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A b s t r a c t Developing a good prepayment model is a central task in the
valuation of mortgages and mortgage-backed securities but
conventional parametric models often have bad out-of-sample
predictive ability. A likely explanation is the highly non-linear
nature of the prepayment function. Non-parametric techniques
are much better at detecting non-linearity and multivariate
interaction. This article discusses how non-parametric kernel
regression may be applied to loan level event histories to produce
a better parametric model. By utilizing a parsimonious
specification, a model can be produced that practitioners can use
in valuation routines based on Monte Carlo interest rate
simulation.

I n t r o d u c t i o n

The importance of mortgage loan prepayments has been the topic of much
academic and practitioner research. Many highly publicized losses by investors in
mortgage-related derivative securities have been attributed to unexpected changes
in prepayments. Understanding prepayment risk is important in assessing the risk,
capital, solvency and insurance of financial institutions that originate and hold
fixed-rate mortgages. Prepayment risk also affects the government and
government-sponsored enterprises (GSEs) such as Fannie Mae, Ginnie Mae and
Freddie Mac, which guarantee securities backed by mortgage loans.1 In addition,
much of the S&L crisis during the 1980s can be attributed to the poor management
of interest rate risk (duration mismatch) in mortgage portfolios brought on by
rapid, unforecasted and unhedged prepayment changes. At present, approximately
$6.0 trillion of home mortgage debt is outstanding. With $4.0 trillion now
securitized in the form of mortgage-backed securities (MBS) guaranteed by the
GSEs, holdings of these securities have spread beyond traditional banking
institutions to all types of financial institutions, money funds and investment
groups. These securities have, in turn, been re-packaged into derivatives such as
CMO’s, IO’s, PO’s and inverse floaters, all of which can exhibit even greater
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prepayment sensitivity. As a result, the analysis and forecasting of mortgage loan
prepayments has become increasingly crucial to a growing group of investors as
well as regulatory bodies.

This article discusses how non-parametric techniques can be used to improve
parametric modeling resulting in better out of sample estimation. Maxam and
LaCour-Little (2001) previously applied these techniques to mortgage pool data
with promising results; however, purely non-parametric approaches are of little
practical value given the necessity of off-the-support predictions in the Monte
Carlo interest rate simulations used to actually value mortgages. This article
extends the kernel regression estimation approach in Maxam and LaCour-Little to
individual loan event histories. Prepayment probability is estimated as a function
of the ‘‘moneyness’’ of the prepayment option, the age of the mortgage and the
previous path of interest rates. The patterns produced by the kernel then guide
development of a parametric alternative, which is shown to be a ‘‘second best’’
solution in terms of model fit.

A mortgage is frequently modeled as consisting of two components: a straight
bond, which fluctuates with interest rates in the usual manner and an option
component reflecting the borrower’s right to prepay the mortgage and refinance
at any time.2 Thus, a mortgage or MBS investor is implicitly writing a call on the
underlying fixed-rate bond. The household decision to prepay is based, of course,
on a variety of factors, some directly related to interest rates while others reflect
broader demographic factors. In contrast to option theory predictions, it is well
documented that mortgage prepayment option exercise appears to be sub-optimal
(Green and LaCour-Little, 1999). Mortgages are prepaid even when prevailing
mortgage rates are higher than loan rates (when the option is out-of-the-money)
and mortgages are not prepaid even when the loan rate exceeds the prevailing
mortgage rate (when the option is deep in-the-money). This apparent irrationality
on the part of borrowers is part of the problem in predicting prepayments.

Among the earliest to examine the topic of prepayment were Dunn and McConnell
(1981), Brennan and Schwartz (1985), Green and Shoven (1986), and Quigley
(1988), all of whom identified the role of interest rates as well as borrower
mobility on rates of mortgage prepayment. In two often-cited articles, Schwartz
and Torous (1989, 1993) use variations on the proportional hazard approach
together with a Poisson regression to integrate prepayment into an overall
valuation framework. Academic interest in the topic accelerated during the early
1990s with theoretical papers by Brueckner (1992, 1994), Follain, Scott and Yang
(1992), Kau, Keenan, Muller and Epperson (1992) and Stanton (1995). These
articles dealt with optimal exercise of the borrower’s call option given stochastic
interest rates and the implications for mortgage contract design and pricing, both
of mortgages and mortgage-backed securities. Concurrently, Wall Street firms
were developing proprietary prepayment models for use in valuation routines that
supported their trading strategies (Richard and Roll, 1989; Patruno, 1994; Hayre
and Rajan, 1995; Hayre, Chaudhary and Young, 2000). The refinancing wave of
1993 followed by the sharp increase in rates during 1994 produced large losses
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for many market participants, reinforcing the business imperative to develop better
models.3

During the latter half of the 1990s, many researchers turned their attention to
institutional constraints that might reduce prepayments, even when call options
appeared to be deep in the money (Peristiani, et al., 1996; Archer, Ling and
McGill, 1996, 1997; Caplin, Freeman and Tracy, 1997; and Green and LaCour-
Little, 1999). These studies identified declines in collateral value, credit status and
other macroeconomic forces, such as unemployment, as significant factors
inhibiting prepayment. Research in the late 1990s and into the new century re-
focused on the role of borrower mobility (Clapp, Harding and LaCour-Little, 2000;
and Pavlov, 2001), and a more complex specification of mortgage termination risk
using a competing risk framework (Deng, 1997; Deng, Quigley and Van Order,
2000; and Ambrose and LaCour-Little, 2001).

Early research was generally based on mortgage pool data. But with pool data, a
prepayment on a guaranteed mortgage may actually have been triggered by default
on the underlying loan. Mortgage default requires the guarantor4 (FNMA, GNMA,
FHLMC) to pay off the balance on the loan to the investor. Thus, ‘‘prepayments’’
received by investors may have actually been defaults. Although it is early return
of principal for whatever reason that MBS investors care about, models built with
pool level models cannot distinguish the underlying cause.

