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E s t i m a t i n g P r i c e P a t h s f o r R e s i d e n t i a l
R e a l E s t a t e

A u t h o r s John W. Birch and Mark A. Sunderman

A b s t r a c t Several approaches have been used to estimate and adjust for
price movements in residential real estate; however, weaknesses
remain in current systems. This study incorporates a different
way of measuring temporal price patterns. The method involves
a time series model, an approach not previously employed when
estimating real estate price movements. The finding indicate that
the proposed technique is likely more accurate than current
procedures. The method also represents a significant adaptation
of standard time series models. For the task at hand, the new
model is arguably preferable to the more standard versions.

I n t r o d u c t i o n

Having an accurate price series is useful and sometimes critical for researchers,
as well as for real estate practitioners. A price series is often needed to adjust the
sales price of a house to either an earlier or later time period. On other occasions,
knowledge of the precise movement of prices of houses is important.1

The price of a property often changes over short time periods, sometimes in
unpredictable ways. After adjusting or standardizing prices for any changes in real
property characteristics, there often remains a significant movement in typical
price levels. A sequence of monthly or other time intervals can be used to
approximate the pure price path following these property adjustments. Several
approaches have been taken when measuring movements in the dollar value of
property. However, there are weaknesses in each, and these can lead to distortions
in results. The purpose of this article is to develop a method to obtain a more
accurate picture of market price patterns than may occur using current
methodologies.2

As a description of the market for residential property, Bryan and Colwell (1980)
state: ‘‘It is a mistake to imagine that housing prices move upward without
interruption. On the surface, it may appear that housing prices have exhibited such
behavior, however, there may be hidden cyclical and seasonal fluctuations. Over
the past several decades, the tendency, as reflected in U.S. price data, had been
for new home prices to rise. However, substantial deviations from this tendency
have occurred.’’
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Housing prices move through time based on secular trends, cyclical, seasonal and
other measurable effects. In addition, the observed time series will always contain
the impact of a large number of random forces. By definition, each of these
random forces has too small an impact on any time series to be separately
explained. But the combined effect of these forces can be measured. This
combined effect is characterized by the random nature of its impact over time.3

Given this way of viewing a time series of price movements as a combination of
explicable and inexplicable forces, it is important to look for some method that
attempts to separate the impact of these two kinds of forces in an optimal way.
The final market price pattern should include the impact of these identifiable
movements and omit the random, inexplicable effects. The field of time series is
characterized by this view, where a main purpose of the analysis is to separate
the explainable component in the data sequence from the random movement that
is always present in some degree.4

The method introduced in this study ensures all explainable forces influencing real
estate price movements are accounted for in the final market price pattern depicted.
The process thus isolates and removes from the observed series the combined
effects of all the inexplicable, random forces that are present. In contrast, currently
used methods for determining price index movements, including standard
regression, do not contain a procedure that guarantees an optimal breakdown
between the effects of these two kinds of time related forces. As will be seen, the
impact of unusual or unpredictable phenomena on price movements is not likely
to be properly accounted for when applying standard regression or repeat sales
methodologies. One example of such an event is a change in property tax rates
within the time frame of the analysis. Other examples will be given later. Part of
the problem is the subjective choice of the length of the time intervals to be
employed in regression models. If intervals are too lengthy, the market pattern
tends to be too smooth, excluding some of the explainable phenomenon. If too
short, it encompasses some of the random elements in the series and there is
spurious accuracy in the resulting market pattern depicted.

� T i m e A d j u s t m e n t S y s t e m s

There are numerous systems suggested in the real estate literature for measuring
price movements. All such systems entail the use of regression models in one
form or another (see Bryan and Colwell, 1982; Meese and Wallace, 1997; and
Clapp and Giaccottto, 2002).

The regression approach to real estate valuation was first used in 1939 (see Bryan
and Colwell, 1982). It also remains as a currently popular method. Several types
of models have been employed over the period since its inception. In order of
introduction, the first involves the use of market value characteristics of sold
properties, with sales price as a function of these varying property traits. Both
real property characteristics and neighborhood location variables are used in such
models to account for variations in sales prices caused by real differences in sold
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properties. In this way, properties are standardized for differences across the
sample of available property sales. Typically this approach involves pooling into
one model all sales prices and associated property and location characteristics data
for several successive time periods, with time incorporated as a separate variable
or variables. A price index series is derived from the coefficient(s) on the time
variable(s).5 The model can be summarized as:

SP � F{PL , G , U }, (1)it ijt t t

where SPit represents the property selling price of the ith property at sale date t.
PLijt stands for the set of j property and location variables affecting the market
value of the ith property at sale date t. Gt is a general representation for the set
of variables that model time movements of standardized prices and Ut is the
random variable representation.

A major problem with this specific method is the large number of independent
variables generally required for all the factors needed to explain the range of
values of sold properties.6 As with the repeat sales approach, the number of
property sales has to be fairly large to attain reliable results.

Regression modeling for time effects at first involved simple linear and quadratic
trends. Later, Bryan and Colwell (1982) introduced more flexibility into the
modeling of time movements. In terms of annual movements of price, one of their
regression models incorporates a novel methodology in the form of a set of annual
dummy variables. There is one variable to represent the beginning of each of the
years in the analysis period.7 The two dummies closest to the sale date are assigned
values that sum to unity, with the two values being proportionate in each case to
the closeness of the sale to that year’s beginning and end. For that particular sale,
all other beginning year dummies take a value of zero. The resulting estimated
path of price is a point on a log linear function that moves smoothly from the
beginning of each year to the beginning of the next year. Shifts in log linear slope
occur only at the beginning of each new year. The system provides more annual
flexibility than linear or quadratic movements, being essentially an unconventional
piecewise linear technique, with nodes at each year end within the period
analyzed.

