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Abstract. This paper examines the combined effects of multicollinearity, parameter
stability, and alternative function forms in hedonic regression models. The results
indicate that the significance and stability of the regression coefficients as well
as prediction accuracy are sensitive to the choice of functional form and estimation
technique. In certain respects nonlinear models proved to be more effective than
linear models and ridge regression techniques were generally superior to OLS
estimation. Since no single estimation technique or functional form was superior
in all respects, the appraiser may have to choose between minimizing the average
prediction error or maximizing prediction stability.

Introduction

A number of articles describe the application of multiple regression analysis (MRA)
techniques to real estate appraisal (Bruce and Sundell 1977; Mark and Campbell 1983). In
general most researchers have found that while MRA is an appropriate tool for appraisal,
the presence of multicollinearity makes it difficult to estimate the true hedonic price of individual
property characteristics. Moreover, the forecasting ability of MRA techniques is seriously
limited if the pattern of multicollinearity among the regression variables changes over time
(Reichert and Moore 1986). Furthermore, many statistical appraisal models assume a linear
or additive relationship between selling price and a predetermined set of housing characteristics.
Empirical evidence suggests that a nonlinear relationship may be more appropriate, and that
use of the linear form may introduce a misspecification problem in identifying the true
relationship between selling price and housing features. On the other hand, researchers such
as Quigley (1982) failed to identify the optimal functional form using common assumptions
regarding utility theory.

The purpose of this study is to improve the accuracy and reliability of the statistical appraisal
process by simultaneously addressing the issues of 1) multicollinearity, 2) the temporal stability
of estimated parameters, and 3) alternative functional forms in the estimation of hedonic
regression models for single-family homes. While each of these issues has individually been
addressed in previous studies, the current paper is the first to consider all three issues
simultaneously using a single set of data. The stability of the regression parameters has
important implications for the appraisal process because hedonic prices serve as adjustment
factors in the sales comparison approach. If the regression parameters or adjustment factors
are not stable, appraisers cannot confidently use the same adjustment factors over time.
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This study examines how the temporal stability of regression parameters is affected by different
estimation techniques and alternative functional forms.

Moore, Reichert and Cho (1984) and others have shown that ridge regression (RR) methods
can be used to reduce the adverse effects of multicollinearity in linear models. But their
study made no attempt to consider the nonlinear specification of the hedonic model in applying
ridge regression techniques. This study focuses on identifying the best functional form and
estimation technique in the presence of multicollinearity. To accomplish this, ridge regression
results are presented along with ordinary least square (OLS) results using an identical sample
of housing market transactions collected over a five-year period. Three alternative functional
forms are considered: one linear and two nonlinear specifications. Conceptually, a nonlinear
model is superior to a linear model because a nonlinear model of the Cobb-Douglas form
allows for the possibility of diminishing marginal price effects.! Hence, this study provides
a direct comparison of (1) OLS and RR techniques and (2) linear versus log-linear and semi-
log models.

Theoretical and Empirical Models

Ridge Regression

The presence of extensive collinearity among regressor variables often generates highly
unstable and illogical OLS results.2 Consequently, to draw firm conclusions about specific
coefficients, one must adjust for the presence of collinearity by altering either the underlying
data and/or the standard regression procedure. One promising approach described by Belsley,
Kuh and Welsch (1980) is ridge regression.> Ridge regression is a modified squared-error
estimation technique. The ridge estimator:

BE)=(XX+k)"' XY foro<k<1 (1)

employs the single ridge parameter k and is a biased estimator. The ridge estimator is similar
to the ordinary least squares estimator, B, except that the main diagonal of the correlation
matrix is augmented by a small positive quantity k, where k is an indexr of bias. While the
ridge estimator, B(k), is biased, its variance is generally smaller than the variance of the OLS
estimator, making the ridge estimator less prone to yield estimates with improper signs or
unstable magnitudes.

Anderson (1979) contends that if the pattern of collinearity among the explanatory variables
does not change over time, then B(k) and B become equally good estimates. Alternatively,
if the pattern of collinearity changes over time, OLS estimators may not prove as accurate
as those of ridge regression. In their study, Moore, Reichert and Cho (1984) found that
the pattern of collinearity was in fact unstable over time and that ridge regression techniques
provided more accurate and stable results than OLS over a five-year estimation period (1975-
1979). The models in the current paper were estimated using the same set of data. This
study applies linear and nonlinear ridge regression to the same data in hopes of achieving:
1) greater consistency in the size of the estimated hedonic prices over time, 2) a reduction
in the incidence of improperly signed coefficients, and 3) improved forecast accuracy.

