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Total Grid Estimation R. Kelley Pace*

Abstract. This article provides a matrix representation of the adjustment grid estimator.
From this representation, one can invoke the Gauss-Markov theorem to examine the
efficiency of ordinary least squares (OLS) and the grid estimator that uses OLS estimates
of the adjustments (the ‘‘plug-in’’ grid method). In addition, this matrix representation
suggests a generalized least squares version of the grid method, labeled herein as the
total grid estimator. Based on the empirical experiments, the total grid estimator
outperformed the plug-in grid estimator, which in turn outperformed OLS.

Introduction

Appraisers commonly use the grid adjustment method to value property. They select,
weight and adjust comparable properties using their prior information to estimate the
value of the subject property. Such prior information may come from experience, a
matched pair analysis on other properties or from the use of other estimators.
Evidently, this modus operandi performs well.1

Due to the difficulty of quantifying appraisers’ priors, individuals investigating the
grid method have usually resorted to ‘‘plugging in’’ the estimates from some procedure
such as ordinary least squares (OLS) to operationalize the adjustment process.2 For
clarity, I label this the plug-in grid (PG) method which denotes a specific
implementation of the usual adjustment grid method, labeled the general grid (GG)
method.3 The PG method predictions have not dominated predictions from OLS
computed using the unadjusted data.4

Examination of the literature gives rise to some disquieting thoughts. If the PG method
outperforms OLS, why use OLS estimates in its construction? If the PG method
underperforms OLS, why use it?

This article develops an estimator that fully executes the grid method concept. If one
believes that using comparable properties can reduce the prediction errors on subject
properties, one should use this information in estimating the parameters. Lower errors
should increase estimation accuracy.

The article provides a matrix representation of the GG estimator for an entire sample
whereby each subject property is differenced from its comparables. Naturally, most
subject properties will also serve as comparables for other subject properties. The
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matrix representation of the GG estimator gives rise to the total grid (TG) estimator,
a generalized least squares (GLS) procedure.

The matrix formulation of the GG estimator also enables one to express it as a linear
estimator. Hence, by the Gauss-Markov theorem, the PG estimator does not reach full
efficiency when the conditions underlying OLS hold. Moreover, if differencing with
comparables lowers exsample errors, this implies the existence on non-i.i.d.
(independent and identically distributed) errors. For such an error structure OLS, and
hence the PG estimator based on OLS, does not reach full efficiency. In contrast, the
TG estimator, with its GLS underpinnings, potentially could reach full efficiency.

To illustrate the potential of the TG estimator, I used 442 properties spread over 24
areas in Memphis to estimate: (1) a nonspatial model via OLS; (2) a spatial model
(24 area dichotomous variables) via OLS; and (3) an implicitly-spatial model via the
TG estimator. As the results show, the TG estimator using a nonspatial model closely
approaches the performance of OLS on the spatial model.

As an initial demonstration of the utility of the ideas presented, the spatial
specification of the comparables allowed the PG estimator to display a 15% lower
average exsample RMSE than OLS. Exsample error resampling trials showed the even
greater potential advantages of TG estimation. For example, OLS ignoring the spatial
information produced 56.3% higher and the PG method 32.9% higher average RMSE
than the TG estimator in the exsample error trials. Only 2% of the OLS and 12.5%
of PG method predictions proved superior to the TG method’s predictions in terms
of median absolute errors over 1000 trials.

In this article, section two develops the theory behind the general, PG and TG
estimators; section three provides an empirical illustration of the potential gains; and
section four concludes with the key results.

Grid Estimation
This section provides a theoretical development and examination of the various grid
estimators. The first part reviews the GG and OLS estimators; the second part provides
a matrix formulation of the GG method; the third part develops the TG estimator, and
part four discusses the efficiency of the OLS, PG and TG methods.

The GG and OLS Estimators

The class of linear predictors approximates the subject property value y0, a scalar, by
linearly weighting the p characteristics in the p by 1 vector x0 by their estimated value
in the p by 1 vector as in Equation (1). Assume x0, y0 are in deviations form (haveb̂
0 mean) to avoid the complication of an intercept. The estimates could simplyb̂
represent a particular individual’s opinion concerning the value of the various property
characteristics.