For intra-year patterns, Bryan and Colwell used monthly dummy variables, with
each variable accounting for variations in the monthly price level of standardized
housing. This seasonal specification, along with the annual dummy modeling
already mentioned, gives the extra flexibility ‘‘sufficient to capture the full range
of price variability’’ of standardized housing (Bryan and Colwell, 1982: 58).

This Bryan-Colwell model is certainly an improvement over earlier models, which
lack an intra-year seasonal component and contain linear or quadratic forms to
take care of longer term movements. At the same time, there is a problem when
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introducing a model that uses specific time interval specifications to show changes
in short-term price levels, such as in the case of monthly seasonal dummies. There
is no guarantee that these time intervals are of optimal length. The monthly time
intervals for the Bryan-Colwell intra-year dummies result in approximations of
the price pattern. Thus, if the intervals are too short, the resulting dummy variables
will pick up a portion of the random component in the time series under analysis.
If too long, the resulting movement may not vary sufficiently and some of the
within year pattern will be too smooth, missing a part of the seasonal or any other
significant intra-year fluctuation. The same idea can be applied to the annual
dummies used in the model, although the amount of error in distinguishing
between the market and the random elements in the series may be of lesser
importance because of the longer time intervals inherently involved. In effect, the
specification of the time intervals for the two sets of dummies is likely to generate
error when arriving at the final market price pattern. As will be noted later, it is
likely that this problem cannot be properly identified by the use of tests for serial
correlation of residuals.

An alternative regression-based technique, referred to as the repeat sales method,
was introduced in 1963.8 This approach was so described since only repeat sales
data were employed in the analysis. The technique involves comparing the price
of a property resale with its initial earlier price, where both transactions occur
within the period under analysis. The procedure can be shown to be equivalent to
the use of two multiplicative regression models, one for initial sales and one for
repeat sales of the same set of properties (Bryan and Colwell, 1982). The
simplicity of this repeat sales method is appealing, but the method has at least
one serious drawback (e.g., Case and Shiller, 1987; Haurin and Hendershott, 1991;
Clapp and Giaccotto, 1992; Dombrow, Knight and Sirmans, 1997; and Gatzlaff
and Haurin, 1997). There is typically only a small fraction of properties resold
within the time frame of many studies involving price movements. Case and
Shiller found that less than 5% of houses resold within a 15-year time span. This
percentage will tend to be even lower for the typically shorter time spans used in
much real estate analysis. Clapp and Giaccotto also observed a small percentage
of repeat sales in residential property transactions. In addition, smaller market
sizes would worsen the problem, given the more limited number of sales, and
thus repeat sales, generated from such areas. For these reasons alone, the repeat
sales method is often an unreliable way to estimate market price movements
compared to other approaches.

A third approach to obtaining price patterns within the multiple regression
approach was initially suggested by Gloudemans (1990) and Jensen (1991). The
procedure, sometimes called the assessed or appraised value (AV) approach,
involves the use of a single proxy variable to replace all the property and location
variables used in the method previously described.9 Gloudemans pointed out that
individual property AVs would be a sound proxy to replace all the independent
variables previously used to explain differing property market values. Employing
this proxy approach to standardize the cross section of property values has the
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advantage of not requiring nearly the detailed information needed when doing
standard regression modeling involving a large number of independent variables.
In many situations, such information is either not available or of questionable
quality. A major disadvantage of this method can be the accuracy of AVs. As
noted later, this disadvantage may not be too serious, although other issues remain.
Basically the proxy regression model can be summarized as:

SP � F{AV , G , U }, (2)it iT t t

where AViT represents one independent variable, the appraised market values of
the i sold properties at some specified and fixed time, T. All other variables are
as previously defined.

Various methods were employed by Gloudemans (1990) and Jensen (1991) to
model time within their proxy regression models. Gloudemans used successively
larger order time variables with annual time sub intervals. As pointed out by
Clapp, Richo and Giaccotto (1994), this specification is subject to the problem
that a choice of the number of order terms must be made, and that the specification
is subjective and might be inappropriate. Also the annual time interval used
implies intra-annual seasonal or other market movements are absent, an
assumption that is often questionable.

Jensen (1991) also excludes forces less than one year in duration. In addition, his
longer term movements are generated using continuous spline regression, where
price trends at node points suddenly shift, by the nature of the model. Again the
result becomes an approximation based on choice of the time location for node
points and the linear or non-linear specification for movements between nodes, as
well as on the assumption there are no intra-annual movements present in the data.