When estimating a ridge regression model, the researcher must select an “optimal” k-value
that produces the maximum degree of orthogonality (independence) in the regressor set while
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introducing a minimal amount of bias in the estimation process. The authors initially employed
the “ridge trace” approach which seeks to identify the minimum value for k that stabilizes
the size of the regression coefficients for all three models (linear, log-linear and semi-log).
This produced a minimum acceptable k-value of approximately 0.30 for the linear model and
ak = 0.20 for the nonlinear models. (See Appendix A for the ridge trace for selected variables.)
The trace approach is subjective by nature and leads to a stochastic determination of k since
the plotted standardized coefficients are stochastic estimators.

Vinod (1976) suggests two alternative heuristic approaches to selecting k such that the
reduction in variance outweighs the error introduced by the biasing factor, generating a
reduced mean square error of the forecast. Vinod first recommends the use of the Index
of Stability of Relative Magnitudes (ISRM).¢ The second approach is called the Numerical
Largeness of More Significant Regression Coefficients (NLMS). In the present study both
the ISRM and NLMS methods, like the trace approach, yielded an optimal k of 0.30 for
the linear functional form and 0.20 for both nonlinear models.

Nonlinear Model

As previously mentioned, nonlinear hedonic regression models are superior to linear models
on both practical as well as theoretical grounds. For example, on a pragmatic level, a log
transformation often causes the distribution of the dependent variable and the estimated
residuals to more closely approximate normality. At the theoretical level, nonlinear models
are more appropriate when data interdependences (i.e, non-zero cross partial derivatives)
exist among the regression set. Two nonlinear models are estimated. The first is a composite
double-log and semi-log (i.e., Cobb-Douglas/exponential) model as indicated below:

Theoretical Model:

Y= (exp alDl + (12D2 +..+ amDm) . Xlﬁlxzﬁz Xpo. (2)
A
Estimation Model:
ny= alDl + azDz +..+ amDm + Bllnxl + leYIXZ +...+ Bp’ﬂxp. (3)

where

D; = housing characteristics with a dummy variable specification such as the
existence of a fireplace, central air conditioning, etc. (i =1 ... m)

X; = continuous housing characteristics such as square footage, age of house,
etc. i=1...p)

Y = actual selling price.

a;, B; = represent the regression coefficients (hedonic prices) for the dummy
and continuous variables respectively.

exp = the base of the natural logarithm.

FALL 1987



4 THE JOURNAL OF REAL ESTATE RESEARCH

The use of the double-log form with respect to the continuous variables allows for increasing,
decreasing, or constant returns to scale since the parameter estimates are direct elasticity
coefficients. For example, a B8 < 1 suggests a diminishing marginal price effect. The use
of the semi-log form with respect to the dummy variables allows certain categorical housing
characteristics to be absent without forcing the selling price to zero. More importantly, the
anti-log of the parameter estimates for the dummy variables reflects the expected proportionate
increase in price when a housing feature is present compared to a house not having the
indicated feature.

The second nonlinear functional form is an adaptation of the first model and generates
a semi-log estimation equation.

Theoretical Model:

expY = (exp @1Dy + oDy + ... + oDy . Xlﬁlxzﬂz Xpﬁp_ (@)

Estimation Model:
Y= O!lDl + azDZ +...+ amDm + Bllnxl + lean . BplnXp. (5)

As discussed before, a semi-log model allows for proportional rather than absolute dollar
price effects, which is often more appropriate when dealing with a wide range of housing
values. A more detailed discussion of alternative functional forms is provided by Colwell,
Cannaday and Wu (1983).

The Database

The data for this study consisted of a random sample of 860 single-family home sales
reported in the annual sales books of the Multiple Listing Association (MLA) of Fort Wayne,
Indiana. This sample was drawn over the five-year period, 1975-1979, from the population
of homes sold in the northeast quadrant of the city. The northeast quadrant represents
a wide cross-section of socioeconomic lifestyles and residential dwellings, including older homes
located near the downtown area and newer houses in the suburbs. These homes encompass
the full spectrum of lot sizes, structural design, and household amenities.

