 T10 V10 9.3 41.0 42.6 16.3 ANN
MRA M1 T11(2306) V11(1600) 17.3 30.8 37.2 320 ANN
ANN M1 T11 V11 9.9 40.2 42.2 17.6 ANN
MRA M1 T12(2506) V12(1400) 18.3 30.6 37.1 32.3 ANN
ANN M1 T12 V12 9.1 43.5 40.8 15.7 ANN
MRA M1 T13(2706) V13(1200) 17.2 30.7 37.0 32.3 ANN
ANN M1 T13 V13 8.6 44.2 41.6 14.2 ANN
MRA M1 T14(2906) V14(1000) 16.9 31.1 37.2 31.6 ANN
ANN M1 T14 V14 8.6 44.1 42.2 13.7 ANN
MRA M1 T15(3106) V15(800) 16.9 31.0 37.2 31.8 ANN
ANN M1 T15 V15 8.4 46.7 39.6 13.6 ANN
MRA M1 T16(3306) V16(600) 16.9 30.7 37.3 320 ANN
ANN M1 T16 V16 8.7 46.9 39.1 14.0 ANN
MRA M1 T17(3506) V17(400) 16.8 30.9 36.9 32.2 ANN
ANN M1 T17 V17 8.5 48.9 36.3 14.8 ANN
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Exhibit 2 | (confinued)

The Comparative Forecasting Performance of MRA and ANN

Superior

Model*
Data Train Set  Validation Set MAPE
Model (quantity)  (quantity) MAPE (%) FE 5% (%) FE 15% (%) Over 15% (%) FE
MRA M1  T18(3706) V18(200) 16.6 30.8 37.6 31.6 ANN
ANN M1 T18 V18 7.5 55.4 33.6 11.0 ANN
MRA M2 T1 (306) V1 (3600) 13.2 25.2 50.0 24.8 MRA
ANN M2 TI \2l 15.5 27.6 38.9 33.5 MIXED
MRA M2 T2 (506) V2 (3400) 12.0 30.8 44.3 24.9 MRA
ANN M2 T2 V2 14.2 322 41.0 26.8 MIXED
MRA M2 T3(706)  V3(3200) 12.9 29.2 45.3 25.5 MRA
ANN M2 T3 V3 14.6 31.9 40.6 27.5 MIXED
MRA M2 T4(906)  V4(3000) 14.3 29.9 44.5 25.6 ANN
ANN M2 T4 V4 1.3 36.9 39.9 23.2 ANN
MRA M2 T5(1106) V5(2800) 13.9 30.4 43.2 26.4 ANN
ANN M2 T5 V5 11.4 36.7 42.2 21.1 ANN
MRA M2 T6(1306) V6(2600) 13.5 323 41.2 26.5 ANN
ANN M2 T6 Vé 11.0 37.0 41.6 21.4 ANN
MRA M2 T7(1506) V7(2400) 13.9 32.3 40.4 27.3 ANN
ANN M2 T7 V7 11.5 34.4 42.7 22.9 ANN
MRA M2 T8(1706) V8(2200) 14.9 30.9 40.3 28.7 ANN
ANN M2 T8 V8 10.0 38.3 43.9 17.8 ANN
MRA M2 T9(1906) V9(2000) 15.0 30.2 40.9 28.9 ANN
ANN M2 T9 \'%4 9.9 39.3 42.2 18.5 ANN
MRA M2 T10(2106) V10(1800) 14.9 31.2 40.1 28.7 ANN
ANN M2 T10 V10 9.2 41.3 42.7 16.0 ANN
MRA M2 T11(2306) V11(1600) 14.7 31.3 39.9 28.8 ANN
ANN M2 T11 V11 9.7 42.0 40.5 17.6 ANN
MRA M2 T12(2506) V12(1400) 14.9 30.8 40.0 29.2 ANN
ANN M2 T12 V12 8.8 42.8 41.9 15.3 ANN
MRA M2 T13(2706) V13(1200) 14.9 31.0 39.7 29.3 ANN
ANN M2 T13 V13 8.4 44.3 42.6 13.1 ANN
MRA M2 T14(2906) V14(1000) 14.6 31.3 39.8 28.9 ANN
ANN M2 Ti4 V14 8.6 44.6 42.4 13.0 ANN
MRA M2 T15(3106) V15(800) 14.5 31.3 40.0 28.7 ANN
ANN M2 T15 V15 8.2 471 40.3 12.6 ANN
MRA M2 T16(3306) V16(600) 14.5 31.0 39.9 29.1 ANN
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Exhibit 2 | (confinued)
The Comparative Forecasting Performance of MRA and ANN