Clapp, Richo and Giaccotto (1994) use a log-based AV type model where
dummies are employed to obtain various steps or levels over a sequence of three
years of quarterly intervals. As with Bryan and Colwell (1982), the question again
arises as to whether these time intervals are too long or too short. If too long, the
model would generate market movements that are too smooth, deleting any
important measurable patterns occurring within shorter time frames. Monthly or
some other shorter intervals could be more appropriate. Alternately, too short a
time interval specification will generate a spurious accuracy in the fit, including
random movements within the depicted price pattern. The regression model is thus
likely to contain a specification error based on the length of the basic time interval
chosen for the analysis. It follows there is no guarantee of an optimal separation
of systematic explainable market movements from random ones when arriving at
the final depiction of the market pattern.10 Regression models and repeat sales
approaches both require a subjective specification of the sub interval unit for the
analysis. In the event that a particular short term period, such as a year, contains
unpredictable extra variability caused by unexpected and unusual events, these
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models are likely to pick up too little of the resulting price index movement. Yet
changes in market price levels attributable to these unpredictable changes in
conditions occur with varying incidence through time and across different
communities. At the same time, these phenomena are important in their impacts
on market price movement. Such unpredictable phenomenon could include large
layoff effects, very adverse weather conditions, changes in property tax rates,
announcements about the entry (or departure) of large business operations, and so
on. Even variations in the timing and intensity of normally repeated phenomenon
can cause difficulty. As an example, the February effect found by Bryan and
Colwell might take place in some years more in the last week or two of January
than in February. Further, there is no guarantee that autocorrelation on the
residuals of a standard regression will result in the elimination of nonrandomness
from the final price patterns depicted.11 In general, there are likely
misspecifications in time interval lengths that create errors in the estimated price
path when employing current methods.

Given these interval specification problems associated with current methods, it is
worth considering an alternative approach to modeling market price movements.
First, though, it is important to see how to obtain a price indicator series that is
standardized for variations in property characteristics without having to use any
regression methods to adjust for resulting differences in selling prices.

� O b t a i n i n g a S t a n d a r d i z e d T i m e S e r i e s R e f l e c t i n g t h e
M a r k e t

In regression analysis, standardizing is carried out using either the proxy
independent variable (AV), or a whole set of variables to account for individual
differences in property characteristics. There is another way to standardize data
that does not require regression analysis. Dividing the sales price (SP) for each
sale by the property’s AV gives a set of ratios, one for each sold property. Keeping
in mind that the AV values are all for an identical fixed date, whereas the sales
prices vary over the entire period of analysis, these ratios represent a set of
numbers that typically move in proportion to the market price of a standardized
set of properties. If, for instance, the ratios tend to rise and are highest toward the
end of the period, that directly indicates the market has risen to that extent. These
SP/AV ratios can be used to obtain a single time series directly reflecting
standardized residential property price movements. Once a basic time interval is
chosen for the analysis, the mean of these ratios can be found for each interval
within the whole period under analysis. These mean ratios represent a time series
that directly approximates the relative movement of standardized property prices
over the period.12

There is a possible issue concerning bias if AV statistics are used when estimating
market price movements. The problem occurs whether the AV regression approach
or the SP/AV mean ratios are employed to standardize prices. There are two
conditions that must both hold if AV-based estimates of price movements are to
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be biased. One of these conditions is that properties sold within time intervals
significantly change in character over successive intervals. For instance, if more
property that is inherently cheaper is sold in earlier compared to later intervals,
there is interval nonhomogeneity in property sales. The second condition required
for the presence of bias involves vertical inequity. This is the situation where the
ratio of AV to market values is typically not the same for less valuable properties
relative to more valuable ones.

A test for at least one of these two conditions is necessary to ensure the subsequent
AV-based analysis is valid. Tests for homogeneity of properties sold across the
whole set of time intervals can be conducted to determine the presence of this
bias.13 Tests for vertical inequity are also available in the literature.14 If both
conditions are present, implying bias, some adjustment of the data is advisable
prior to continuing with the AV-based analysis. Either interval sales samples must
be made homogeneous across all intervals, or vertical inequity needs to be
removed from the AV values before any AV-based procedure is employed.15 There
is no bias present if either condition is false. In particular, there is no bias if
properties tend to be equally underestimated relative to their true market values.

Given these caveats, the time series of interval mean SP/AV ratios for the
sequence of intervals can be used as a reflector of changes in values of
standardized housing stock. However, since these mean ratios are subject to
sampling error, the resulting time series contains a random component. The
random portion can be eliminated by fitting the data using a time series model.
These models are designed to separate the systematic, explicable movements in
any data sequence from the random variation or noise that is present in the series.

� C h o o s i n g a T i m e S e r i e s M o d e l

Underlying observed price level movements, there is a continuous ongoing search
for the correct present values inherent in the expected flow of future services of
whatever asset is being considered. Expectations about the future have a direct
impact on the market level attained at any particular point in time. Future price
levels and current ones are related. However, it seems highly unlikely that
expectations and thus price movements should follow any precise mathematical
function. Functional forms can only generate approximations of the way the
market is moving. Thus, it is more realistic to have a system that does not force
a prior specification of the nature of the market movement. It is better to use
methods that have enough flex to measure all systematic movements as dictated
by the data themselves, and to exclude random effects where there is no
explainable pattern.

Typical time series models can be considered as ‘‘one-way’’ processes, where the
data are analyzed through time as it is usually looked at, from the past to the
present and forward from there. Most time series models are of this type mainly
because concern with such models has been heavily oriented toward forecasting,
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with its stress on using the past to project the future. However, interest here lies
with time series where observations are already determined. The purpose is not
to forecast but to smooth the data in an optimal fashion, deleting the unexplainable
random effects in the series so as to isolate explainable movements in the price
pattern. Since all data are available at the beginning of the analysis, it is quite
possible to smooth the data in both directions, forward through time and backward
as well. This dual approach is used to generate two-way time series models. The
purpose is to smooth existing data as opposed to forecasting future values.