All models were estimated using the inflation-adjusted selling price of single-family homes

as the dependent variable. (It is necessary to adjust the selling prices for inflation because
the objective of the study is to compare the stability of the regression coefficients over time.)
The explanatory variables are locational and physical characteristics, and numerous household
amenities that could likely influence the final selling price. The following twenty variables
were used to describe each property.
Locational Variables To quantify the impact of location on market value, two dummy variables,
WDD, and ADDITION, were considered. WDD was included under the premise that homes
located on wooded lots and those immediately adjacent to forested areas could likely command,
ceteris paribus, a greater price. Furthermore, local realtors were asked to categorize the quality
of various additions and neighborhoods as being excellent (AD1), good (AD2), average (AD3),
and poor (AD4). Thus, the model includes four locational dummy variables (WDD, AD1,
AD2, AD4) with AD3 serving as the base of the ADDITION variable.
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Structural Variables In an effort to capture the unique structural characteristics of a property,
fourteen distinct variables were employed in the model. AGE of the house, measured in
years, was included as a crude proxy of condition. Furthermore, a dummy variable, NEW,
was included to reflect the value of a buyer-decorated or buyer-designed home plus the extra
psychological advantages that a new house might provide the buyer. The categorical variable
BASEMENT identified whether the home has a basement (either full or partial) or not. A
variable describing the age (in years) of the present heating system (AGHT) was included.
The physical dimensions of the living area, garage space, and lot size were all measured
in square feet by the variables SQFT, GRGE, and LTSZ, respectively. Construction style was
initially identified as either ranch, two-story, or other (tri-level, Cape Cod, duplex, etc.) by
the categorical variable STYLE. STYLO is a dummy variable with 1 for other styles and 0
for ranch and two-story houses.s A similar variable, SIDING, indicated whether the exterior
construction material was wood, aluminum, masonry, or some combination of these materials.
Variables designed to measure the allocation of living space within the home included the
total number of bedrooms (BDRM) and the total number of bathrooms (BTHS).

Household Amenities Dummy variables were employed in the model to capture the market
value of various household amenities. For example, the variable CTAR designated whether
or not the house had built-in central air conditioning. FRPL indicated the presence or absence
of a built-in fireplace. A built-in dishwasher (DSHW) was viewed as a proxy variable for
a new or remodeled kitchen.

Inflation As previously mentioned, to eliminate the influence of inflation during the five-
year period, the actual selling price of the home was adjusted by dividing the selling price
by the price index of new one-family houses (sold) published by the U.S. Department of
Commerce, Bureau of the Census. A final regressor variable, MNTH, indicating the month
of sale, was included to estimate the average monthly rate of property appreciation within
a given year.

Statistical Results

Exhibits 1-3 report the OLS regression results for the linear and two nonlinear models.
Exhibits 4-6 present comparable results using ridge regression. Exhibit 7 is a general summary
of the OLS and ridge regression results with a variety of prediction accuracy statistics included.
(Since the dependent variables have different values in two of the equations, R2 alone is
not the most appropriate measure of goodness of fit for comparison purposes.)

OLS Results

A comparison of the statistical significance for individual regression coefficients (Exhibits
1-3) indicates that the double-log nonlinear model yields a greater number of coefficients
significant at the 5% level. As shown in Exhibit 7, out of 100 possibly significant regressor
coefficients (5 yearly models times 20 variables per year), the linear model reported only
53 significant coefficients; the semi-log model generated 50 significant coefficients, while the
double-log model reported 62 significant coefficients. Furthermore, the estimated results of
the linear model shown in Exhibit 1 indicate that the lot size variable (LTSZ), for example,
is insignificant for three out of five years. As shown in Exhibit 2, however, the double-
log model reports that the variable is significant for all years. A comparison of coefficient
stability measured by the coefficient of variation indicates a slight margin of superiority for
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EXHIBIT 7
Coefficient Stability and Predicting Accuracy
for the 1975-79 Estimation Period

Exhibit 1 Exhibit 2 Exhibit 3 Exhibit 4 Exhibit 5 Exhibit 6

Estimation method oLs OLS oLs RR RR RR
Functional form Linear Log-Linear Semi-Log Linear Log-Linear  Semi-Log
# of significant 53 62 50 74 64 62
coefficients