ˆŷ 5x9b. (1)0 0
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Suppose one had m ‘‘comparable’’ properties where m51, 2, 3 . . . . Let xi denote a
p by 1 vector of the ith comparable’s characteristics, yi denote the ith comparable’s
sales price and ci denote the weight given to the ith comparable in Equation (2).

y 5(y , y , . . . , y )9 (m by 1)comps 1 2 m

X 5(x , x , . . . , x )9 (m by p)comps 1 2 m (2)

c 5(c , c , . . . , c )9 (m by 1)0 1 2 m

15c9[1]5c 1c 1. . .1c .0 1 2 m

An alternative linear predictor, the GG method, uses to approximate the subjectỹ0

property value y0 as a function of the weighted average of the m comparable properties
prices, 5 and characteristics, 5 a p by 1 vector.y c9y , x (c9X )9,comps 0 comps comps 0 comps

ˆ ˆ ˆỹ 5y 1(x 2x )9b5x9b1c9(y 2X b). (3)0 comps 0 comps 0 0 comps comps

Thus, the GG method involves the prediction of y0 coupled with an adjustment based
upon a weighted average of the prediction errors on comparable properties.

A Matrix Formulation of the GG Estimator

Equation (3) specifies the GG prediction for a particular property. Could one express
the GG method predictions for all the sample properties in matrix form? Generalizing
Equation (3) yields Equation (4),

˜ ˆ ˆY5Xb1C(Y2Xb), (4)

where C represents an n by n comparable weighting matrix with 0s on the diagonal
(the subject property cannot predict itself) and whose row elements (weights) sum to
1 (the equivalent of the weights summing to 1 in Equation (2)). Assume the data Y,
X are in deviation form (subtraction of respective means). Let Y denote an n by 1
vector of dependent variable observations with a 0 mean and X an n by p matrix of
nonconstant independent variables with 0 means. As well-known, using data in
deviation form does not affect the slope coefficients of linear regression models such
as OLS or GLS. One can always recover the same intercept after estimating the slope
coefficients.5 Thus, p11 equals k, the total number of variables.

(a) diag(C)5 [0] (b) C [1] 5 [1] . (5)
(n by 1) (n by n) (n by 1) (n by 1)

The non-zero entries on the ith row of C represent the comparables for the ith subject
property. For example, the ith row of C might appear thus,

1 1 1 1 1
C 5 , 0, , 0, 0, , , 0, , 0, z z z , 0S Di,1:n m m m m mi i i i i



104 JOURNAL OF REAL ESTATE RESEARCH

VOLUME 15, NUMBERS 1/2, 1998

where mi, the number of comparables for the ith property, equals 5. Multiplying the 1
by n row vector Ci,1:n by a n by 1 column vector [1] would yield 1 as assumed in
Equation (5). This represents the equiweighted case where each of the five
comparables has a weight of 1/5. The next section provides a more extensive example
of the structure of C for the empirical example.

Note, the specification of C takes into account spatial effects. Rather than modeling
the neighborhood effects in X, one can difference away a large portion of these by
the use of C. Differencing out the spatial effects represents a viable alternative to
modeling how these affect the mean. This parallels time series—one can use time as
an independent variable or one can model the dependency in the error term. Modern
time series generally concentrates on the latter rather than the former procedure.

The TG Estimator

The matrix formulation of the GG estimator suggests one might find a better estimate
of b than one from, for example, OLS. Writing the matrix formulation of the GG
estimator in Equation (4) as a function of the parameters b and a random error term
yields Equation (6).6

Y5Xb1C(Y2Xb)1«. (6)

Suppose « possesses an independent, 0 mean error structure as specified by Equation
(7).

2(a) E(«)50 (b) E(««9)5s I. (7)

One can rearrange Equation (6) to form Equation (8), where the dependent and
independent variables appear on opposite sides.

(I2C)Y5(I2C)Xb1«. (8)

Redefining the independent and dependent variables in Equation (8) leads to Equation
(9),

Y 5X b1«c c

Y 5(I2C)Y5WY (9)c

X 5(I2C)X5WX,c

where (I2C)[W, a weight matrix with 1s on the diagonal. Provided Xc is nonsingular,
one could estimate an OLS regression on the redefined variables in Equation (9).7

˜ 21b̃5(X9X ) X9Y . (10)c c c c

As well-known, Equation (10) represents a GLS estimator.8 Since totally executes˜̃b
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the ideas of comparable weighting and differencing used by the GG estimator, I call
the TG estimator.˜̃b

Assuming the TG estimate exists, one could predict Y via Equation (11).