Using this two-way technique increases the ability to identify movements in the
data that cannot be found as accurately when basing the smoothing on past values
only. This can best be seen by realizing that random movements are not identical
when data are viewed from the past to the future as opposed to looking at
outcomes that have all occurred.16 Some of the inexplicable movements that cannot
be forecast might well be explicable after the fact, and can thus be considered a
part of market movement from the ex post view taken here. A two-way process
is required to pick up these ex post movements as a part of the market pattern.
Thus, a two-way method picks up more information inherent in the time series,
compared to one-way methodologies.

The two-way model developed here is an extension of standard time series (one-
way) modeling. In particular, it builds on a simple (one-way) exponential
smoothing model. Thus, it is helpful to begin with a brief review of the essentials
of one-way (standard) time series modeling. Once that is complete, it is easier to
understand a two-way time series smoothing model. More precisely, the method
to be used here represents an extension of Brown’s (1963) single exponential
smoothing methodology.

� E x p o n e n t i a l S m o o t h i n g

Exponential smoothing methods were developed over the ten-year period
following 1955. In addition to Brown (1956), major contributions included those
of Holt (1957) and Winters (1960). Brown developed one parameter exponential
smoothing for time series. Three different models of increasing complexity were
introduced, for time series showing stationary, linear and nonlinear movements.
These were called the single, double and triple exponential smoothing models,
respectively. Later, Holt advanced a two-parameter procedure for series showing
evidence of linear trend. This procedure turned out to be a small improvement on
Brown’s double exponential method for linear time series (see Makridakis, 1982).

Neither Brown’s (1956) nor Holt’s (1957) methods are designed for time series
containing seasonal or other (cyclic) patterns. In contrast, Winter’s (1960) method
is a three-parameter system that solves the problem of adequate forecasting where
fixed seasonality is present. At the same time, Winter’s method may not perform
all that well when there are patterns that are more irregular than seasonals, or
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when seasonals are changing [see Makridakis (1983: 118) and Gardner (1985:
15)]. It is also a problem that the task of finding jointly optimal values for the
three required Winter’s smoothing parameters is more complex and involves more
computer work [e.g., Gaynor and Kirkpatrick (1994: 395)].

Theoretical underpinnings for exponential smoothing were largely resolved when
Brown and Meyer (1961) introduced the fundamental theorem of exponential
smoothing. Following several years involving empirical comparisons and lesser
theoretical contributions, most of the interest in time series shifted toward Box-
Jenkins (ARIMA) methodologies.17 These developments occupied much of the
field of time series analysis over the ensuing twenty years.18 ARIMA methodology
involves more sophisticated time series models compared with those of early
exponential smoothing techniques, but also requires a larger number of
observations than is usually available for analysis of short-term market
movements.19 Thus, ARIMA modeling is of very limited value for short-term
analysis of time series.

There is an important additional problem when using one-way orthodox time
series models to fit a data sequence. These models are based on forecasting values
from the present to the future, primarily since short-term forecasting was the
original stimulus for their development. As already mentioned, any short-term
patterns that do not mirror the prior movements in the series will be excluded in
the final fit when using these forward looking or one-way types of models to fit
the data sequence. These unpredictable values may turn out to be due to forces
that are an explainable, important part of the market when examined after the fact.
Such important effects need to be included within the market movement. At the
same time, there always remain unexplainable random movements in the series
that should be excluded from the final market movement picture. Thus,
unpredictable movements prior to the experience are not the same as random
movements in an ex post sense. It is only these ex post random movements that
need to be eliminated from the final market picture.

In the analysis of observed data, two-way models can be employed to overcome
this inherent problem in orthodox models. Such analysis, involving a combination
of standard forward modeling with a reverse time identical backward process, will
cover significant movements in the data, including those that were not predictable
before the fact. The two-way process only leaves out the ex post, unexplainable
random residuals that are not a part of the underlying short-term market process
being evaluated.

� B r o w n ’s ( O n e - Wa y ) S i n g l e E x p o n e n t i a l S m o o t h i n g

Brown’s (1956) single exponential smoothing model is a system that can be
described as:
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S � �Y � (1 � �)S , for all t � 0, 1, 2,... . (3)t t t�1

Yt represents the actual or observed time series value in period t.20 St and St�1

stand for the smoothed values for the periods t and t � 1.21 The symbol � is called
the smoothing constant.22

The procedure for smoothing can be described as follows. Assume that t is a
number representing the time period for each of the observed data points, t �
1,2,3,... T. Thus, when t � 1, the first observed value in the actual series is
represented as Y1. Also when t � 1, St�1 � S0, usually called the value for the
initial benchmark interval, t � 0. It can be thought of as a typical value for the
time series in period 0. The terminal benchmark value refers to a typical value in
the subperiod or time interval immediately following the end of the whole time
period under analysis.23

An � of 1 means there is no smoothing, since St would always equal Yt and the
‘‘smoothed’’ series would be the same as the actual series. This would not be
appropriate if the observed time series contains the effects of any random forces.
At the other extreme, an � set to 0 would mean the smoothed values would never
change, remaining at the starting value set for S0 in the initial benchmark interval.
Such an extreme would also be improper if the time series contain any systematic
movement (trend, seasonal, etc.). It is apparent that a best time pattern fit will
occur when � is set somewhere between 0 and 1 for any time series that contains
elements coming from both random and systematic forces.24

Single exponential smoothing has a major flaw that makes it inappropriate to apply
to data with either a rising or declining trend or any pattern dominated by such
movements. The fitted or smoothed values found will lag behind the trend, being
too high when the trend is declining and too low when it is rising.25 Further, this
bias worsens the more removed in time a fitted value from its initial benchmark
interval.