{maximum of 100)

# of correctly 86 82 80 96 90 92

signed coefficients
{maximum of 100)

Average C.V. for 107.4 94.9 835 395 733 1045
all regression

coefficients (%)

Average R2 for all 912 901 885 891 881 867
years (1975-79)

Average 9.7 109 116 95 114 114
prediction error®

Average C.V. of 103.2 816 86.8 934 80.6 85.6
prediction errors (%])°

Chow-Test F-Value® 6.39 6.30 6.13 465 5.05 5.20

8Average absolute percentage error (1975-79)
bAverage coefficient of variation of absolute percentage errors (1975-79)

The critical F-values at the 1% and 5% levels of significance for a variable with 21 and 806 degrees of
freedom are approximately 1.94 and 1.60, respectively.

the double-log model. (The coefficient of variation is the standard deviation of the yearly
regression coefficients divided by their mean.) For example, for 8 out of the 20 regressor
variables, the double-log model generated the smallest coefficient of variation. This is
particularly true for the lot size variable (LTSZ) where the coefficient of variation for LTSZ
for the double-log model is only half the size of the coefficients reported in the other two
models (.28 versus .95 for the linear model and .28 versus .59 for the semi-log model). On
the other hand, the double-log model generated only marginal improvement in the temporal
stability of the square footage variable (SQFT).

Ridge Regression Results

The empirical results using the ridge regression approach are reported in Exhibits 4-6
and summarized in Exhibit 7. As shown in Exhibit 7, ridge regression generated a larger
number of correctly signed coefficients than OLS for every functional form. A comparison
of the linear OLS and the linear ridge regression results (Exhibit 1 versus Exhibit 4) shows
adramatic improvement in the level of statistical significance in the ridge regression coefficients:
the number of significant coefficients over the five-year period increased from 53 to 74.
Coefficient stability in the linear ridge model was also superior to the linear OLS method,
with 17 out of the 20 variables in the ridge model showing a smaller coefficient of variation.
In many cases, the improvement in stability was quite pronounced, as can be seen by the
results for the number of bedrooms (BDRM), age of the heating system (AGHT) and the
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proxy for a remodeled kitchen (DSHW). Furthermore, the mean of the coefficients of variation
is 107.4% for the linear OLS model compared to only 39.5% for the linear ridge regression
model.

Little improvement in the number of significant variables is shown in Exhibits 2 and 5
for the double-log ridge model compared to the double-log OLS results (62 versus 64). On
the other hand, the double-log ridge regression model compared to the double-log linear
model produced smaller coefficients of variation in 14 out of 20 cases. As shown in Exhibit
7, the average coefficient of variation is 94.9% for the double-log OLS model and 73.3%
for the double-log ridge model. A comparison of the total number of significant variables
using ridge regression indicates no improvement for the double-log ridge model compared
to the linear ridge model (Exhibit 4 versus Exhibit 5). However, the double-log ridge model
shows more significant and stable coefficients for several critical continuous variables such
as LTSZ and SQFT.

In the semi-log functional form, the ridge regression model generated 62 statistically
significant coefficients compared to only 50 for the OLS semi-log model (Exhibit 3 versus
Exhibit 6). Furthermore, for 14 out of the 20 regressor variables the semi-log ridge regression
model generated a smaller coefficient of variation than the semi-log OLS model. When the
double-log ridge regression model is compared to the semi-log ridge regression model (Exhibit
5 versus Exhibit 6), the double-log specification resulted in more significant and stable
coefficients.

The preceding discussion is based upon examination of the results for individual regressor
variables. The F-test developed by Chow (1960) was employed to more formally test the
stability of the annual regression models overtime. Acceptance of the null hypothesis would
suggest that the yearly regression models are drawn from the same underlying population
and hence the annual data could be pooled to estimate a single equation. Rejection of the
null hypothesis would call for the estimation of separate annual models. The Chow-test results
presented in Exhibit 7 indicate that the null hypothesis should be rejected at all reasonable
levels of statistical significance for each of the six models. The implication is that annual
models are appropriate and the researcher should expect to see the hedonic price (regression
coefficients) change over time.