Superior

Model*
Data Train Set  Validation Set MAPE
Model (quantity)  (quantity) MAPE (%) FE 5% (%) FE 15% (%) Over 15% (%) FE
ANN M2 T16 Vi1é 8.7 47.2 38.1 14.7 ANN
MRA M2 T17(3506) V17(400) 14.6 30.8 39.7 29.5 ANN
ANN M2 T17 V17 8.3 49.2 38.5 12.3 ANN
MRA M2 T18(3706) V18(200) 14.4 31.3 39.8 29.0 ANN
ANN M2 T18 V18 7.2 55.9 33.1 11.0 ANN
MRA M3 T1 (306) V1 (3600) 13.2 26.8 48.0 25.2 MRA
ANN M3 TI \2l 15.2 27.3 40.6 32.0 MIXED
MRA M3 T2 (506) V2 (3400) 12.1 30.6 44.5 24.9 MRA
ANN M3 T2 V2 13.9 322 42.4 25.3 MIXED
MRA M3 T3(706)  V3(3200) 12.7 29.0 45.5 25.5 MRA
ANN M3 T3 V3 14.4 31.3 41.6 27.1 MIXED
MRA M3 T4(906)  V4(3000) 13.9 29.5 46.1 24.4 ANN
ANN M3 T4 V4 11.2 36.0 42.0 22.0 ANN
MRA M3 T5(1106) V5(2800) 13.5 30.3 44.6 25.1 ANN
ANN M3 T5 V5 11.6 36.0 41.6 223 ANN
MRA M3 T6(1306) V6(2600) 13.0 32.5 42.0 25.6 ANN
ANN M3 T6 Vé 11.0 36.5 42.2 21.3 ANN
MRA M3 T7(1506) V7(2400) 13.4 33.1 40.4 26.5 ANN
ANN M3 T7 V7 11.4 34.5 43.3 221 ANN
MRA M3  T8(1706) V8(2200) 14.5 31.3 40.3 28.4 ANN
ANN M3 T8 V8 10.1 38.3 43.0 18.6 ANN
MRA M3 T9(1906) V9(2000) 14.4 31.6 40.0 28.4 ANN
ANN M3 T9 \'%4 9.8 38.5 44.1 17.5 ANN
MRA M3 T10(2106) V10(1800) 14.2 32.1 39.5 28.4 ANN
ANN M3 T10 V10 9.3 41.8 41.9 16.3 ANN
MRA M3 T11(2306) V11(1600) 14.0 31.7 40.5 27.8 ANN
ANN M3 T11 V11 9.4 417 42.4 15.9 ANN
MRA M3 T12(2506) V12(1400) 14.1 30.2 41.8 28.0 ANN
ANN M3 T12 V12 8.8 43.6 41.8 14.6 ANN
MRA M3 T13(2706) V13(1200) 14.1 30.8 40.6 28.6 ANN
ANN M3 T13 V13 8.4 44.6 42.6 12.8 ANN
MRA M3 T14(2906) V14(1000) 13.8 31.3 40.6 28.1 ANN
ANN M3 Ti4 V14 8.6 44.6 421 13.3 ANN
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Exhibit 2 | (confinued)

The Comparative Forecasting Performance of MRA and ANN

Superior

Model*
Data Train Set  Validation Set MAPE
Model (quantity)  (quantity) MAPE (%) FE 5% (%) FE 15% (%) Over 15% (%) FE
MRA M3  T15(3106) V15(800) 13.6 31.8 40.5 27.7 ANN
ANN M3 T15 V15 8.3 46.3 41.0 12.6 ANN
MRA M3 T16(3306) V16(600) 13.6 31.5 40.6 27.9 ANN
ANN M3 T16 Vi1é 8.5 46.6 39.7 13.7 ANN
MRA M3 T17(3506) V17(400) 13.6 31.3 40.6 28.2 ANN
ANN M3 T17 V17 8.5 47.6 38.4 14.0 ANN
MRA M3  T18(3706) V18(200) 13.4 31.5 40.7 27.7 ANN
ANN M3 T18 V18 7.2 55.4 33.6 11.0 ANN
MRA M4 T1 (306) V1 (3600) 1.7 35.3 42.2 22.5 MRA
ANN M4 T \2l 15.5 28.7 38.8 325 MRA
MRA M4 T2 (506) V2 (3400) 10.9 374 40.5 221 MRA
ANN M4 T2 V2 14.3 32.6 40.9 26.5 MRA
MRA M4 T3(706)  V3(3200) 11.7 32.9 43.9 23.2 MRA
ANN M4 T3 V3 14.3 30.7 41.6 27.8 MRA
MRA M4 T4(906)  V4(3000) 12.9 34.3 45.0 20.6 ANN
ANN M4 T4 V4 11.0 35.6 43.6 20.8 MIXED
MRA M4 T5(1106) V5(2800) 12.4 34.3 452 20.5 ANN
ANN M4 T5 V5 11.2 35.9 42.8 21.3 MIXED
MRA M4 T6(1306) V6(2600) 12.0 34.5 45.6 19.9 ANN
ANN M4 T6 Vé 10.9 37.3 42.0 20.6 MIXED
MRA M4 T7(1506) V7(2400) 11.9 355 44.4 20.1 ANN
ANN M4 T7 V7 1.3 35.2 43.0 21.8 MRA
MRA M4 T8(1706) V8(2200) 12.3 33.2 458 21.0 ANN
ANN M4 T8 V8 10.2 38.4 42.9 18.7 ANN
MRA M4 T9(1906) V9(2000) 12.2 33.1 46.1 20.8 ANN
ANN M4 T9 \'%4 9.8 39.9 42.4 17.7 ANN
MRA M4 T10(2106) V10(1800) 12.1 33.4 45.9 20.7 ANN
ANN M4 T10 V10 9.1 42.2 42.6 15.3 ANN
MRA M4 T11(2306) V11(1600) 12.1 32.8 46.2 21.0 ANN
ANN M4 T11 V11 9.9 41.6 41.0 17.4 ANN
MRA M4 T12(2506) V12(1400) 12.1 33.0 46.2 20.8 ANN
ANN M4 T12 V12 8.8 43.2 41.2 15.6 ANN
MRA M4 T13(2706) V13(1200) 12.2 33.0 45.8 21.2 ANN
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Exhibit 2 | (confinued)
The Comparative Forecasting Performance of MRA and ANN