An additional weakness is that exponential smoothers tend to lag systematically
behind the observed peaks and troughs of an actual time series. The weakness is
caused by the use of the one-way procedure for obtaining smoothers (from the
past to the future). The problem characterizes one-way smoothing models when
seasonal or other short-term patterns are observed in the time series.26

� Tw o - Wa y T i m e S e r i e s M o d e l i n g

To overcome these weaknesses, first reverse the order of the data, to find a second
single exponential smoothed time series, working from the last time interval back
toward the first.27 The biases in this backward exponential smoothing tend to be
the mirror image of the biases in forward exponential smoothing. Thus, if there
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is a trend movement in the observed series, there will be a time lag in the
backward smoothed series that is the opposite of that in the original smoothed
series. As already indicated, the trend bias in the forward exponential smoothing
gets steadily worse as intervals that are more and more removed from the
beginning of the period under analysis are examined. It is at its smallest in the
first interval of the period being examined. In contrast, working in reverse time
order, the bias for the backward smoothing process is largest for this same first
time interval of the whole period, since that is the interval furthest removed from
the end of the whole period. Since the biases of the two systems are the opposite
of each other, they can be eliminated by obtaining a weighted average of the
forward and backward smoothed values. These two smoothed sets of values are
called the forward and backward smoothers, respectively.

To illustrate the elements of the two-way process, imagine a set of monthly SP/
AV mean values that are generally rising in a linear fashion over a short time
interval such as a year. These are shown in Exhibit 1. Assume also, for simplicity,
that the smoothing constant, �, is equal to zero. Note that because of the upward
trend in the monthly values, the initial benchmark value (assumed to be 0.9) will
be less than that for the terminal benchmark (assumed to be 1.02). Since � � 0
in this example, both the forward and backward smoothers will be horizontal lines
at levels equal to the initial and terminal benchmarks, respectively. Exhibit 1 shows
that neither the forward nor backward one-way smoothed lines adequately fit the
example data, and that their fits of actual data worsen for months further removed
from their respective benchmark months.

Now obtain weighted averages of the two smoothed lines for each month, using
weights based on the amount of time from the month being measured to the two
benchmark months. For example, the first month will be one month removed from
the initial benchmark month, whereas this same month will be 12 months removed
from the terminal benchmark month. Thus, the forward smoothed line value has
a weight of 12/13 and the backward smoother weight is 1/13. Therefore, the
weighted average for the first month in the 12-month series will be:

S* � (12/13)Sƒ � (1/13)Sb , (4)1 1 1

where Sƒ1 is the simple forward smoothed value and Sb1 is the simple backward
smoothed value, both for the actual first month. designates the weighted two-S*1
way exponential smoothed value, and the subscript 1 indicates it is the smoothed
value for month one. The weights for month 2 would be 11/13 and 2/13, and so
on for months 3 through 12.

This result, as shown in Exhibit 1 with � � 0, will give a series of weighted
smoothers that lie on a straight line joining the initial and terminal benchmark
values.
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Exhibi t 1 � Simple Forward and Backward Smoothed Values and Weighted Two-Way Smoothed

Valves (� 0)

 

Months
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V
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B1 1 2 3 4 5 6 7 8 9 10 11 12 B2

0.88

0.9

0.92

0.94

0.96

0.98

1

1.02

1.04

Simple Backward Smoothers

Weighted Two-Way  Smoothers

Simple Foreward Smoothers

� F i n d i n g t h e B e s t � F o r Tw o - Wa y We i g h t e d E x p o n e n t i a l
S m o o t h e r s

In exponential smoothing, the search for an optimal smoothing constant is based
on the following idea. � smoothing constant values set at 0 or close to 0 give
weighted smoothers that lie on or close to a straight line, respectively. Such fitted
lines will often miss some of the systematic forces in observed time series (e.g.,
seasonal movements). At the other extreme, values of � approaching 1 give
weighted smoothers that fit observed data so closely that some random effects are
apt to be included in the patterns they show. The question is how to find optimal
� values.

The optimal smoothing constant is typically found by first setting � equal to 0,
and deriving the fitted line that results. After this, a set of errors or residuals can
be found. These residuals are defined as the actual or observed time series values
minus the weighted smoothers or fitted values for each of the monthly time
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intervals. This set of residuals is then tested as a random sequence. If the test
shows randomness, the optimal smoothing constant is an � of 0, since there is no
further systematic element apparent in the residual sequence. If the test indicates
the residual sequence is not random, the analysis is repeated using a slightly
increased value for �. Once a new set of slightly more flexible fitted values has
been found, a new set of residuals is determined and tested for randomness as
before. Successive iterations of increased � values will make ensuing fits
increasingly flexible, with an improved ability to identify any remaining pattern
initially found in the residuals. The � iterations continue until the residual
sequence test does not reject the hypothesis of randomness. The optimal � is the
one used when the sequence of residuals is first found to be random. In this way,
a smoothing sequence is found that contains all the systematic forces as
determined by the behavior of the observed data.

A number of tests for randomness could be used for this procedure. In particular
there are a variety of nonparametric tests.28 Alternatively, the Durbin-Watson test
is a more powerful option, although it does require fifteen or more time interval
observations to be applied. Also the test can generate an indeterminate result,
not an entirely satisfactory attribute [see Neter, Wasserman and Kutner (1996:
450–4)].