While these results provide evidence to support the log-linear specification, a more powerful
and conceptually more appropriate test of the optimal functional form should be based on
a variety of functional forms in an unconstrained multivariate framework such as Box-Cox
transformations.

Box-Cox Functional Form Approach

Since hedonic price equations represent reduced-form models reflecting both demand and
supply factors, the optimal functional form is difficult to identify on purely theoretical grounds
(Halvorsen and Pollakowski 1981 and Quigley 1982). For the three functional forms studied
in this paper, the adjusted coefficient of determination (R2) cannot be used to choose the
best specification of the model because the dependent variable is not the same for all models.
The dependent variable is the natural log of selling price for the log-linear model and the
actual selling price for other two models. The Box-Cox transformation permits us to choose
the best functional form empirically in an unconstrained multivariate framework. The Box-
Cox transformation was performed to test whether the log-linear model truly represents
the most appropriate functional form.
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The Box-Cox procedure employs a transformation of both the dependent and independent
variables of the following general form:

where V represents the untransformed regression variables and Aj, Ag represents the
“functional form specification coefficients” for the left-hand side (dependent) variable and
right-hand side (independent) variable, respectively.6 Since it can be shown that lim ) _.q
[(VA - 1) | Al = In V, the double-log functional form is regarded as a special case with Af
= AR = 0. The semi-log form is also a special case with A; =1 and Ag = 0. When both
A; and AR are equal to one, the linear functional form is specified. While it is possible to
obtain maximum likelihood estimates for the models directly, a more common technique
is to obtain the concentrated likelihood function that depends upon the values of A and
AR and then conduct a grid search over reasonable values of A} and AR to obtain the global
maximum likelihood estimates for Aj and Ag (see Judge 1980). A confidence region can then
be developed around the maximum likelihood estimates for Aj and AR using the x2 distribution
since, for large samples, twice the difference in the logarithmic likelihood between the null
and alternative hypothesis follows a x2 distribution (Halvorsen and Pollakowski; Judge). Thus
a [100 (1-a)] percent confidence region includes all functional form parameter estimates (A}
and AR) which conform to the following inequality: optimal max log likelihood (A;*, Ag™)
- max log likelihood (Af, AR) < ¥ X(%) (a) where A} * and AR* represent the estimated optimal
maximum log likelihood parameters. Two degrees of freedom are used because the test involves
two constrained parameters (A; and Ap).

As mentioned above, the procedure to choose the best functional form requires a grid
search for optimal values of A; and Ag that maximize the logarithmic likelihood function
(Colwell and Cannaday 1985). Data for 1975 were used to conduct the grid search with
values of Aj and AR ranging from -1.0 to 1.0. Since the Box-Cox transformation cannot
be performed for dummy variables and other independent variables with zero values, these
variables were not transformed.” To simplify the analysis, AR was restricted to be equal
for all continuous independent variables. A} was allowed to assume its own value, independent
of Ap, to identify the optimal combination of A} and Ag. The optimal maximum value of
the log likelihood was obtained at A; = 0.2 and AR = 0.2. The values of the log likelihood
for each of the three functional forms are given below.

Difference
Log From
Functional Form AL AR Likelihood Maximum 1% x2 (5%)2
1. Linear 1 1 -1305.07 15.87b > 2.995
2. Semi-Log 1 0 -1318.36 29.16 > 2.995
(Log on right side)
3. Log-Linear o] 0 -1289.80 0.60 < 2.995
(double-log)
Optimal Maximum 0.2 0.2 -1289.20

aX2 Value consistent with a 95% confidence region.
bEor example, 15.87 = -1289.20 (optimal max log likelihood) - (-1305.07) (linear log likelihood).
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We can test whether each model is significantly different from the optimal model where
Ap = 0.2 and AR = 0.2. The test can be performed by constructing a confidence region
such that [maximum log likelihood (0.2, 0.2) - maximum log likelihood (Aj, AR)] < ¥ x%
(a), where o is the level of statistical significance employed in the test. If the log likelihoo
value associated with A; and AR satisfies the inequality, we accept the null hypothesis that
the model is not significantly different from the optimal model. The x2 value at the 5%
significance level with two degrees of freedom is 2.995. Hence, the null hypothesis is accepted
if the difference between the estimated log likelihood and the optimal maximum log likelihood
is less than 2.995. As indicated in the table above the null hypothesis is rejected for all models
except the log-linear model. That is, only the log-linear model yields a log likelihood that
is not significantly different from the optimal maximum value of the log likelihood. This
result strongly supports our initial conclusion that the log-linear model is the more appropriate
functional form.