In contrast, the individual loan level event histories in the data in this study permit
an accurate distinction between prepayments and defaults. Therefore, the
prepayment function is not confounded by the issue of commingling defaults. In
addition, this study differs from previous work since non-parametric techniques
are used as a basis for more powerful parametric specifications. Specifically, non-
parametric kernel regression is employed to empirically estimate the empirical
shape of the prepayment function. This information is used to enhance the
parametric specification and to show that the new functional form improves out-
of-sample model fit. The non-parametric technique can capture acknowledged
properties of the prepayment function, such as premium burnout, seasoning and
the refinancing incentive, without specifying a functional form or underlying
distribution for any of the covariates.

The rest of the article is organized as follows. In the next section, the prepayment
problem and related factors are described in more detail. The following sections
describe the data and methodology and presents results for the non-parametric,
parametric and hybrid models. The final section is the conclusion. The Appendix
contains a detailed description of the non-parametric technique. Equations from
the Appendix (prefixed with an ‘‘A’’) occasionally appear in the text.

� T h e P r e p a y m e n t P r o b l e m

Various theoretical models have modeled prepayments in an optimization
framework using specific functional and distributional assumptions. The effort
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here is more practical and applied. Thus, the following question: Given an actual
data set that a practitioner might possess, how can non-parametric methods be
employed to produce a model that could actually be used in valuation routines
employing Monte Carlo simulation?

Much prepayment research has been done in the private sector rather than for
purely academic purposes. Wall Street investment banks, major lenders, the GSEs
and others have developed numerous econometric models that attempt to identify
the appropriate factors and predict prepayments accurately. The majority of these
are proprietary and described only in very general terms in research papers offered
to existing and prospective clients.5 Since the majority of prepayment models use
mortgage pool data, they may likely suffer from serious estimation error. As
evidence of the weakness of many of these models, note the large losses incurred
by some Wall Street firms and other MBS investors over the last few years and
the large research teams assigned to prepayment forecasting. Nonetheless, several
common factors have emerged, although particular specification and proxies are
not always described. These factors are the refinancing incentive, seasoning or
age, seasonality and premium burnout. Though each factor will be discussed
individually, this work focuses on just three variables: the refinancing incentive,
seasoning and premium burnout. There are three reasons for this admittedly
parsimonious model specification. First, as noted, the limited set of factors selected
are those common to virtually all commercially available prepayment models.
Second, the kernel regression framework naturally limits the number of factors
that can be employed, due to the so-called ‘‘curse of dimensionality.’’ Third,
practitioners could actually use a short specification model in valuation routines
requiring Monte Carlo simulation of interest rates.

R e f i n a n c i n g I n c e n t i v e

Mortgagors typically have the option to prepay their mortgages at any time. The
decision to exercise this option involves comparison of current payments with
payments under the current refinancing rate. Refinancing involves explicit costs
such as points, closing fees and so on as well as implicit costs such as ability to
qualify, possible price depreciation affecting the amount that can be borrowed and
other factors. A mortgage is simply a self-amortizing ordinary annuity. Thus, the
decision to refinance amounts to retiring the mortgage with value M and taking
out a new annuity with principal, P, plus paying the explicit and implicit costs
that may be out of pocket expenses or added to the new principal or both.
Furthermore, early exercise of this option entails lost time value. Thus, the
prepayment option has all of the characteristics of an American option on an
annuity with an exercise price equal to the outstanding principal balance plus
refinancing costs and an exercise date equal to the maturity of the mortgage.6

Thus, one measure of the refinancing incentive would be to take the ratio of the
current mortgage (annuity) value to the outstanding principal balance, A/P.
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This is essentially a measure of the moneyness of the option. Since collecting and
computing this type of data is cumbersome to say the least, many researchers have
used a simple metric, C-R, (Hakim, 1994) where C is the coupon rate on the
mortgage and R is the gross refinancing rate reflecting the cost of refinancing.
However, Richard and Roll (1989) argue that this measure is a poor approximation
to A/P. They propose instead taking the ratio of the coupon rate to the refinancing
rate, C/R. They document a highly non-linear relationship between this variable
and conditional prepayment rates using a proprietary database of mortgage pools.
In general, prepayment remains at frictional levels at C/R levels below one and
accelerates rapidly as C/R exceeds one. This study employs natural log(C/R) as
a measure of the prepayment incentive.

INCENT � natural log (C/R). (1)

Using the metric natural log(C/R) preserves the advantages the measure C/R
offers over the measure C-R, but provides some computational advantages. In
particular, using the measure C/R in a kernel with constant bandwidth implies
that out-of-the money loans (C/R less than one) are smoothed more than in-the-
money loans (C/R above one). Using the metric natural log(C/R) provides a
simple way to avoid this unwanted asymmetric smoothing effect.7

S e a s o n i n g

It is also well documented that mortgage prepayments occur at different rates
depending on the age of mortgage loans. The industry standard prepayment rate
created by the Public Securities Association8 (PSA) exhibits this pattern. The PSA
‘‘prepayment curve’’ assumes a constantly increasing prepayment probability per
month for the first year, which then increases every month by a new constant
increment until month thirty, and remains steady thereafter. However, this model
ignores the effect of specific coupon rates. Premium GNMA pools, for example,
typically season much more quickly than current coupon pools, which more
closely follow the PSA prepayment curve. Some studies that use mortgage pool
data, such as Schwartz and Torous (1993), simply use the age of the mortgage
pool as a measure of the age of individual mortgage loans. As a result, these
studies ignore the effect of seasoning of loans occurring prior to pool formation.
This shortcoming is mitigated by the fact that the MBS-issuing agencies follow
strict guidelines regarding the inclusion of already seasoned (i.e., aged) mortgages
in new pools. For example, GNMA pools are restricted to loans originated within
one year of pool formation. Since actual loan age at time of prepayment can be
observed, this study does not have any of the measurement problems endemic to
pool data.
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P r e m i u m B u r n o u t

Borrowers face an array of costs, both explicit and implicit, when making the
refinancing decision and these costs are likely to vary across borrowers. Thus,
there is likely to be heterogeneity across households and different mortgagors may
not repay given the same sets of parameters.9 Heterogeneity produces a
phenomenon commonly known as premium burnout.