˜ ˜ ˜˜ ˜ ˜Y5Xb1C(Y2Xb). (11)

Furthermore, Equaiton (11) leads to the TG estimated errors in Equation (12).

˜ ˜ ˜ ˜ ˜˜ ˜ ˜ ˜ ˜ ˜ẽ5Y2Y5Y 2X b5W(Y2Xb)5Y2Xb2C(Y2Xb). (12)c c

Analogous to Equations (11) and (3), one could compute the TG exsample predicted
price for a particular property by Equation (13).

˜ ˜˜ ˜ ˜ỹ 5x b1c9(y 2X b), (13)0 0 0 comps comps

where c0 represents the m by 1 column vector of comparable weights for the subject
property.9 In this case, the m comparable observations (ycomps, Xcomps) could have been
used in the formation of (i.e., particularly rows of Y or X) or could represent˜̃b
exsample observations. The latter seems closer in spirit to the way appraisers operate
and so I use this in computing the exsample errors in the empirical example.

Efficiency of the Grid and OLS Estimators

Can one compare the GG, PG, TG and OLS estimators? Suppose Equation (14)
describes the model generating the data where « has the 0 mean, i.i.d. properties given
by Equation (7).

(QY)5(QX)b1«. (14)

By the Gauss-Markov theorem, if Q equals I, OLS is the best linear unbiased estimator
(BLUE). In repeated sampling, none of the grid estimators could outperform OLS
under the assumed conditions.10 However, if Q does not equal I, insert OLS just
using X, Y is not BLUE. By the Gauss-Markov theorem, GLS is BLUE given
knowledge of Q. If Q5W, the TG estimator is BLUE.

This exposes the inefficiency of the PG estimator. If OLS assumptions such as
Equation (7) prevail, the PG estimator predictions are inefficient. If differencing
subject properties using comparable properties induces behavior described by
Equation (7), the PG estimator predictions are inefficient since it uses the OLS
estimate (nonoptimal for Q Þ I).11

In summary, the PG method possesses a fundamental illogic. If it outperforms OLS,
why use OLS estimates in its construction? If the conditions underlying OLS exist,
why use the PG estimator? The TG estimator, with its GLS underpinning, avoids this
dilemma.
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Naturally, estimates of b produced by other estimators for the PG do not attain full
efficiency. Hence, the criticism could apply to other estimators as well. However, when
estimates of b come from prior information, as they do with appraisers using the GG
method, the optimality results from the Gauss-Markov theorem do not apply. Correct
prior information can allow the appropriate estimators to outperform OLS or GLS.

An Empirical Example
This section provides an empirical illustration of the gains in prediction accuracy
obtainable through the use of the TG method. The first section presents the data; the
second section discusses the models; the third section specifies the interactions among
the subject and comparable properties; and the fouth section performs the sample
estimation; and the last section examines the exsample performance of the TG, PG
and OLS methods.

Data

The sample data are from the Memphis Multiple Listing Service’s (MLS) Multiple
Listing Book published by the Memphis Board of Realtors for January 1987. The
actual transactions price are from the cumulative index of sold properties.
Characteristics data on each of the selected properties came either from this index or
from the original listing description. The sample contains observations on 442 single-
family dwellings sold within the previous six-month period with complete information
on each variable. Stratified random sampling, whereby the proportion of properties in
the sample from the 24 different city areas matched the population proportion in these
areas, was used to insure a truly representative sample of the population of sold
properties. As a result, the sample means of both the dependent and independent
variables closely match their population counterparts.

Models and Variables

AREAID varies between 1 to 24 and represents districts within Memphis. I formed 24
dichotomous or dummy variables based upon AREAID. CENTRAL AIR-CONDITIONING,
WINDOW AIR-CONDITIONING, FIREPLACE, POOL, MASONRY EXTERIOR and SIDING

(aluminum or vinyl) are also dichotomous variables with 1 representing the presence
of the characteristic. KITCHEN AREA and OTHER AREA (nonkitchen area) added together
equal total area. LOT AREA denotes lot size in 1000 square foot units. BATHS denotes
the number of bathrooms. To simplify the problem of singularity with the TG
estimator when an intercept exists, I expressed the data in deviations form (subtracted
away the means of the dependent and independent variables). This well-known
procedure does not affect the slope coefficients of the OLS based models, the implicit
intercept value, nor the degrees-of-freedom. Hence, b1 appears implicitly in each of
the following models. In the results, I will make reference to the following models.