Forecast Accuracy and Reliability

In addition to the degree of temporal stability and level of statistical significance associated
with the regression coefficients, appraisers are concerned with the average accuracy and
stability of their statistical forecasts. To test each model’s ability to forecast as much as a
year into the future, the regression coefficients estimated using data for a given year were
used to forecast the value of homes sold during the following year. The price forecasts made
using the previous year’s regression coefficients were then compared to their actual selling
prices.® Four annual forecast comparisons (1976-1979) were possible. The average absolute
percentage error and the average coefficient of variation (C.V.) for each of the six models
are presented in Exhibit 7, along with summary statistics relating to coefficient stability.

Using the average absolute percentage prediction error as our measure of accuracy, the
linear ridge regression model resulted in the smallest average error (9.5%) closely followed
by the linear OLS model (9.7%). In terms of prediction stability, the linear ridge model yielded
a somewhat smaller C.V. than the linear OLS model (93.4% vs. 103.2%). The next most
accurate model is the log-linear OLS specification (10.9%), which also produced one of the
lowest coefficients of variation (81.6%). As previously mentioned, the linear ridge regression
model generated the largest number of statistically significant and properly signed regression
coefficients. Furthermore, as indicated in Exhibit 7, the average C.V. for all the regression
coefficients was by far the smallest for the linear ridge model (39.5%).

On the other hand, the reliability of the forecast, as measured by the average C.V. of
the prediction errors, was better with ridge regression than with OLS for every functional
form. Furthermore, the log-linear specification proved to generate more stable forecasts in
both the OLS and ridge regression models. The log-linear model also generated the largest
number of significant coefficients among the three OLS specifications.

Conclusions, Implications and Suggestions for Further Research

This study indicates that the significance and stability of the regression coefficients as
well as average prediction accuracy are sensitive to the choice of the specific functional form
and estimation technique. The results suggest that appraisers may be forced to choose between
minimizing the average prediction error or maximizing prediction stability. Thus, there is
no single estimation technique or functional form that is consistently superior in all aspects.
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That is, the intended purpose of the appraisal may be a critical factor in selecting the optimal
functional form and estimation technique. For example, if the primary purpose of the analysis
is for tax assessment, assessors may likely be more concerned with prediction stability given
their traditional emphasis on tax equity.

On the other hand, the individual fee appraiser deals with a single property at a given
time and may be more concerned with prediction accuracy. The appraiser must carefully
identify his own unique forecasting needs. To illustrate, while this paper finds that ridge
regression techniques are superior to OLS in terms of forecasting stability, the OLS model
may be a good choice for forecasting accuracy. In other words, the log-linear ridge regression
model may be more appropriate for the tax assessor dealing with equity issues covering
a large number of properties and having to forecast tax assessments perhaps several years
into the future.

A caveat is in order here. The appraiser must keep in mind the limitations of his data
and his ability to effectively explain and justify his procedures to others. The more complicated
the model the more difficult it may be to interpret. For example, ridge regression requires
the appraiser to estimate the optimal biasing factor (k) and Baynesian regression requires
the identification of appropriate statistical priors.

In addition, if the appraiser is using small data sets he may want to consider the use of
rank regression techniques (Cronan, Epley and Perry 1986). On the other hand, if ample
data is available the appraiser may want to consider a segmented regression approach that
subdivides the properties by price range or area/income level. Other possible techniques might
include adaptive feedback and Baynesian regression. Adaptive feedback uses the forecasting
residuals to refine the regression coefficients to maximize within-sample forecast accuracy.
Baynesian regression uses information regarding the prior distribution of the estimated
coefficients and allows for direct nonlinear Gauss/Newton estimation techniques. Furthermore,
other nonlinear functional forms should be explored in the future. The purpose of the current
paper was to evaluate three alternative functional forms. The future researcher may want
to identify the optimal functional form in a more general sense by estimating the Box-Tidwell
transformation in an unconstrained format that would allow each independent variable to
have a unique lambda and hence its own unique functional form.
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APPENDIX B
(Results of ISRM and NLMS)
Table A
Index of Stability of Relative Magnitudes (ISRM)
(Linear)