To better understand premium burnout, consider the following scenario. When
interest rates decrease to a certain point, the most eager and lowest cost borrowers
in a mortgage pool find it favorable to prepay and therefore, refinance. The
remaining borrowers are subject to higher refinancing costs, face difficulties
obtaining credit, or are simply uninformed and thus have a lower likelihood to
prepay. Thus, a different ‘‘critical level’’ of prepayment exists for different
borrowers. As more and more favorable critical levels are reached more borrowers
prepay. As a consequence, in an environment with fluctuating interest rates, the
numbers of borrowers who have already prepaid grows each time a certain
prepayment incentive is revisited and only the borrowers relatively less likely to
prepay are left. As a result, the prepayment probability of a borrower who has
been previously exposed to a certain prepayment incentive is expected to be lower
than that of a borrower who is exposed to the same prepayment incentive for the
first time. Moreover, there is evidence that households face different costs across
time since prepayments are witnessed when a given critical level is reached more
than once. Applied to mortgage pools this phenomenon produces premium
burnout, which is the tendency for prepayments from premium pools to slow over
time as more and more borrowers prepay and are removed from the pool. Several
different measures of burnout have been used in the literature (see Hall, 2000) for
a review). Adopting Schwartz and Torous (1993), this study measures burnout of
loan i at time t as:

t

BURNOUT � max{log(c /r ),0}, (2)�i,t i �
���Orig

where c is the mortgage coupon rate of loan i, r is the prevailing market rate for
mortgage loan at time � and �Orig is the time of origination. This measure
accumulates the moneyness of the prepayment option (INCENT in Equation 1)
over time. Moreover, during periods of high interest rate volatility this measure
will assign large values to BURNOUT. Many other studies measuring burnout are
hampered by pool data. A simple and readily obtainable measure of burnout used
in some studies is the pool factor, defined as the ratio of the remaining balance
to the original pool balance. This formulation suffers from severe measurement
error since it includes scheduled amortization as well as prepayment. Thus, it is
possible for a premium pool that has experienced significant repayment to have
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the same pool factor as a discount pool that is well seasoned. Since data used in
this study is at the loan level, it is not affected by any of these measurement
issues.

S e a s o n a l i t y

The seasonal pattern of mortgage prepayments is also known to be important.
Since household relocation follows a seasonal pattern of peaks in summer months
and troughs in winter months, these patterns appear in prepayment rates as well.
Many multiple regression models simply introduce dummy variables or lagged
dummy variables to account for seasonality (Schwartz and Torous, 1993; and
Hakim, 1994). Such an approach requires too many variables for kernel regression.
Accordingly, the issue of seasonality is excluded here.

O t h e r F a c t o r s : I n t e r e s t R a t e s , Vo l a t i l i t y , G e o g r a p h i c
R e g i o n , L o a n - t o - Va l u e R a t i o s a n d C r e d i t S c o r e s

While the refinancing decision depends on immediate interest rate savings, the
level of rates will influence the refinancing decision, too. Although the measure
of the refinancing incentive, log(C/R), captures the level implicitly, it does not
account for borrower expectations about future rates. Many prepayment studies
include either an interest rate level variable (usually the 10-year treasury rate) and/
or a term structure variable to capture the slope of the yield curve. In addition to
the level of rates, option theory implies that volatility should also be important.
Other things equal, an increase in volatility should increase the value of the
prepayment option and thus reduce the likelihood that this option is exercised. In
this study, the variable BURNOUT implicitly captures rate volatility.

The decision to refinance involves implicit as well as explicit costs and these costs
may vary across borrowers. To account for heterogeneity several loan specific,
geographic and macroeconomic variables have been suggested in the literature.
Schwartz and Torous (1993) use a sixteen-factor proportional hazard model that
accounts for economic region, loan-to-value ratio, regional housing return and
volatility as well as the four variables mentioned above and lags of the preceding
variables. Other studies claim to document relationships between prepayment and
industrial production, lagged housing sales, other overall economic variables such
as GNP, employment and CPI, and loan-specific variables such as loan-to-value
ratios and credit scores (Peristiani et al., 1997). These factors are omitted in this
study in order to focus on the narrower problem of producing a practically useful
parametric model that utilizes non-parametric techniques.

� D a t a

The data consists of monthly observations on 30-year conforming fixed rate
mortgages (FRM) from the loan servicing records of Citicorp Mortgage, Inc.
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during the years 1992–1997. The origination dates of the mortgage loans range
throughout the entire period, and delinquent loans are excluded from the dataset.
Available data is limited to loan amount, origination date, coupon rate and
prepayment date. Exhibit 1 shows descriptive statistics. The data consists of about
60,000 loans, of which about 12,000 prepaid during the study period.

Exhibi t 1 � Descriptive Statistics

Number of loans: 59,226

Fraction prepaid: 20.82%

Observation period: 1992:1–1997:12

Note rate: 7.98%

Original loan size: $109,000

Note: These are 30-year fixed-rate mortgage loans.