Superior

Model*
Data Train Set  Validation Set MAPE
Model (quantity)  (quantity) MAPE (%) FE 5% (%) FE 15% (%) Over 15% (%) FE
ANN M4 T13 V13 8.5 451 40.4 14.4 ANN
MRA M4 T14(2906) V14(1000) 12.0 334 45.4 21.2 ANN
ANN M4 Ti4 V14 8.6 45.0 41.9 13.1 ANN
MRA M4 T15(3106) V15(800) 12.0 33.1 45.6 21.3 ANN
MRA M4 T17(3506) V17(400) 11.8 33.2 45.5 21.3 ANN
ANN M4 T17 V17 8.6 49.2 36.0 14.8 ANN
MRA M4 T18(3706) V18(200) 11.8 34.1 44.8 21.1 ANN
ANN M4 T18 V18 7.3 56.9 32.6 10.5 ANN
MRA M5 T1 (306) V1 (3600) 12.4 26.5 47 4 21.1 MRA
ANN M5 TI \2l 13.4 31.9 417 26.4 MIXED
MRA M5 T2 (506) V2 (3400) 11.9 29.2 455 25.3 MRA
ANN M5 T2 V2 13.5 33.2 41.3 25.5 MIXED
MRA M5 T3(706)  V3(3200) 12.4 29.6 44.9 25.5 MRA
ANN M5 T3 V3 13.1 33.1 41.9 25.0 ANN
MRA M5 T4(906)  V4(3000) 13.6 30.0 45.9 24.1 ANN
ANN M5 T4 V4 10.9 36.5 42.0 21.5 ANN
MRA M5 T5(1106) V5(2800) 13.1 29.5 46.0 24.5 ANN
ANN M5 T5 V5 11.0 37.4 41.4 21.2 ANN
MRA M5 T6(1306) V6(2600) 12.7 30.0 45.9 24.1 ANN
ANN M5 T6 Vé 10.7 37.8 42.1 20.1 ANN
MRA M5 T7(1506) V7(2400) 12.8 28.6 46.5 24.9 ANN
ANN M5 T7 V7 11.1 36.0 42.4 21.3 ANN
MRA M5  T8(1706) V8(2200) 13.1 28.3 46.4 25.3 ANN
ANN M5 T8 V8 9.7 38.9 42.9 18.2 ANN
MRA M5 T9(1906)  V9(2000) 12.9 29.1 46.0 24.9 ANN
ANN M5 T9 \'%4 97 40.7 41.8 17.5 ANN
MRA M5 T10(2106) V10(1800) 12.9 28.7 46.6 24.7 ANN
ANN M5 T10 V10 9.0 42.6 41.4 16.0 ANN
MRA M5 T11(2306) V11(1600) 12.8 28.8 46.8 24.5 ANN
ANN M5 T11 AR 9.5 40.7 42.3 17.0 ANN
MRA M5 T12(2506) V12(1400) 12.8 29.2 46.8 24.0 ANN
ANN M5 T12 V12 9.0 43.6 40.8 15.6 ANN
MRA M5 T13(2706) V13(1200) 12.9 29.0 46.9 24.1 ANN
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Exhibit 2 | (confinued)