K 75 76 77 78 79
0.00 18.04 18.35 1379 16.92 16.41
0.05 8.82 8.37 7.59 8.48 8.54
0.10 5.25 491 481 5.03 5.08
0.15 3.47 3.28 3.30 3.29 3.30
0.20 2.45 237 237 229 2.30
0.25 1.83 1.81 1.77 1.68 1.69
0.30" 1.42 1.45 1.36 1.29 1.31
0.35 1.16 1.20 1.07 1.03 1.06
0.40 0.99 1.04 0.88 0.86 0.90
0.45 0.87 0.92 0.74 0.76 0.80
0.50 0.81 0.85 0.64 0.70 073
*Optimal k-value

Table B
Index of Stability of Relative Magnitudes (ISRM)
(Log-Linear)

K 75 76 77 78 79
0.00 2862 41,02 30.81 52.32 46.77
0.05 10.95 11.74 11.81 13.29 11.90
0.10 5.87 5.68 6.08 573 551
015 3.66 348 3.64 3.21 3.28
0.20" 252 247 242 217 2.30
0.25 1.87 1.94 1.76 1.70 1.81
0.30 1.49 1.65 1.38 1.49 1.55
0.35 1.27 1.49 117 1.40 1.41
0.40 1.14 1.40 1.05 1.38 1.34
0.45 1.07 1.36 0.99 1.40 1.32
0.50 1.05 1.36 0.97 1.44 1.32

*Optional k-value
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Table C
Numerical Largeness of More Significant Regression Coefﬁcnent (NLMS)
(Linear)

K 75 76 77 78 79
0.00 0.93165 0.92145 0.92932 0.93031 0.96299
0.05 0.96811 0.96471 0.96400 0.96442 0.97939
0.10 0.98493 0.98459 0.98157 0.98213 0.98947
0.15 0.99330 0.99396 099117 0.99162 0.99506
0.20 0.99734 0.99799 0.99616 0.99639 0.99795
0.25 0.99902 0.99918 0.99841 0.99852 0.99922
0.30" 0.99939 0.99886 0.99906 0.99908 0.99955
0.35 0.99902 0.99775 0.99878 0.99873 0.99934
0.40 0.99826 0.99625 099798 0.99804 0.99885
0.45 0.99730 0.99460 0.99693 0.99705 0.99821
0.50 0.99625 0.99294 0.99577 0.99595 0.99751
*Optimal k-value

Table D

Numerical Largeness of More Significant Regression Coefficient (NLMS)
(Log-Linear)

K 75 76 77 78 79
0.00 0.93028 091144 0.88952 0.77599 0.89048
0.05 0.97309 0.96859 0.94895 0.94096 0.96597
0.10 0.98894 0.98901 0.97811 0.98107 0.98768
0.15 0.99488 0.99500 0.99098 0.99044 0.99380
0.20* 0.99675 0.99575 -0.99582 0.99168 0.99419
0.25 0.99675 0.99458 0.99688 0.99028 0.99247
0.30 0.99592 0.99280 0.99624 0.98802 0.99015
0.35 0.99477 0.99078 099491 0.98545 0.98784
0.40 0.99353 0.98885 0.99338 0.98303 0.98577
0.45 0.99234 0.98710 0.99187 0.98087 0.98401
0.50 0.99124 0.98556 0.99039 0.97901 0.98256

*Optimal k-value

Notes

! When estimating a nonlinear model of the Cobb-Douglas form, logarithmic transformations of variables
on both sides of the equation permit the researcher to use standard linear regression techniques. The
log transformation also reduces the adverse impact of heteroscedasticity.

2 In a strictly theoretical sense collinearity does not bias the estimated regression coefﬁcxents but it
does increase their variance. That is, if the regression coefficients generated from a large number of
samples drawn from the same population were averaged together, the mean value of the coefficients
would equal the true population parameter, even in the face of severe multicollinearity. But from a
practical perspective the researcher is normally dealing with a single estimation sample where the increased
variance is likely to generate unstable, statistically insignificant, and possibly illogically signed regression
coefficients.