Exhibit 2 shows the path of 30-year interest rates (based on the Freddie Mac
primary mortgage market survey) and monthly conditional prepayment rates.
Interest rates reached their minimum in late 1993, triggering a surge in
prepayments. Interest rates fell again to relatively low levels at the beginning of
1996 and at the end of 1997 after increasing during the 1994–1995 period. Exhibit
2 also shows the sample prepayment probability as a function of the date.
Prepayment probabilities are clearly dominated by the refinancing boom in late
1993 and early 1994, which coincide with the concurrent drop in interest rates.
Note that none of the loans in the sample were older than two years when the
1993 refinancing boom occurred.

An event history file was created from the original data set. An individual record
was created for each month of loan life, which contained a binary variable that
indicated whether the loan prepaid in that particular month or not. For every loan-
month record, the loan age (time in months since loan origination), a measure of
refinancing incentive (the natural logarithm of the coupon rate divided by the
market rate) and a measure of burnout (defined as the cumulative sum of non-
negative refinancing incentive) were computed. This produced roughly 2,000,000
observations.

Exhibit 3 shows descriptive statistics for the event history data set. The average
monthly prepayment probability is 0.63%, a number that is similar to values given
in other studies.10 The average spread is close to zero, however, a standard
deviation of 0.11 shows that the sample contains substantial variety in this
variable. For illustration, an observation in which the note rate is 10% above
market (e.g., a 7.7% rate in a 7% market) would yield a value of INCENT of
approximately 0.1. The average BURNOUT is 1.2, which might represent, for
example, a loan with a rate 10% above market for a period of twelve months. The
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Exhibi t 3 � Descriptive Statistics, Loan-Month Observations, Prepayment Events and Explanatory Variables

Mean Std. Dev. Min. Max.

INCENT a 0.013 0.11 �0.71 0.42

AGE (in months) 22.9 16.7 0 71

BURNOUT b 1.20 1.77 0.00 18.54

Notes: Total number of loan-months � 1,968,274; unconditional prepayment probability �

0.63%.
a Incent: Defined as natural log(mortgage rate/market rate).
b Burnout: Defined as sum of previous exposure of loan to positive values of INCENT.

range of burnout is heavily skewed, however, with the mode of the distribution at
zero and a maximum of 18.5. Loan age ranges from zero to the full length of the
observation period of seventy-one months, however, with increasing age the
number of observations declines sharply. This decline in the numbers of
observations with age occurs naturally given the data. Every loan generates an
observation of a loan at age one, but only loans that were originated in January
1992 and were still alive in December 1997 can yield an observation on a loan
at age seventy-one months.

� C o m p u t a t i o n a n d E m p i r i c a l R e s u l t s

B a s e l i n e P a r a m e t r i c S p e c i f i c a t i o n

We begin with a baseline parametric model. The well-known logit model is a
natural choice given the binary outcome data structure.11

Prob (P � 1�X ) � exp (B X )/(1 � exp(B X )), (3)it it it it it it

where X � X1t ,X2t, . . . XKt, representing k explanatory variables indexed by month
t, and Bi is the estimated effect of characteristic Xi on the probability that P � 1;
here, P � 1 if the loan prepaid in month t, P � 0, if not.

Several specifications were evaluated and the one shown in Exhibit 4 gave the
best model fit.12 The specification, which employs quadratic terms in both spread
and age, and a cubic term in spread, shows the expected signs and yields highly
significant coefficient values. The signs of the coefficients suggest the familiar S-
shaped response function. The coefficients on age and age squared suggest that
the prepayments initially increase with age then later decrease. Exhibit 5 shows
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Exhibi t 4 � Baseline Logit Specification

Variable Baseline

Constant �6.78
(0.05)

INCENT 6.40
(0.18)

INCENT2 17.96
(0.73)

INCENT3 �21.07
(3.00)

AGE 0.093
(0.003)

AGE2 �0.0012
(0.0001)

BURNOUT �0.058
(0.009)

Note: Standard errors in parentheses.

Exhibi t 5 � Conditional Prepayment Baseline Logit Model Mid-Level Burnout
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predicted prepayment probabilities for the logit model holding BURNOUT
constant at one and letting AGE and INCENT vary.

N o n - P a r a m e t r i c K e r n e l R e g r e s s i o n

Most applications require an equation (A-5)13 to be evaluated for a large number
of values because the results are not parameter estimates of a function, as in
conventional regression, but the numerical prepayment probability for one
particular value of the explanatory variables. Each evaluation of an equation
(A-5) requires the determination of the distances from the point for which the
conditional prepayment probability is calculated to all 2,000,000 loan-month
observations. These distances are then used to calculate the weights for all
observations. The requirement to repeatedly calculate distances and weights for
the entire data set explains why nonparametric regression is very computationally
expensive. To reduce computation time, the continuous variables were transformed
into discrete categorical levels. INCENT is transformed to take on fifty discrete
values and BURNOUT can take on twenty-eight values. AGE, of course, is already
discrete and can take on seventy-two values. Among the approximately 2 million
total loan-months, there are only about 11,000 unique combinations of variables.
Clustering according to these 11,000 combinations has the advantage that
distances and weights may be limited to each combination only, rather than for
each individual observation.