The Comparative Forecasting Performance of MRA and ANN

Superior

Model*
Data Train Set  Validation Set MAPE
Model (quantity)  (quantity) MAPE (%) FE 5% (%) FE 15% (%) Over 15% (%) FE
ANN M5 T13 V13 8.3 452 41.1 13.7 ANN
MRA M5 T14(2906) V14(1000) 12.7 28.8 47.2 24.0 ANN
ANN M5 Ti4 V14 8.5 43.5 42.4 14.1 ANN
MRA M5 T15(3106) V15(800) 12.7 29.0 46.6 24.4 ANN
ANN M5 T15 V15 8.4 46.3 40.3 13.4 ANN
MRA M5 T16(3306) V16(600) 12.6 29.0 46.8 24.2 ANN
ANN M5 T16 Vi1é 8.5 45.8 417 12.5 ANN
MRA M5 T17(3506) V17(400) 12.6 29.3 46.7 24.1 ANN
ANN M5 T17 V17 8.4 48.4 38.5 13.0 ANN
MRA M5 T18(3706) V18(200) 12.5 29.5 46.7 23.9 ANN
ANN M5 T18 V18 7.1 56.9 34.6 8.5 ANN
MRA M6 T1 (306) V1 (3600) 12.3 34.3 39.5 26.1 MRA
ANN M6 T1 \2l 13.4 353 40.2 24.5 ANN
MRA M6 T2 (506) V2 (3400) 11.3 36.8 39.5 23.7 MRA
ANN M6 T2 V2 15.6 32.1 37.3 30.6 MRA
MRA M6  T3(706)  V3(3200) 12.0 32.6 42.2 25.2 MRA
ANN M6 T3 V3 14.3 34.6 37.3 28.0 MIXED
MRA M6  T4(906)  V4(3000) 13.2 347 42.9 22.4 ANN
ANN M6 T4 V4 11.9 36.3 38.6 25.0 MIXED
MRA M6  T5(1106) V5(2800) 12.8 334 44.4 222 ANN
ANN M6 T5 V5 11.5 37.1 39.8 23.2 MIXED
MRA M6 T6(1306) V6(2600) 12.3 33.1 45.2 21.7 ANN
ANN M6 T6 Vé 10.9 38.4 41.4 20.2 ANN
MRA M6  T7(1506) V7(2400) 12.2 33.8 44.3 21.9 ANN
ANN M6 17 V7 11.4 34.4 43.1 22.5 ANN
MRA M6  T8(1706) V8(2200) 12.6 32.1 45.4 22.5 ANN
ANN M6 T8 V8 10.0 40.5 417 17.8 ANN
MRA M6 T9(1906)  V9(2000) 12.5 31.8 457 22.5 ANN
ANN M6 T9 \'%4 9.9 40.6 42.3 17.1 ANN
MRA M6  T10(2106) V10(1800) 12.4 31.8 46.1 22.1 ANN
ANN M6 T10 V10 9.5 42.0 41.0 17.0 ANN
MRA M6 T11(2306) V11(1600) 12.4 32.8 44.6 22.5 ANN
ANN M6 T11 V11 10.2 40.7 40.3 19.0 ANN
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Exhibit 2 | (confinued)
The Comparative Forecasting Performance of MRA and ANN

Superior

Model*
Data Train Set  Validation Set MAPE
Model (quantity)  (quantity) MAPE (%) FE 5% (%) FE 15% (%) Over 15% (%) FE
MRA M6 T12(2506) V12(1400) 12.4 32.4 45.2 22.3 ANN
ANN M6 T12 V12 9.1 43.6 39.4 17.0 ANN
MRA M6 T13(2706) V13(1200) 12.5 32.2 45.0 22.8 ANN
ANN M6 T13 V13 9.0 44.6 38.8 16.5 ANN
MRA M6 T14(2906) V14(1000) 12.3 32.3 44.7 23.0 ANN
ANN M6 T4 V14 8.7 46.0 38.8 15.2 ANN
MRA M6  T15(3106) V15(800) 12.3 33.2 44.3 22.5 ANN
ANN M6 T15 V15 8.8 45.8 38.3 15.9 ANN
MRA M6 T16(3306) V16(600) 12.2 33.0 44.6 22.5 ANN
ANN M6 T16 V16 9.3 43.0 39.5 17.5 ANN
MRA M6  T17(3506) V17(400) 12.1 33.7 44.2 22.1 ANN
ANN M6 T17 V17 8.0 46.9 38.0 15.0 ANN
MRA M6  T18(3706) V18(200) 12.1 34.3 43.6 22.1 ANN
ANN M6 T18 V18 7.6 53.4 36.6 10.0 ANN
Note: *For each training set, the first entry in this column represents the superior model when
evaluated using MAPE criterion while the second entry represents the superior model using the FE
criterion.