Common Model: b1CAR PORT SPACES1b2GARAGE SPACES1b3CENTRAL AIR-
CONDITIONING1b4WINDOW AIR-CONDITIONING1b5AGE1b6OTHER AREA1
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b7KITCHEN AREA1b8BATHS1b9LOT AREA1b10FIREPLACE1b11POOL1
b12MASONRY EXTERIOR1b13SIDING

Nonspatial Model: ln(PRICE)5Common Model1«ns

Spatial Model: ln(PRICE)5Common Model1a AREAID1«2–24 s

Implicitly Spatial Model: ln(PRICE)5Common Model1«is

The use of variables partitioning the property into its components results in a design
with relatively low amounts of multicollinearity. Specifically, the condition number
for the spatial design, which has the most variables, is 23.3. This constitutes borderline
or moderate multicollinearity according to Belsley, Kuh and Welch (1980, p. 153).
See Pace and Gilley (1993) or Gilley and Pace (1998) for a discussion of
multicollinearity and suggested ways of ameliorating its impact on statistical valuation
models. Also, see Pace (1998) for an extensive discussion of the variables in this
model and their specification.

Specification of the Weighting Matrix W

The most important part of TG estimation lies in the specification of the weighting
matrix W. For OLS, the equivalent is the identity matrix, I. Like I, the diagonal
elements of W51. Hence, each subject property (dependent and independent variables)
receives equal weighting. In this problem, nonsubject properties sharing the same
AREAID code are comparable. Hence, those with different AREAID codes have Wij50.
For the comparable properties, the off-diagonal elements (Wij) equal 21/mi where mi

represents the number of comparable properties. Hence, mi equals the number of
properties sharing the same AREAID code minus 1 (for the subject property).
Alternatively, mi represents the number of elements in the ith row of W not equal to
0 or 1. This means the weighting matrix subtracts from the subject property dependent
and independent variables the average of the comparable properties dependent and
independent variables. For these data, W is an n by n symmetric, matrix.

As a small example, suppose n54 and properties 1,3 and 4 share the same AREAID
code while property 2 has no comparables.

1 1 1 1– – – –0 0 1 0 2 22 2 2 2

0 0 0 0 0 1 0 0
C5 , W5(I2C)51 1 1 1– – – –0 0 2 0 1 22 2 2 2

1 1 1 1– – – –0 0 2 0 2 12 2 2 2

When multiplying WX or WY, W subtracts the average of the comparable properties
from each subject property. Note, observation 2 does not have any comparables and
so W would simply select the second row in the original data matrix.

As a further example, suppose n56 and properties 1 and 2 share a common AREAID
code while properties 3, 4, 5 and 6 also share a common AREAID code.
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0 1 0 0 0 0 1 21 0 0 0 0
1 0 0 0 0 0 21 1 0 0 0 0

1 1 1 1 1 1– – – – – –0 0 0 0 0 1 2 2 23 3 3 3 3 3C5 , W5(I2C)51 1 1 1 1 1– – – – – –0 0 0 0 0 2 1 2 23 3 3 3 3 3
1 1 1 1 1 1– – – – – –0 0 0 0 0 2 2 1 23 3 3 3 3 3
1 1 1 1 1 1– – – – – –0 0 0 0 0 2 2 2 13 3 3 3 3 3

When multiplying WX or WY, W subtracts row 2 from row 1 for the first observation.
For the second observation, W subtracts row 1 from row 2. One can interpret the
actions of W in row (or column 6) as subtracting the average of the comparable
properties 3, 4 and 5 from property 6. One can interpret the actions of W in row (or
column 4) as subtracting the average of the comparable properties 3, 5 and 6 from
property 4. Naturally, this happens for both the dependent and independent variables.
Thus, W simultaneously differences every observation with those sharing a common
AREAID code.

One can define similar schemes for creating C or W for data with continuous location
coordinates such as latitude and longitude. In fact, these techniques work even better
for such data.12 See Pace and Gilley (1997) for examples with complete locational
data.