Equation (A-5) is employed to obtain the conditional estimate of the prepayment
probability using the baseline bandwidth given in equation (A-3).14 Exhibits 6
through 12 show the results evaluated for a dense grid of variable values. The
pseudo-surfaces in the exhibits show the conditional prepayment probabilities
letting two of the explanatory variables vary and holding the third constant.
Exhibit 6 shows a cut through the three-dimensional structure of prepayment
probabilities if age and spread (INCENT) are allowed to vary and burnout is held
constant at zero. For areas of the grid where the density of underlying loan-month
observations approaches zero the estimated prepayment probability is set to zero
in order to avoid highly biased estimations. The kernel regression provides
prepayment estimates for areas of the grid without observations, but those
estimates have a large standard error and are not meaningful. The exhibits only
show estimates of prepayment probabilities for combinations of variable values
close to those that have been observed in the past. Extrapolation of prepayment
probabilities to combinations never observed in the past should be undertaken
with caution.15

Exhibit 6 shows the prepayment surface holding burnout constant at zero. It
illustrates the highly nonlinear behavior of prepayment probabilities: below a
spread of 0.1, prepayment probability is essentially flat, but increases quickly for
values of INCENT above that threshold. The exhibit suggests that loans with zero
burnout need to be exposed to positive spread for some time before prepayment
probabilities increase. The exhibit also shows spikes in prepayment probability at
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Exhibi t 6 � Conditional Prepayment Zero Burnout

the edge of the pseudo surface, at low values of INCENT. These are examples
where local noise in the observations may lead to questionable estimates. They
could be avoided by more extensive smoothing (larger bandwidths), however, this
would reduce the ability of the kernel regression to detect local variations in
expected prepayment probabilities.

Exhibits 7 to 9 show the prepayment probabilities for increasing values of burnout.
The effect of age on prepayment probability varies with burnout. In particular, at
larger values of burnout, prepayment probabilities decrease with increasing age.
Exhibits 10 to 12 show prepayment probabilities with varying INCENT and
BURNOUT and holding AGE constant. Interestingly, the exhibit show little
evidence that the prepayment probability declines as BURNOUT increases, after
controlling for loan age, contrary to the conventional wisdom.

E n h a n c e d L o g i t S p e c i f i c a t i o n

The baseline model relies on two main variables, the refinance incentive (INCENT)
and seasoning. The specification takes these variables and subjects them to some
simple and intuitive transformations that reflect conventional wisdom about
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Exhibi t 7 � Conditional Prepayment Low Burnout

mortgage prepayments. The refinance incentive (INCENT) enters in its original
form, in addition, its square and cube are used in the baseline specification. This
transformation allows for an ‘‘S’’ curve in the prepayment response (i.e., a sharp
inflection followed by a gradual decrease in the rate of growth). The notion is that
mortgages that are ‘‘just in-the-money’’ have the greatest interest rate sensitivity.
Mortgages that are ‘‘out of-the-money’’ (coupon below market rate) and those that
are ‘‘deep in-the-money’’ are less interest rate sensitive.

As shown in Exhibit 4, the signs on the powers of INCENT (positive on the linear
and the square term, negative on the cube) are compatible with an S-curve.
Similarly, prepayment speeds generally increase with seasoning, but then level off.
This phenomenon is reflected, for instance, in the PSA ‘‘ramp.’’ To give the
specification flexibility to accommodate this seasoning behavior, a square term is
included next to the original seasoning variable (denoted ‘‘AGE’’) in the logit.
The positive sign on AGE and the negative sign on its square are compatible with
the existence of a ramp. The inclusion of the original burnout measure without
any further transformations completes the original baseline specification.
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Exhibi t 8 � Conditional Prepayment Mid-Level Burnout

The task is now to improve on this model. The kernel charts (Exhibits 6–9) show
the prepayment surface as AGE and INCENT are varied, holding BURNOUT
constant at a low level. Comparing the kernel surface to the prepayment speeds
implied by the baseline logit indicate two key differences between the actual
prepayment behavior as measured by the kernel and the baseline logit. First, the
kernel indicates that prepayment speeds increase at first but soon stabilize. In
contrast, the effect of seasoning in the baseline logit specification is that of an
arc: speeds increase at first and then decrease. A second discrepancy is the
interaction of the refinance incentive and seasoning. The kernel reveals that the
impact of the refinance incentive on prepayment speeds decreases as loans season.
One explanation for this phenomenon is the decreasing remaining loan term and
progressive loan amortization: given the same refinance incentive, a borrower with
a more seasoned loan has a smaller gain from refinancing. Intuitively, the borrower
has a shorter horizon over which to realize the savings from refinancing. This
pattern is even more pronounced for mortgages with 15-year amortization,
compared to the 30-year term loans used here. Because the decrease savings from
refinancing with loan age occurs much faster in 15-year loans than in 30-year
loans, this is a strong indication that this explanation holds. The weakening of the
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Exhibi t 9 � Conditional Prepayment High Burnout

refinance incentive over time is an empirical fact that the baseline logit
specification missed.

To overcome some of the shortcomings of the baseline logit specification in the
enhanced logit, piecewise linear variables are used instead of polynomials. The
original age variable is capped at sixty months and renamed AGEC. New variables,
AGE6 � max(AGEC-6,0) and AGE12 � max(AGEC-12,0), are constructed.
Estimating the logit specification with AGEC, AGE6 and AGE12 allows an
estimation of the age profile as a continuous function with independent slopes for
ages 0 to 6, 6 to 12 and 12 to 60. The slope for months 6 to 12 is equal to the
sum of the coefficients on AGEC and AGE6, the slope for the months 12 to 60 is
equal to the sum of AGEC, AGE6 and AGE12. This avoids the arc in the age
profile noted in the previous specification. To keep the specification symmetric,
we define INCENT04 � max(INCENT-0.04,0) and INCENT22 � max(INCENT-
0.22,0) to produce the S-curve. As a final innovation, we define an interaction
between the refinance incentive and seasoning. Interactions are often difficult
because they may have unintended consequences. In this application, we need
to restrict the interaction such that it does not produce an inversion of the
spread effect for highly seasoned loans, i.e. a case in which loans with greater
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Exhibi t 10 � Conditional Prepayment Age � 12

refinancing incentive prepay more slowly. Analysis of the kernel charts and the
baseline logit charts suggested the following interaction: INCENTAGE �
max(min(AGEC,24)*min(INCENT,0.1)-1,0). Finally, we add BURNOUT to the
specification, which is unchanged.