� T h e Tw o - Wa y M o d e l : I l l u s t r a t i o n a n d AV R e g r e s s i o n
C o m p a r i s o n

The purpose of this section is to use contrived data to show how the proposed
model applies to a set of market prices over a sequence of time intervals. An AV
regression model is also applied to the same data, and results of the two methods
are compared.

The data were generated as follows. First a linearly related set of fifty monthly
mean SP/AV ratios was generated. These range from 0.855 to 1.10. Also a
separate series of fifty ratios was determined to represent monthly seasonal
movements for the same period. These center on 1.00 and fluctuate around a range
from 0.94 to 1.06. These two monthly series were multiplied together to obtain
the ‘‘true’’ monthly market value movement as measured by the resulting
combined mean ratios.

The true market movement was then shocked by a randomly generated set of fifty
data, with a mean ratio equal to 1.00 and standard deviation of 0.04. The resulting
combined series became the ‘‘observed’’ sequence of monthly mean ratios.

Individual sales were found for each interval by first generating a set of sales
prices for each of the fifty time intervals. The appraisals on each property were
found such that the resulting SP/AV values for all sales in each monthly time
interval would have a mean equal to the observed mean monthly ratio. This
completed a set of data on which analysis could be conducted using both time
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series analysis of the monthly mean SP/AV ratios and regression AV analysis
using SP and AV individual values within the data set. The advantage of
constructing this kind of data is that it allows comparisons using both the
regression AV and the SP/AV time series analysis. Actual data does not allow
this type of comparison since true market values are never discernible. This
approach is acceptable as an illustration provided the contrived data look
reasonable. Certainly the data used here fit such a description. Thus, the two-way
exponential smoothing method and the regression AV method (using monthly
dummies to catch seasonal patterns) were applied to the data set.29 The estimated
market movements derived from each of the two different approaches were then
compared with the true market pattern.

Exhibit 2 shows the earlier determined true market pattern as a heavy solid line.
The solid white line shows the series that contains the random noise (the
‘‘observed’’ data used by the two-way and implicitly by the multiple regression
approach). The estimated market movement based on the two-way exponential
model is shown as a dotted line. The estimated market movement for the AV
multiple regression model using monthly time intervals is shown on the figure as
a fine dark line. From Exhibit 2 it is clear that the AV regression line follows very
closely the observed data, whereas the two-way exponential results fit the market
pattern much better.

The fitting error for each of the two models was found as the mean absolute error
(MAE) between each model’s estimated market levels and the corresponding true
levels for the forty-eight months of model fit. The MAE using the two-way
exponential model is .01998, i.e., the predictions are, on average, 1.998% removed
from (above or below) the true market level. For the AV regression model, using
monthly time intervals, the MAE was found to be 0.0330, or the model predictions
were typically in error by 3.30%. This is about 60% less accurate than the
exponential model results.

The multiple regression model was fitted a second time, where in this case the
data were analyzed using six-month time intervals. This biannual time interval
arrangement gives results using the MAE approach that are typically 3.6%
removed from the true market pattern, clearly a performance inferior to both of
the prior models. These six month interval multiple regression fitted values are
shown in Exhibit 3 along with both the true market movement and the actual or
observed time series of mean ratios.

The two-way exponential procedure is better than either of the regression models.
In the case of the regression using monthly intervals, the graph indicates that the
dummy levels basically follow the observed series random fluctuations. The
interval used is apparently too short and there is thus too close a fit of the observed
time path of prices. The variations in the true market are overstated since the
model does not separate the random movement from the true movement. In
general, when using multiple regression, too short a time interval will give this
spurious fit, since dummies pick up the average level within each interval, and
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these individual mean ratio values can be significantly impacted by ex post
unexplainable random effects on sales prices and appraised values. This is
particularly the case if the time interval generates few sales, giving rise to typically
larger mean standard errors. As for the regression model using six-month data,
there is clearly too much smoothing and this is of course because the six-month
time interval is too lengthy.30

An additional comparative analysis was run using monthly intervals applied to a
changed data set. A structural shift involving a 20% reduction in observed sales
prices (and thus in SP/AV mean ratios) was imposed beginning with month 27
in the time series. The relative accuracy of the same two approaches remains
essentially unchanged.

The two-way exponential model, with its built-in procedure for finding the optimal
smoothing constant, does not require an iterative changing of time intervals. The
iterative movement of the smoothing constant effectively replaces a repeated
changing of the time interval required for optimal regression modeling. The result
is a solution for fitting time series requiring only one application of the exponential
model, with the iteration process encompassed within the overall procedure.

There is a further advantage to the use of the two-way exponential method
compared with standard regression modeling. An integral part of the method is
that a specific probability can be attached to tests for rejecting randomness in the
sequence of residuals. Thus, using the time series approach permits a statistically-
based belief that the residuals to be omitted from the final market movement are
indeed a random sequence. For regression, one-way standard autocorrelation
analysis of residuals is an added requirement before such a belief about
randomness can be attained.