MRA Model Specification

Based on previous studies, the MRA models (1 through 6) are created and used
for comparison. Model 1 specifications are based on studies that show that sgft,
age, bed# and bath# influence selling price (see, for example, Newsome and Zietz,
1992; Nguyen and Rogers, 1992; and Do and Grudnitski, 1993). Other factors,
such as a garage, fireplace, number of stories, sewer connection to city and lot
size, are relevant factors. However, due to the lack of data, only information as
to whether the property has a garage and/or carport is used (as adummy variable).
The measurement units for sgft and age are sqft/100 and age/10, respectively.
These linear changes provide more manageable data values when using quadratic,
cubic and quartic values for age and/or sguare footage. The five-quarter dummy
variables in models 1 through 5 are included to reflect the seasonality and to
incorporate the price shift from year 93 to year 94.
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Exhibit 3 | Regression Models for Training Sets T1, T2 and T18
Training Set T1 Training Set T9 Training Set T18
Variable Coeff. t-Stat. Coeff. t-Stat. Coeff. t-Stat.
Panel A: MRA Model 1 (linear)
Intercept 777.62 -1.75 6717.79 —7.68 6672.23 -10.80
Living Area/ 100 5080.55 24.06 5739.49 61.90 5789.68 92.07
Age/ 10 —6654.90 0.1 —13408.42 273 —12752.49 4.05
Bed# —4869.18 -1.97 —-5095.06 —-6.04 —4245.54 —7.41
Bath# 9375.99 4.78 5004.69 6.00 2947.16 5.29
Garage_cp 9673.66 4.09 8471.80 7.56 8565.13 11.48
Quarterl 9829.80 -3.89 —9516.18 —8.61 —9007.06 -12.00
Quarter2 —7845.90 -3.09 —8446.08 -8.15 —7065.44 -9.92
Quarter3 1827.51 0.78 —6121.61 -6.16 —4724.49 —6.86
Quarterd —7392.69 -3.19 —5667.74 -6.00 —4500.95 -6.87
Quarter5 1972.77 0.81 —3237.87 -3.07 —2777 .41 -3.85
Number of Observations 306 1906 3706
Adj. R? 0.97 0.96 0.97
Panel B: MRA Model 2 (non-linear)
Intercept 30107.84 -0.80 30190.17 -6.39 27379.11 -9.33
Living Area/ 100 1782.20 2.71 3251.78 14.06 3676.46 21.58
(Living Area/ 100)? 73.10 5.28 55.52 11.69 49.04 13.33
Age/ 10 —5063.70 3.49 —18559.74 9.88 —18052.76 12.51
(Age/ 10)? -137.78 -0.06 2910.05 2.60 2670.60 3.68
Bed# —4939.36 —2.08 —-5307.68 —6.52 —4593.16 -8.21
Bath# 9280.76 4.92 4683.33 5.83 2665.05 4.91
Garage_cp 12252.39 5.28 10985.44 9.93 10298.21 13.86
Quarterl —-10493.23 —4.33 —9081.70 -8.52 —8618.20 -11.77
Quarter2 —5937.05 —2.41 —7532.22 -7.52 —6451.62 -9.27
Quarter3 1504.32 0.67 —5286.13 -5.50 —4147.19 -6.17
Quarter4 —-7032.90 -3.17 —4818.86 -5.28 —4109.85 —6.43
Quarter5 2407.61 1.03 —2384.06 —-2.34 —-2176.57 -3.08
Number of Observations 306 1906 3706
Adj. R? 0.97 0.97 0.97
Panel C: MRA Model 3 (non-linear)
Intercept 28242.10 0.54 32039.47 —4.78 28975.10 -6.71
Living Area/ 100 1740.73 2.64 3285.78 14.19 3698.76 21.71
(Living Area/ 100)? 73.70 5.30 54.84 11.53 48.62 13.22
Age/ 10 8575.37 3.18 —30896.83 10.10 —28459.25 12.82
(Age/ 10)? —15506.77 -0.91 15288.50 2.44 12791.91 3.20
(Age/ 10 4257 .64 0.87 —2858.48 -1.79 —2228.02 -2.23
(Age/ 101 —290.86 -0.80 146.30 1.49 111.64 1.78
Bed# —-5032.37 -2.12 —5287.16 —-6.50 —4581.24 -8.20
Bath# 9446.39 4.98 4637.52 577 2648.82 4.88
Garage_cp 12264.18 5.28 10889.55 9.84 10226.11 13.77
Quarterl —10284.49 —4.21 —9103.40 -8.55 —8638.01 -11.80
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Exhibit 3 | (confinued)
Regression Models for Training Sets T1, T2 and T18