Exhibit 13 shows the model statistics while Exhibit 14 shows that the new
enhanced logit model implied prepayment surface much more closely matches the
corresponding kernel chart (Exhibit 6). All variables are highly significant.
Visually, the specification seems to work. The implied seasoning ramp is steep at
first, but levels out thereafter, as suggested by the kernel. In the first six months,
the probability of prepayment increases approximately by a factor of 1.44 every
month (exp(0.367) � 1.44). But after twelve months, the seasoning effect becomes
negligible. The very steep slope actually becomes slightly negative (0.3676 �
0.0798 � 0.2918 � �0.004), but the value is so small that it has little practical
effect. The coefficients on the INCENT variable have the classic S-curve shape:
for values of INCENT less than 0.04, the slope is 2.6. For values of INCENT
between 0.04 and 0.22, the slope increases to 2.6 � 7.1 � 9.3, beyond values of
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Exhibi t 11 � Conditional Prepayment Age � 24

INCENT of 0.22 the slope decreases to 2.6 � 7.1 � 5.5 � 4.2. The interaction
of INCENT and AGE has the expected negative sign, implying those more
seasoned loans are less rate sensitive. BURNOUT also has a negative sign,
suggesting that loans that previously passed up refinancing opportunities are less
likely to prepay; however, the strength of the effect is much smaller than one
would infer from the baseline specification.

A more complex logit model was constructed thanks to the insights gained from
the non-parametric regression. The appropriate interactions and age-dependent
splines were selected based on examination of the kernel pseudo-surfaces. Do
these changes produce a better model? The next section examines performance
compared to the non-parametric and baseline parametric models.

O u t - o f - S a m p l e P r e d i c t i v e A b i l i t y

Though the preceding discussion has emphasized the highly non-linear nature of
the prepayment function, introducing a new technique is only warranted if it has
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Exhibi t 12 � Conditional Prepayment Age � 36

Exhibi t 13 � Enhanced Logit Model

Parameters Estimates Standard Error

Constant �9.116 0.179

INCENT 2.629 0.200

INCENT04 7.080 0.354

INCENT22 �5.485 0.500

AGEC 0.368 0.034

AGE6 �0.292 0.010

AGE12 �0.292 0.010

INCENTAGE �0.185 0.029

BURNOUT �0.010 0.006



3 1 8 � L a C o u r - L i t t l e , M a r s c h o u n a n d M a x a m

Exhibi t 14 � Conditional Prepayment Enhanced Logit Model Mid-Level Burnout

better predictive capabilities than existing alternatives. Traditional measures of in-
sample fit such as R2 are not appropriate for a kernel regression estimator because
kernel regression estimators can be made to fit any data arbitrarily well. A better
test is superior out-of-sample predictive ability. An out-of-sample test for this
purpose was conducted using the standard holdout technique. The original sample
of mortgage loan observations was randomly divided into two subsamples of equal
size and one was used to estimate the kernel regression as previously described.
In addition, both the baseline logit and the enhanced logit were estimated using
the same subsample. The predictive ability of the kernel regression model and the
parametric alternatives were compared using the holdout sample.

Three distinct measures are used to compare predictive ability. The first is the
Kolmogorov-Smyrnov (K-S) statistic, which is defined as the maximum separation
of the cumulative density functions of the out-of-sample prepayment and non-
prepayment events. This is a particularly popular metric in the credit-scoring
arena. The K-S statistic of a model is calculated by assigning to each out-of-
sample prepayment event its estimated prepayment probability. The empirical
cumulative density function for these prepayment probabilities Y1, Y2, . . . , Yn is
defined as:



I m p r o v i n g P a r a m e t r i c P r e p a y m e n t M o d e l s � 3 1 9

J R E R � V o l . 2 4 � N o . 3 – 2 0 0 2

F (y) � (number of Y ’s less or equal y)/n, (4)p i

for all real numbers y. Then, each out-of-sample non-prepayment event is assigned
its estimated prepayment probability, and the empirical cumulative density
function Fnp(y) is constructed analogously. The K-S Statistic is defined as:

KS � max {�F (y) � F (y)�}. (5)y np p

The K-S Statistic measures how well the estimator separates the two possible
outcomes.16 A disadvantage of the K-S Statistic is that it does not penalize
inconsistent estimators. To prevent an inconsistent estimator from winning the
race, two additional goodness-of-fit measures akin to the R2 measure are used.
One is Efron’s R2, which is defined as:

n
2ˆ(y � F )� i i

i�11 � , (6)n
2(y � y)� i

i�1

where yi equals one in the case of prepayment and zero otherwise, i is theF̂
estimated prepayment probability and is the in-sample average of yi.17 Efron’sy
R2 will be equal to zero if the squared error of the estimator is as large as the
squared error of a naive estimator, which always predicts the sample mean. In
contrast, Efron’s R2 will equal unity for a perfect estimator, which correctly
estimates prepayment with probability one for all prepayments and prepayment
with probability zero for all non-prepayments.