Finally, even randomness in the sequence of residuals for a given regression fit is
not a sufficient condition for determining interval length correctness for that
regression model. Models with intervals that are too short generally result in final
market estimates with residuals that are a random sequence. If that is the case,
some randomness is apt to be included in the fitted market estimates and it is not
obvious that the interval length used is long enough. This problem does not exist
when using an iterative exponential smoothing model.31

� C o n c l u s i o n

There have been different approaches to measuring short run market price
movements. One of these methods limits itself to the use of repeat sales data.
Another involves the direct application of regression models to all sales. At first,
many independent variables were introduced into regression models to account
for the effect of individual property traits on sales prices. In this way, the time
pattern of market prices could be estimated using sales prices standardized for
variation in property character. Bryan and Colwell (1982) represent a good
example of this specific regression method.
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Another advance occurred when appraised values (AVs) were used as a proxy to
replace the large number of independent variables needed to represent these
property and location characteristics. The resulting gain in degrees of freedom
made it possible to better estimate market patterns when limited data were
available. Gloudemans (1990) and Jensen (1991) began using this method to
standardize property sales prices, while also obtaining time patterns for residential
markets. Clapp and Giaccotto (1992) also used the AV approach while applying
dummy variables to measure variations in price levels over a series of quarterly
periods. Schwann (1998) employed the same approach but replaced dummy
variables with an autoregressive scheme.

All of these regression models require specification of some fixed time interval
length with results depending on the choice made. There is no systematic, built-
in test that the interval chosen is the correct one. The optimal length depends on
the presence and character of any events that may have impacted the data within
the period under analysis. The two-way exponential smoothing methodology
escapes this difficulty. This same approach also requires less data than most
previously used methods.32 Third, the system largely overcomes the problem of
standard or one-way autoregression and one-way exponential smoothing modeling,
where fitted values lag systematic movements in time series. The two-way model
incorporates all the flex necessary to describe any systematic market patterns,
including seasonal and cyclical movements. There is also sufficient sensitivity to
cover unpredictable movements that are, at the same time, ex post explainable
parts of the market, should they occur. At the same time the method does not
allow so much flexibility to include inexplicable, after the fact, random effects.

In general the following conclusions seem in order. First, the regression modeling
process can generate serious fitting errors as a result of a misspecified basic time
interval used in the analysis. An iterative regression procedure, involving
systematic changes in the interval length used, could be employed to overcome
the problem to a degree, but such an approach is awkward at best. In contrast,
the two-way exponential time series procedure tends to avoid these problems. The
time series model is preferable to the regression approach essentially because it
incorporates an iterative process for estimating the smoothing constant � that
results in an optimal fit for the model. Iterations for � in time series models are
an alternative for iterations involving the length of the time interval used in
regression models.

The main purpose of this article has been to report on the development and
application of a two-way exponential smoothing system for effectively estimating
true market movements in residential property prices. The advantage of the method
is that it is neither too rigid nor too flexible, containing a procedure that is
designed to accurately find the systematic movement evidenced by the observed
price time series. Thus, the approach seems to overcome some difficulties attached
to earlier methodology.
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� E n d n o t e s
1 On a more specific level, in appraisal work there is often a need to determine what has

happened to the market over short periods of time, perhaps less than six months. Without
this knowledge, it is impossible to make accurate adjustments to property value for
changes in the real estate market. In the same vein, assessors need to adjust sales prices
on property sold over recent months (or years) to a given point in time to compare with
assessed valuation in order to determine the accuracy of the assessment process.
Determining assessment accuracy is critical to homeowners, as it will impact their
property taxes, as well as to local and state oversight agencies.

2 A residential property may have experienced a significant change in lot or improvement
characteristics over the time period under study. Thus, for example, a room might be
added to a house, a sidewalk installed, and so on. It is assumed that sales prices or
appraised values have been adjusted for these kinds of changes, so that these prices and
values are comparable for the same property. Data initially cleaned in this way is needed
to properly determine changes in price of a constant or unchanging stock of housing.
To the extent the data are not cleaned, all methods for finding price movements suffer
accordingly.

3 For a more detailed description of the nature of random forces, see Johnston (1972:
10,11). Also of note is the classic statement on the same subject in Klein (1962). Another
description of these random forces can be found in Nazen (1988: 9).

4 See Gardner (1985) for a summary of the development of time series methodology.
5 One variation is a strictly cross-sectional technique. In this approach, cross-sectional

data describe conditions that exist at a given point in time (or within a very short time
interval). Thus, implicit prices of the housing characteristics are estimated in separate
hedonic equations for each time interval. Conventional price indexes can then be
calculated by linking the results of each cross-sectional analysis. Examples of
conventional price indexes include Paasche and Laspeyres indexes. See Valliant and
Miller (1989) and Wallace (1996) for such examples. See also Ferri (1977) and
Palmquist (1980) for a variation of this technique.

6 For a discussion of the relative merits of regression models, see Bryan and Colwell
(1982).

7 Bryan and Colwell (1982) state: ‘‘Each date of sale is defined as a linear combination
of the end points of the year in which the sale occurs. Thus, the B(y) variables are the
proportionate weights.’’ In their approach there is a B(y) variable for each year in which
sales occur with B signifying the beginning of the year and y symbolizing a year.

8 Bailey, Muth and Nourse (1963) first developed this technique.
9 Clapp and Giaccotto (1992), Clapp, Richo and Giaccotto (1994) and Schwann (1998)

use assessed valuations in the context of regression modeling. Clapp et al. uses dummy
variables and Schwann employs an autoregressive structure to estimate time patterns.
For a detailed description of the AV method, see Clapp and Giaccotto (1992).