3 One of the earliest discussions of using ridge regression to handle multicollinearity (MC) dates back
to Hoerl and Kennard (1970). Over time a variety of other methods have been proposed to handle
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the problems associated with MC. One approach frequently employed involves deleting the collinear
variables. This is often not a true corrective measure since the researcher is tempted to respond to
a symptom of the problem (i.e., low significance levels or inappropriate signs) and consequently may
delete a variable that conceptually belongs in the model. This last condition may introduce a misspecification
problem into the model. On the other hand, Belsley, Kuh and Welsch (1980) argue for the introduction
of additional data to improve the statistical properties of the data set. Unfortunately, the researcher has
no assurance that the new data, if available, would prove to be statistically independent. Morton (1977)
suggests the use of factor analysis to screen real estate data prior to the use of OLS. Using factor
analysis the ill effects of MC are reduced since only one variable from each factor or group of related
variables is permitted to enter into the regression. While factor analysis sounds appealing, it introduces
estimation problems of its own. For example, selecting only one variable to represent a group of similar
variables makes it impossible to identify individual hedonic prices for each housing characteristic and
may introduce specification errors similar to those encountered using variable deletion techniques.

Zellner (1971) argues in favor of using Baynesian estimation procedures to handle ill-conditioned data
where the researcher possesses subjective prior information regarding the parameters to be estimated.
Earlier, Theil and Goldberger (1960) advanced a related technique called mixed-estimation that incorporates
auxiliary information into the ill-conditioned data matrix. Unfortunately, both of these techniques require
extensive additional information which is generally not available. Finally, Mark (1983) advocates the
use of principle component regression (PCR) which has much in common with factor analysis, with
one important difference. Using PCR the researcher retains the entire set of variables in the model,
with individual components constructed in a mutually orthogonal manner. While PCR is a biased estimator,
there exists the potential for a reduction in the mean square error similar to ridge regression. In actual
practice when PCR is applied to real estate data it consistently fails to provide superior results relative
to OLS. (See Mark 1983, and Moore, Reichert & Cho, 1986.)

In a recent paper Reichert and Moore (1986) explored the use of latent root regression as a means
of reducing the negative impact of “non-predictive MC,” but concluded that since the majority of collinearity
in real estate appraisal models is predictive in nature, the use of latent root regression techniques will
have limited benefit. Thus, it seems evident from the brief literature review presented above that no
single approach to handling MC is optimal in every case and that each technique represents a more
or less ad hoc approach to handling a very difficult data problem.

4 ISRM represents a measure of the lack of orthogonality in the regressor set and is related to the
size of the eigenvalues of the matrix of regressor correlation coefficients. The optimal value for k is
that value which minimizes ISRM. The NLMS technique assumes that for orthogonal regressors the
larger the absolute value of the standardized regression coefficients the more statistically significant
the coefficients. For each possible value of k, NLMS represents the value of the correlation coefficient
between the absolute values of the regression coefficents and their t-statistics. The optimal k is the
biasing factor that maximizes the size of this correlation coefficient. In addition to the Vinod citation,
the reader may want to consult Vandell and Zerbst (1984) for another empirical application of these
two techniques. (See Appendix B for selected test results.)

s Initial regression results indicated that the differences between ranch and two-story houses were
statistically insignificant. Thus, in the model results presented in Exhibits 1-6 these two styles were
combined into one category, with ranch/two-story serving as the base. The number of dummy variables
used to represent a given housing characteristic (e.g., style) is equal to the number of unique categories
for the specific housing characteristic, minus one for the base characteristic.

¢ In the most general formulation of the BC/BT transformation it is possible to have a unique lambda
for each of the right-hand side variables. To simplify the current analysis, all the appropriate independent
variables were treated in a similar fashion with one common lambda (Ag) being estimated. However,
the values for A; and Ag are not constrained and are free to take different values.

7 Since the Box-Cox transformation cannot be performed on dummy variables and other independent
variables with zero values, the test results reported in this paper represent only a partial test of the
optimal functional form. Any distortion this might cause in the results is minimized by the fact that
the nonlinear relationships in the model relate most directly to the continuous variables, such as square
footage, lot size, etc. Thus, the exclusion of the dummy variables probably does not constitute a major
problem.

8 The log of selling price is forecasted for the log-linear model. The antilog of the predicted log selling
price generates the dollar value of the predicted selling price.
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