A third measure is McFadden’s R2, which is defined as:

l11 � , (7)
l0

where l is the log likelihood function � l1 isn ˆ ˆ[y log F � (1 � y ) log(1 � F )],i�1 i i i i

the out-of-sample log likelihood of the estimated model and l0 is the out-of-sample
log likelihood for i � . As in the previous example, McFadden’s R2 will equalF̂ y
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Exhibi t 15 � Out-of-Sample Goodness-of-Fit Measures

Kernel Regression Baseline Logit Enhanced Logit

K-S Statistica 38.89% 33.98% 35.21%

Efron’s R2b 0.012 0.007 0.009

McFadden’s R2 c 0.095 0.059 0.079

Concordance 0.772 0.729 0.752

Notes: Kernel regression estimate and parametric alternatives.
a K-S Statistic: defined as the maximum separation of the cumulative density functions of the out-of-
sample prepayment and non-prepayment events.
b Efron’s R2: defined as 1 � , where yi equals one in the case ofˆn 2 n 2� (y � F ) /� (y � y )i�1 i i i�1 i

prepayment and zero otherwise, is the estimated prepayment probability, and where is the in-F̂ yi

sample average of yi.
c McFadden’s R2: defined as 1 � �1/�0, where � is the log likelihood function � ˆn [y log F �i�1 i i

i)], �1 is the out-of-sample log likelihood of the estimated model and �0 is theˆ(1 � y ) log (1 � Fi

out-of-sample log likelihood for .F̂ � yi
d Concordance: C , where t is sample size.�1 T� T � [(X X ) � (1 � x )(1 � X )]i,t t�1 i,t j,t i,t j,t

zero if the likelihood of the estimator does not exceed that of a naive estimator
always predicting the sample mean, and will equal unity for a perfect estimator.

The final measure is concordance, the familiar ‘‘c’’ statistic output by most
statistical packages when a binary outcome regression model is estimated. The
measure is related to the K-S Statistic inasmuch as it measures the difference in
ranking of the model’s prediction and a naive estimate. To calculate this measure,
each prepayment event in the sample is paired with each non-prepayment event
in the sample. The concordance measure is the fraction of pairs for which the
fitted prepayment probability of the prepayment event exceeds that of the non-
prepayment event. A perfectly predictive model has a concordance measure of
100%.

The results of the out-of-sample comparisons of the predictive abilities of the three
models are shown in Exhibit 15. The kernel regression model has the best
goodness of fit statistics across all measures. The enhanced logit model is second
in every measure and the baseline logit is last. If one interprets the R2 values as
linear measures, the improvement of the kernel regression estimate over the
parametric models is large compared with the difference between the parametric
models and a naive predictor, which always forecasts the sample mean. The
enhanced logit model improves on the baseline by all measures. Note that these
are out of sample results for an extremely large loan level categorical data set.
Even with the tremendous advances in computational speed, large-scale
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application of kernel regression estimation is still time consuming. The enhanced
logit model, however, offers a significant improvement and is computationally
efficient.

� C o n c l u s i o n

This article has presented non-parametric kernel regression as a technique for
estimating prepayments using loan level data. The high degree of non-linearity in
the relationships, and the large number of observations available in an event
history data format, favor the use of non-parametric techniques that are free of
both functional and distributional assumptions. As previously shown by Maxam
and LaCour-Little (2001), the approach shows superior out-of-sample predictive
capability when compared to conventional parametric regression. This suggests
that identification of small-scale perturbations in the prepayment function can
indeed increase predictive ability. Moreover, non-parametric tools can provide
significant enhancement to parametric models of the sort practitioners might
actually use in mortgage valuation.

As computer speeds continue to increase, similar techniques will become relatively
more attractive, perhaps allowing a greater number of factors to be included in
model specification. In addition to such technology-dependent extensions, we hope
to incorporate the simple prepayment model developed here into a more complete
Monte Carlo valuation framework.

� A p p e n d i x

K e r n e l D e n s i t y E s t i m a t o r s a n d N o n - p a r a m e t r i c
R e g r e s s i o n

The basic kernel estimator for estimating the joint density of a set of random
variables is:

t1
�1ƒ̂(x) � K(H (x � x )), (A-1)� it�H� i�1

of an unknown density ƒ(x) where x is a set of n-dimensional vectors x1,x2, . . . ,
xt , t is the number of observations, K(�) is an appropriate kernel function and H
is a bandwidth or smoothing parameter matrix. In words, the distance between an
arbitrary row or vector, x, is scaled by H and assigned a probability mass via the
K. The scaled average of these masses is the estimate of the joint density at the
given x. Intuitively, one may think of a kernel estimate as a standardized distance
between a point and every other data point, converted into a probability measure



3 2 2 � L a C o u r - L i t t l e , M a r s c h o u n a n d M a x a m

based on distance. Points close to the data receive relatively more probability mass
than those farther away. Adding each of these masses gives the kernel estimate.
This is similar to constructing a histogram where H is the bin width of the
histogram.

Research has shown that the choice of kernel function, K(�), is not nearly as
important as the choice of the smoothing parameter or bandwidth, H (Hardle,
1990; and Scott 1992). The kernel density estimate is affected by the properties
of the kernel, but due to the high frequency averaging process, various kernel
functions are nearly equivalent.18 The kernel should be a smooth, clearly uni-
modal, symmetric function (Hardle, 1990; and Scott 1992). Many standard density
functions fit these criteria. The Normal kernel is the most popular choice despite
its high computational overhead when compared to simple kernels such as the
Uniform kernel. Nonetheless, this study employs a multivariate Normal kernel as
a point of reference due to its familiarity:

Tn �x x
�K(x) � (2�) exp . (A-2)2 � �2

In contrast to kernel choice, optimal bandwidth is quite important to the estimator
efficiency. Fortunately, theoretical research has identified optimal bandwidths for
most popular choices of kernels. Scott (1992) shows that the optimal bandwidth
for the independent multivariate normal is:

�1 / 2 �1 / (n�4)Ĥ � diag(� t ), (A-3)*

where � is the variance/covariance matrix of the covariates or vector x, and n is
the number or dimension of the factors.19 Most standard kernel bandwidths can
be obtained by simply multiplying Equation (2) by an appropriate constant.20