Training Set T1

Training Set T9

Training Set T18

Variable Coeff. tStat. Coeff. fStat. Coeff. t-Stat.
Panel C: MRA Model 3 (non-linear)
Quarter2 —-5918.15 —2.40 —7508.79 -7.50 —6435.74 -9.25
Quarter3 1577.67 0.70 —5298.57 -5.52 —4138.94 -6.16
Quarter4 -7018.37 -3.16 —4819.19 -5.28 —4108.78 —-6.43
Quarter5 2378.50 1.02 —2356.43 -2.31 —2161.36 -3.07
Number of Observations 306 1906 3706
Adj. R? 0.97 0.97 0.97
Panel D: MRA Model 5 (log-log)
Intercept -0.12 86.97 -0.11 214.89 -0.11 305.64
Log(Living Area) 0.86 17.90 0.82 41.47 0.86 62.68
Log(Age) 3.87 —-7.38 3.84 —17.42 3.82 -25.16
Log(Bed#) -0.14 -1.93 —0.002 -0.09 -0.03 -1.61
Log(Bath#) 0.07 1.40 0.07 3.12 0.05 3.54
Garage_cp 0.06 5.59 0.07 15.37 0.06 19.97
Quarter] —-0.01 -3.13 —-0.01 -5.19 -0.01 -7.97
Quarter2 —-0.01 -2.38 —-0.01 —4.69 -0.01 -6.82
Quarter3 —0.004 -0.99 —-0.01 -3.96 -0.01 —4.55
Quarter4 —-0.01 —2.26 —0.005 -2.85 —0.005 -4.10
Quarter5 —0.003 -0.71 —0.003 —-1.82 —-0.004 -2.91
Number of Observations 306 1906 3706
Adj. R? 0.77 0.77 0.78
Panel E: MRA Model 4 (semi-log)
Intercept 4.94 0.63 4.78 —4.39 4.67 —-6.31
Living Area/ 100 0.04 13.86 0.03 35.53 0.03 48.34
(Living Area/ 100)? —0.0004 —6.88 —0.0003 —15.65 —0.0003 -19.78
Age/ 10 0.04 49.64 -0.12 153.45 -0.11 240.94
(Age/ 10)? -0.07 -1.12 0.04 1.69 0.04 2.39
(Age/ 10)° 0.02 0.99 —0.01 —1.08 -0.01 —1.54
(Age/ 10) —-0.001 -0.87 0.0004 0.87 0.0003 1.21
Bed# -0.18 -5.15 -0.11 -10.81 -0.07 -11.63
Bath# 0.21 4.99 0.12 10.04 0.07 10.05
Bath# / Bed# -0.58 —4.54 -0.34 -9.31 -0.21 -9.68
Garage_cp 0.07 7.93 0.07 14.18 0.06 19.62
Quarterl -0.05 —5.42 -0.04 -8.79 —0.04 -11.90
Quarter2 -0.03 -3.12 -0.03 -7.82 -0.03 -9.64
Quarter3 —-0.01 -0.86 —-0.03 -6.31 -0.02 -6.50
Quarterd —0.03 -3.50 -0.02 —4.68 —0.01 -5.56
Quarter5 0.01 0.87 —-0.01 -2.63 -0.01 -3.43
Number of Observations 306 1906 3706
Adj. R? 0.99 0.99 0.99
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Exhibit 3 | (confinued)
Regression Models for Training Sets T1, T2 and T18

Training Set T1 Training Set T Training Set T18

Variable Coeff. t-Stat. Coeff. fStat. Coeff. tStat.

Panel F: MRA Model 6 (semi-log)

Intercept 4.96 1.17 4.77 —4.22 4.67 —6.11
Living Area/ 100 0.04 13.16 0.03 34.58 0.03 47.07
(Living Area/ 100)? —0.0004 —6.56 —0.0003 —-14.78 —0.0003 -18.80
Age/ 10 0.07 46.57 -0.12 149.39 -0.11 235.41
(Age/ 10)? -0.11 -1.62 0.04 1.58 0.04 2.27
(Age/ 10 0.03 1.45 -0.01 -1.00 -0.01 —1.45
(Age/ 10)* —0.002 -1.30 0.0003 0.80 0.0003 1.14
Bed# -0.19 -5.02 -0.11 -10.85 -0.07 -11.99
Bath# 0.21 4.81 0.12 9.88 0.07 10.06
Bath# / Bed# —0.62 —4.55 -0.35 -9.35 -0.22 -9.92
Garage_cp 0.06 6.77 0.07 14.25 0.06 19.69
Number of Observations 306 1906 3706

Adj. R? 0.99 0.99 0.99

Note: The majority of coefficients are statistically significant at the 99% confidence level.

The variable bath#/bed# is introduced in models 4 and 6 because of the
significance shown by Newsome and Zietz (1992). The Newsome and Zietz study
used data from the same market (Rutherford County) as this study. The use of all
three variables—bed#, bath# and bath#/bed#—may introduce multicollinearity,
but as previoudly discussed, thisis irrelevant in the predictive performance of the
model.

Exhibit 4 | ANN Nodels

Training Set T1 through T18
Number of Neurons
Ann Model Input Layer Hidden Layer Output Layer
1 1 7 1
2 13 12 1
3 15 12 1
4 16 12 1
5 11 6 1
6 10 8 1
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Other studies have shown a nonlinear relationship between housing value and age
(Grether and Mieszkowski, 1974; Jones, Ferri and McGee, 1981; and Do and
Grudnitski 1993) and the square footage of living area (Goodman and Thibodeau,
1995). Generally, these investigations use quadratic, cubic and quartic values for
age and/or square footage. Hence, the nonlinear values of sgft and age are used
in models 2, 3, 4 and 6.