Sample Estimates

Exhibit 1 contains the estimates for the nonspatial, nonintercept variables based upon
the entire sample of 442 properties for OLS on the nonspatial model, for OLS on the
spatial model and for the TG method on the implicitly spatial model. OLS on the
nonspatial model displays two sign violations relative to ex ante expectations and an
insignificant coefficient for Lot Area.13 In contrast, both OLS on the spatial model
and the TG method on the implicitly spatial model display no sign violations.
Moreover, both show a significant coefficient for Lot Area. Both OLS on the spatial
model and the TG method on the implicitly spatial model exhibit similar coefficients,
thus indicating that they effectively use the spatial information.

Both methods greatly outperform OLS on the nonspatial model. OLS on the nonspatial
model shows 54.9% higher SSE than the TG method on the implicitly spatial model.
In turn, OLS on the spatial model shows 12.9% less SSE than the TG method on the
implicitly spatial model. In terms of median absolute error (MAE), OLS on the
nonspatial model shows 29.8% higher MAE than the TG method on the implicitly
spatial model. In turn, OLS on the spatial model shows 4.8% less MAE than the TG
method on the implicitly spatial model.

Exsample Error Performance

To obtain an idea of the exsample error performance from the TG, PG and OLS
estimators, I designed a resampling experiment involving 1000 iterations. In each
iteration I randomly selected a group of AREAID numbers between 1 and 24. As the
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Exhibit 1

Spatial OLS (24 Area Variables), Nonspatial OLS and Implicitly Spatial Total

Grid Estimates

Independent Variable
Nonspatial
OLS

Spatial OLS
(24 Areas)

Implicitly
Spatial TG

Car Port Spaces 0.0318 0.0427 0.0425
2.5323 4.0478 4.0858

Garage Spaces 0.0889 0.0658 0.0662
7.6880 7.0160 7.1204

Central Air-Conditioning 0.3500 0.3264 0.3229
5.6259 6.4716 6.6985

Window Air-Conditioning 0.2244 0.2006 0.1998
3.6146 4.0631 4.2394

Age 20.0016 20.0037 20.0032
22.1397 22.9132 22.6423

Other Area 0.0002 0.0002 0.0002
17.1959 15.1806 15.4662

Kitchen Area 0.0007 0.0006 0.0006
5.1195 5.7751 5.8302

Baths 0.0891 0.0787 0.0810
3.6941 4.1676 4.3814

Lot Area (in 1000 sf) 0.0009 0.0015 0.0015
1.1239 2.2326 2.2044

Fireplace 0.0798 0.0578 0.0580
4.2853 3.3818 3.4695

Pool 20.0040 0.0115 0.0085
20.1158 0.4144 0.3066

Masonry Exterior 0.0525 0.0569 0.0580
2.8609 3.8338 3.9596

Siding 20.0487 0.0262 0.0243
20.9649 0.6575 0.6305

R2 0.8728 0.9285 0.9179

SSE 9.6833 5.4459 6.2512

SSE Relative to Total Grid 1.5490 0.8712 1.0000

Median Absolute Error (MAE) 0.0909 0.0667 0.0701

MAE Relative to Total Grid 1.2977 0.9520 1.0000

n 442 442 442

k 14 37 37

Degrees-of-Freedom 428 405 405
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Exhibit 2

Resampled Exsample Error Statistics for the Total Grid, Plug-in Grid and OLS

Estimators Across 1000 Iterations

Exsample Error Statistics TG PG OLS PG/TG OLS/TG

Mean RMSE 0.14 0.18 0.21 1.33 1.56
Proportion of Iterations with

Relative RMSE,1
0.20 ,0.01

Min. RMSE 0.09 0.09 0.11 1.04 1.23
First Quartile RMSE 0.12 0.13 0.16 1.08 1.30
Median RMSE 0.13 0.14 0.17 1.06 1.29
Third Quartile RMSE 0.15 0.16 0.20 1.07 1.34
90th Percentile RMSE 0.16 0.18 0.24 1.08 1.43
95th Percentile RMSE 0.18 0.20 0.28 1.12 1.53
99th Percentile RMSE 0.21 1.51 1.49 7.07 7.00
Max. RMSE 0.30 2.00 1.93 6.67 6.41
Mean of Medianueu 0.08 0.09 0.11 1.13 1.36
Proportion of Iterations with

Relative Medianueu,1
0.12 0.02

number of groups and the number of properties within each group varied, the number
of sample observations ranged from 28 to 423, with an average of 232. I computed
sample estimates using the TG method on the implicitly spatial model and OLS on
the nonspatial model. From these I calculated the corresponding exsample errors, as
well as the exsample error from the PG method.