10 An iterative regression procedure could be used to overcome this problem, although the
methodology is a bit awkward and can itself also generate problems. Thus, the first
regression model might specify an interval that is quite lengthy, perhaps even one year
in length. If tests show the unexplained residuals are not a random sequence, the interval
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is shortened to provide increased flexibility to pick up this nonrandom sequence. The
procedure repeats just until a short enough time interval is used so that the hypothesis
of randomness is no longer rejected. This would solve one of the system’s weaknesses,
but at a certain cost. Aside from substantially increased computation, it should be noted
that shorter intervals mean the number of intervals used in the model increases. Thus,
the degrees of freedom for statistical testing declines. If the number of sales is at all
limited, these developments can cause a serious deficiency in the suggested procedure.

11 For an example illustrating this weakness under autoregressive modeling, see Schwann
(1998: 279).

12 Manson (1993) advocated the direct use of monthly median appraisal-sales ratios, with
regression models fitted to ratio time series directly. Thus, Manson proposed that median
sales ratios be calculated for each month, and that this series be regressed on time
variables directly. Weighted regression was suggested, where the weights are the number
of sales observed within each month. As determined later, problems also remain with
this alternative regression approach.

13 The Kruskel-Wallis nonparametric test is an example of a simple test for homogeneity
across intervals. See Conover (1980) for a discussion of this test. As an example, the
test could involve the null hypothesis that houses sold in each interval have the same
square footage, across all intervals.

14 For a review of several of the major approaches to test for vertical inequity, see Sirmans,
Diskin and Friday (1996).

15 Birch, Sunderman and Hamilton (1992) describe a way to test and adjust for vertical
inequity.

16 This is analogous to the well known situation that Monday morning quarterbacks can
understand more about optimal game strategy than the quarterback who is actually
making decisions as the game progresses. This is why Monday morning quarterbacks
seem to be wiser than the actual participants during the game!

17 ARIMA is used to represent the term autoregressive integrated moving average, which
is an alternate way used to refer to Box-Jenkins models.

18 It should be noted, however, that exponential smoothing became a popular applied
business methodology in these years [see Ledolter and Abraham (1984: 79)].

19 An elegant review of both exponential smoothing and Box-Jenkins modeling is available
in Gardner (1985). For a clear introduction to ARIMA modeling theory and practice,
see Pankratz (1983).

20 The word ‘‘exponential’’ is used to refer to the fact that the St is an additive function
of exponentially declining weights of past Yt values. Thus, the model as given in the
text is equivalent to:

St � �Yt � (1 � �)�Yt�1 � (1 � �)2�Yt�2 � (1 � �)3�Yt�3 � ��� � (1 � �)n�Yt�n.

Thus, if � � .5, then:

St � .5Yt � .25Yt�1 � .125Yt�2 � .0625Yt�3 � ��� � (1 � .5)n(.5Yt�n).
21 See Gaynor and Kirkpatrick (1994) for applications of simple exponential smoothing.
22 This � is not the � commonly used in referring to the type I error for tests of hypotheses.
23 There are several ways for determining reasonable estimates for these benchmark periods

[see Makridakis, Wheelwright and McGee (1983: 121–23) and Ledolter and Abraham
(1984)].
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24 See, Gardner (1985) for an excellent review of the whole family of exponential
smoothing methods. Also, for a recent text, see Gaynor and Kirkpatrick (1994).

25 See Mendenhall, Reinmuth and Beaver (1993: 693–94) for excellent graphs showing
this lag.

26 There has been some work using damped smoothers to try to improve Winters (1960)
modeling of time series. But the problem of time lags is the result of the one-way fitting
process inherent in these forecasting models, which makes for smoothers that lag behind
unforeseen changing cyclic and seasonal movements, situations that may characterize
real estate price index patterns.

27 It might be thought that double, triple or higher order exponential smoothing would
handle this problem of higher order changes in time series sequential patterns.
Unfortunately, using these more complex procedures again requires a choice about the
nature of the functional form. Such an approach is not easily justified when dealing with
short-term changes in time series. In contrast, the technique developed here avoids both
the complexity and subjectiveness implied when choosing between using higher order
exponential smoothing models.

28 See Levine, Ramsey and Berenson (1995: 645–52) for a description of the formula and
general procedure for both the small and large sample runs tests. See also Swed and
Eisenhart (1943) for an earlier example of a similar test.

29 The AV model reported on here is a specific version of the generalized functional form
already referred to as Equation (2). This version can be written as:

SPit � b0 � b1 AViT � � bij Dij � Ut,

where Dij takes on a value of 1 for sales in the jth interval and 0 otherwise. The log
version of this model was also tried and showed very similar results.

30 It is apparent that interval specification error can significantly reduce effectiveness of
the regression model as a way of accurately estimating the true market path of prices.
It might be thought that an iterative process involving a systematic changing of
regression model time intervals will solve this problem involving the choice of an
optimal time interval. There are problems with this regression modeling adaptation. The
procedure is awkward, requiring as it does a continuous rearranging of sales data into
new time interval sets for each regression run. For a statistically based conclusion that
price indexes are inferior when founded on regressions using quarterly or longer time
intervals, see Englund, Quigley and Redfearn (1999).

31 In this case it turns out that a 3-month interval comes close to minimizing error between
estimates and true market values, but of course that is not always going to be the case.
For other data, 5, 6, 11 weeks or some other length might be the best interval to use.
Subjective judgments about optimal lengths for time intervals can be seriously wrong.

32 Its robustness in the face of small samples could be further improved by replacing mean
ratios with median ratios when constructing the time series fit.
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