Model 1 MRA Specification:

st
100

x 90€
10

10

+ b, * garage_cp + >, b, * quarter, .. 1)

i=6

price= Db, + b, * + b, + by * bed# + b, * bath#

Model 2 MRA Specification:

o LSt (saft)t L, age
price = b, + b, 10o+b2 <100> + b, 10

2
+ b, * (al%e> + b, * bed# + b, * bath#

12

+ b, * garage_cp + >, b * quarter, . 2)

=8

Model 3 MRA Specification:

. ft ft) > age
pr.cezbo+bl*%+b2*(%) by %

2 3 4
age age age
o () o () o (9

+ b, * bed# + bg * bath# + b, * garage_cp

14

+ > b * quarter,_,. (3)

t=10
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Model 4 MRA Specification:

. ft ft) age
log( price) = b, + bl*%)+ b, * (%) + bs*l—%

2 3 4

* ﬂe * ﬂe * ﬂe

+ b, <10> + bg (10) + by <10>
bath#

+ by * bed# + by * bath# + by * -~ 2

15
+ by, * garage_cp + >, b, * quarter; .. (4
i=11

Model 5 MRA Specification:

log(price) = b, + b, * log(sgft) + b, * log(age)
+ by * log(bed#) + b, * log(bath#)

11

+ b, * garage_cp + >, b, * quarter, .. (5)
i=6

Model 6 MRA Specification:

. ft ft) age
o9(price) = by + b, * S+, « (SH) 4 b, - 2

2 3 4
age age age
+ b, * <1—%> + bg * <1—%) + bg * (1—%>
bath#
bed#

+ by, * garage_cp. (6)

+ b, * bed# + bg * bath# + b, *

Each of the MRA models are regressed on the training sets T1 through T18. The
resulting quantified relationships (coefficients) for training sets T1, T9 and T18
are given in Exhibit 3.



Predicting Housing Value | 331

ANN Model Specification

Feed forward ANNSs with inputs corresponding to each MRA model specification,*
one hidden layer and one output are used to predict selling price (see Exhibit 4).
The linear transformation in Equation (7) is applied to each ANN input and the
linear transformation in Equation (8) is applied to the selling price. These linear
transformations are necessary since the ANN? software requires al inputs to be
in the interval (—1,1) and outputs to be in the interval (0,1). The following linear
transformation is used to trandlate the inputs:

translated_value

_ data field value — average data field value
~ maximum data field value — minimum data field value

(7)

For training and validation, the target output (selling price) is trandated to the
interval (0,1) by using the minimum selling price, the maximum selling price and
the following linear transformation:

translated_price
selling price — minimum selling price

= (8)

~ maximum selling price — minimum selling price

For ANN, there are “‘rules of thumb’ for net size, number of patterns and error
size (Baum and Haussler, 1989) and for the number of hidden layers and number
of neurons per hidden layer. Based on Baum’s results, one can approximate the
number of patterns using the formula:

number of weights
accuracy of classification expected

Number of patterns =

(9)

Theoretical results show that one hidden layer is sufficient for a backpropagation
net to approximate any continuous mapping from the input data to the output data
to an arbitrary degree of accuracy (Hecht-Nielsen, 1987). In general, two hidden
layers may make training easier in some situations (Fausett, 1994), but the number
of hidden layers and number of neurons per hidden layer for each application
must be determined via experimentation. One hidden layer with the number of
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neurons dependent on the model specification was found to perform the best (see
Exhibit 4).

To train each ANN, the standard back propagation learning method is used. To
avoid overtraining, a heuristic method based on an increase in the sum square
error is used (Hecht-Nielsen, 1990:117). For ANN training, the same random
sample training sets, T1 through T18 used in each MRA model, was used to train
each ANN model. The resulting ANN data model specifications are given in
Exhibit 4.

Empiricol Evaluation Criteria

Two error measuring criteria are used to evaluate the MRA and ANN models for
the validation data sets. The first is the Mean Absolute Percentage Error (MAPE),
and the second is the absolute percentage error.

The MAPE is defined as;

n

MAPE = (

A) 1oo‘> +, (10)

where P, and A are the predicted selling price and the actua selling price of
property i in the set of n properties. The data model with a smaller MAPE is
deemed superior. This error measurement attempts to produce a single number
that represents the total error for all properties. This error measurement fails,
however, to provide information as to how the error deviates between the
properties. For example, if a model provides extremely accurate results for 90%
of the properties tested while providing horribly inaccurate results for 10% of the
properties tested, the MAPE value for this model may be comparable to another
model with unacceptable results (i.e., a large standard deviation in error, but with
a comparable MAPE). To measure how the error deviates, a second error
measurement criterion was also used.

The absolute percentage error (hereafter referred to as forecasting error, FE)
classifies properties into three categories. (1) those with an FE of less than 5%
(2) those with an FE between 5% and 15%; and (3) those with an FE greater than
15%. These forecasting error ranges are chosen based on the understanding that
5% is acceptable to most investors, 5% to 15% is in a fuzzy area and is a
somewhat unreliable indicator, while more than 15% is unacceptable.

Forecasting error for property i is defined as:

FE = ‘u 100‘. (12)

Ai
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As an illustration, an FE of 19% in the less than 5% range (for either data model
MRA or ANN), means that 19% of the properties tested have the predicted selling
price within 5% of the actual selling price. It follows that the superior model is
the model with the higher percentage of most accurately predicted properties.