Since the kernel estimates the joint density of the variables under consideration,
it is straightforward to obtain conditional and marginal densities using standard
results. The theoretical regression estimate, r(x), of a scalar Y given a vector X
of explanatory factors is:

� yƒ(x, y)dy
r(x) � E(Y�X � x) � � yƒ(y�x)dy � , (A-4)

� ƒ(x, y)dy

since ƒ(y�x) � and ƒ(x) � � ƒ(x, y)dy.
ƒ(x, y)

ƒ(x)
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Substituting in the appropriate kernel estimators and simplifying yields the
regression estimator:

t
�1K(H (x � x ))Y� i i

i�1
m̂(x) � E(Y�X � x) � , (A-5)

t
�1K(H (x � x ))� i

i�1

which is often called the Nadaraya-Watson estimator. H denotes the appropriate
bandwidth parameter matrix for the covariate vector, x.

Since the method relies exclusively on the data, its ‘‘denseness’’ or dimensionality
is very important. To be effective large data sets should be employed with as many
joint observations along the range of each of the variables as possible. Sparse
observations can produce biased estimates (the dimensionality problem). When
the data is sparse, the technique must extrapolate further and further distances in
order to obtain an estimate. Thus, it is very important that the variables jointly
cover as much of the feasible range as possible, but it is also important to realize
that joint observations in some areas may be economically unlikely or
impossible.21

� E n d n o t e s
1 The proper status of the GSEs in the economy is a topic of ongoing controversy. Recent

debate has focused on their level of risk exposure, their disclosure practices and their
accountability to shareholders.

2 Some small fraction of residential mortgage contracts, particularly in the sub-prime
segment, contains prepayment penalties, typically priced at 25–75 basis points in note
rate. Commercial mortgages, in contrast, customarily contain prepayment penalties.

3 The most recent casualty involving the valuation of mortgages is Homeside Lending,
Inc. This top ten U.S. mortgage lender was acquired by National Bank of Australia in
1997 for approximately $1.0 billion; in September 2001, the parent announced a write-
off of $1.2 billion to cover unanticipated losses in the valuation of mortgages and
mortgage servicing rights.

4 Each of the agencies was originally created by Congress as government agencies in
order to establish a national secondary market for government-backed mortgage
securities. Since that time each has evolved to become a privately owned corporation.
For example, Fannie Mae is currently the largest corporation in the U.S. when ranked
by assets.

5 For a general description of a typical Wall Street model estimated using mortgage pool
data, see Hayre, Chaudhary and Young (2000). Maxam and LaCour-Little (2001) reports
the functional form of the Citicorp model in use during 1992–1997, but not actual
parameter values.
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6 In the absence of transaction costs, the analogy with an option is not completely correct,
because in exchange for giving up the old prepayment option a refinancing borrower
obtains a new loan with its own prepayment option.

7 The kernel regression model was estimated using all three different measures of spread.
The estimated prepayment probabilities and the goodness-of-fit measures are largely
insensitive to the choice of the measure of spread.

8 The Public Securities Administration is now called The Bond Market Association.
9 For work on the role of borrower characteristics in determining prepayments, see Archer,

Ling and McGill (1996, 1997) and LaCour-Little (1999).
10 For instance, Mattey and Wallace (2001) report a weighted average monthly mortality

rate of about 1.0% for Freddie Mac pools issued from 1991 to 1994.
11 A slight change to the logit distributional assumption produces a model that is equivalent

to the proportional hazard model previously mentioned and often used by academic
researchers in the field.

12 A base model with linear variables in both age and spread was evaluated, along with a
model that uses squared values of age and spread as variables in addition to those of
the base model, and a third model that adds cubed spread as a variable. The specification
with the best goodness-of-fit measures was selected.

13 Equations discussed in this section may be found in the Appendix.
14 The kernel bandwidth determined by Equation (2) is 0.02 for spread, 2.4 for age and

0.29 for burnout. Comparing the size of the kernel with the standard deviations of the
explanatory variables shown in Exhibit 2 shows that the size of the kernel is small
compared with the support of the variables.

15 Kernel regression calculates a weighted mean of local observations. However, if no local
observations are available, a gaussian kernel will use a weighted mean of the closest
neighbors, which can be arbitrarily far away, as a conditional expectation.

16 See Law and Kelton (1982). Exhibits 10 to 12 show the empirical c.d.f.s for the three
models.

17 For an overview of goodness-of-fit measures of dichotomous models see Estrella (1998)
and Amemyia (1981).

18 Though an abuse of terminology, a type of ‘‘Central Limit’’ obtains.
19 Optimal bandwidth depends on a number of factors, especially the density of

observations. A computationally intensive test whether it is appropriate to use Equation
(2) to determine the bandwidth can be conducted with cross validation using the leave-
one-out method. This method evaluates the sum of variance plus bias for a given
bandwidth by calculating the mean squared error for all observations in the sample,
where the conditional expectation y for a given observation is calculated using all
observations but the observation for which the conditional expectation is calculated.
Searching over a grid of bandwidths for minimum squared error yields the optimal
bandwidth (see Hardle, 1990). This method of cross-validation was used to determine
the optimal bandwidth for the kernel regression using the data set. Due to the size of
the data set, the optimal bandwidth derived using cross validation turned out to be very
close to the result derived using Equation (2). Because cross validation requires
exorbitant computation time, and determining the bandwidth using Equation (2) was
shown to yield acceptable results in a similar context, Equation (3) was used in this
study.
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20 For example, Scott (1992) gives an equivalent smoothing factor of 1.74 for equating the
optimal Normal kernel bandwidth to the optimal Uniform kernel bandwidth.

21 For example, in the empirical work here the combination of high burnout and low
mortgage age is extremely unlikely.
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