Empirical Results

Using the evaluation criteria given in Equations (10) and (11), Exhibit 2
summarizes the comparative forecasting performance of MRA and ANN. The best
performing MRA (when comparing MRA to MRA) occurs for model M4 when
using both MAPE and FE for evaluation (i.e., generally MAPE is the lowest and
FE 5% is the highest for this model). The log-log model, M5, is the poorest
performing model for MRA when both MAPE and FE 5% are used for evaluation.
The ANN data model tends to overcome functional model misspecification if
sufficient data sample size is available. This generaly ranged from 13% to 39%
of the total sample size.

The results in Exhibit 2 generally demonstrate that as the functional model
specification improves, the performance of MRA data model improves where as
the performance of the ANN model improves as the training Size increases.
Although this correlation is to be expected, it also shows that the best data model
(regardless of whether MRA or ANN is used) fluctuates as the model specification
and training size vary. The fluctuation in the ANN model’s performance can be
attributed to the large number of possible parameter settings and the absence of
a methodical approach to choosing the best settings. For example, experiments
must be conducted to determine the best data representation, model specification,
number of hidden layers, number of neurons on each hidden layer, learning rate
and number of training cycles. All of these interrelate to give the best ANN model.
Although exhaustive testing of the various parameters is impossible, one must
conduct extensive experimentation. Experimentation always leads one to question
whether sufficient tests and combinations of parameters were conducted to obtain
the best model. Failure of other studies to conduct thorough experimentation to
determine these parameter settings would cause their ANN to perform poorly.

Based on Exhibit 2, the ANN performs better (using both criteria) than the MRA
when a moderate to large data sample size is used. In this study, this moderate to
large data sample size varied from 13% to 39% of the total data sample and is
dependent on the functional model specification (Baum and Haussler, 1989). The
MRA performs better (using the MAPE evaluation criterion) than the ANN when
a small data sample size is used. For each functional model specification, the
MRA’s performance is somewhat constant as the sample size varies, whereas the
ANN'’s performance significantly improves as the data sample size increases.

Conclusion

In comparing the MRA and ANN models, attempts have been made to ensure a
fair comparison of their predictive performance. Multiple comparisons have been
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made in which the training size is varied, the functional specification is varied,
the temporal prediction is varied and the issues noted in the Implementation | ssues
section are addressed. There were 108 comparisons made. Two criteria have been
used to evaluate the models—MAPE and FE. Based on Exhibit 2, the MAPE and
FE criteria may differ in the selection of the best data model (e.g., see M4 T5 in
Exhibit 2). Thus, one should be cautious as to which performance criterion is used
for evaluating forecasting accuracy as well as the data sample size used. When a
moderate to large data sample size is used, the ANN performs better (using both
criteria) than the MRA. For this application, the data sample size is 506 to 1,506
observations (from a total of 3,906 observations) before the ANN outperformed
the MRA (using both criteria). In genera, as the ANN model functiona
specification becomes more complex, the training sample size must be increased
in order for the ANN to perform better than the corresponding MRA model. The
MRA performs better (using the MAPE evaluation criterion) than the ANN when
a small data sample size is used. For each functiona model specification, the
MRA’s performance is somewhat constant as the sample size varies, whereas the
ANN'’s performance significantly improves as the data sample size increases.

The fluctuation in the ANN model’s performance can be attributed to the large
number of possible parameter settings and the absence of a methodical approach
to choosing the best settings. For example, experiments must be conducted to
determine the best data representation, model specification, number of hidden
layers, number of neurons on each hidden layer, learning rate, and number of
training cycles. All of these interrelate to give the best ANN model. Failure to
conduct such experiments may result in a poorly specified ANN model.

If other input variables such as fireplace, number of stories, siding materials, lot
size, sewer connection, and financing type are included, then the outcome might
be different. Thisis alimitation of this study (i.e., if more/different input variables
are used, then the outcome of the comparison may change). Since the data used
in this study is only from sold properties and other studies have shown that the
sale set is not representative of the unsold set, the reader should be cautious in
applying these conclusions to an unsold set of properties.

The results give a plausible explanation why previous studies have obtained varied
results when comparing MRA and ANN predictive performance for housing
values. The predictive performance depends on the evaluation criteria (MAPE and
FE) used in combination with the training size and model specification.
Fluctuation in the ANN model’s performance may be due to the larger number of
parameters settings chosen via experimentation and dependent on training sample
size.

In conclusion, if one provides sufficient data training size and appropriate ANN
parameters, then ANN performs better than MRA. Otherwise, the results vary. For
practical purposes, the ANN is recommended when there is sufficient sample data
set and/or when there is no theoretical basis for the data model functional form.
Otherwise, the MRA is recommended.
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| Endnotes

1 The ANN models one through five are trained using input variables quarter one through
guarter six whereas the MRA models are trained using dummy variables quarter one
through quarter five.

2 The software used for creating, training, and testing the ANN is Stuttgart Neural Network

Simulator (SNNS) Version 4.2. This software can be obtained from Univestitat Stuttgart,
ftp:/ /ftp.informatik.uni-stuttgart.de/ pub/ SNNS/.
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