Exhibit 2 contains a variety of statistics describing the exsample errors. The first three
columns present the level of the statistics and the last two columns express these
relative to the TG statistic. OLS displayed 56.3% and the PG estimator 32.9% higher
mean RMSE than the TG method. In only 19.6% of the iterations did the PG method
yield lower RMSE than the TG method. In only 0.3% of the iterations did OLS on
the nonspatial model yield lower RMSE than the TG method.

In addition, OLS displayed 36.3% and the PG estimator 12.5% higher average MAE
than the TG method. In only 12.0% of the iterations did the PG method yield lower
MAE than the TG method. In only 2.0% of the iterations did OLS on the nonspatial
model yield lower MAE than the TG method.

As the difference between the median and mean RMSE figures shows, OLS and the
PG method possess very long tails in their distribution relative to the TG method.
The 99th percentile RMSE figures show this very clearly. For some small proportion
of the iterations, OLS and the PG method (which uses OLS) perform very poorly
relative to the TG method.

The reason for this lies in the nature of the experiment. While the experiment
randomly picks areas (blocks of properties), this does not imply uniform coverage
over the entire area. For example, the algorithm may randomly (albeit rarely) pick all
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of the areas on one side of the city. In this case, OLS applied to the nonspatial model
treats the other side of the urban area the same as the sample side. Hence, its estimates
may prove quite poor. The PG method improves on these errors but inherits some of
the OLS problems. The TG estimator, by differencing out the spatial element, arrives
at better estimates. This experimental design exposes the weakness of the nonspatial
model estimated via OLS, and by extension the PG method, when spatial information
matters.

Conclusion
Attempts to mimic the appraiser’s grid estimator have usually taken the OLS
coefficient estimates from another sample to use in the comparable adjustment process.
As the results of this article illustrate, these methods can improve over OLS. For
example, OLS on the nonspatial model in the empirical illustration displayed 17.6%
higher average RMSE in the exsample error trials than did the PG estimator.

However, the PG estimator employing OLS based adjustments seems somewhat
incomplete. If the PG method outperforms OLS, why use OLS estimates in its
construction? This article developed the TG estimator which uses the comparables in
the actual coefficient estimation. The resulting GLS estimator outperforms OLS on
the nonspatial model as well as the PG estimator using OLS based adjustments. For
example, the PG estimator displayed 36.3% higher average RMSE in the exsample
error trials than did the TG estimator. In only 12.5% of the exsample error trials did
the PG method outperform the TG method in terms of MAE.

The grid estimator in the hands of appraisers works well. Essentially, their ability to
inspect the subject and comparable properties allows them to difference away much
of the prediction error (i.e., accurately estimate C or W). In the past, the data
collection, management and analysis problems more or less enforced the sole use of
the grid method where judgment played the dominant part in the adjustment process.
However, with the advent of geographic information systems, it should not prove
difficult to formulate and compute TG estimates. TG estimates could help hone
appraisers’ priors based upon experience and other analyses.

From an academic standpoint, the use of a TG framework could aid in the
development and testing of rules for comparable weighting and selection (i.e.,
elements of C or W). For example, one could examine various metrics, spatial
orderings or rules mimicking appraiser behavior. Modeling appraiser behavior could
also prove important in making progress towards automating appraisals. If nothing
else, an automated appraisal system should incorporate appraiser behavior as a control
to use in comparing predictions from other estimators. More likely, understanding
appraiser behavior would lead to improved predictions, especially when combined
with more formal statistical techniques.

Other disciplines have also dealt with errors over space. Agricultural field research
examines plots of land with different treatments to discern the effects of more
fertilizer, water or sun. Naturally, adjacent plots (comparables) tend to have correlated
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errors. ‘‘Empirical evidence from agricultural field trials indicates that differenced data
usually permit the use of a more parsimonious model than undifferenced data.’’14 The
TG estimator developed herein corresponds to spatial differencing. As in the case of
agricultural field research, this differencing can produce a parsimonious yet effective
model. The agricultural literature has examined a number of more complicated
estimators involving variable amounts of differencing, moving average processes and
higher orders of autocorrelation. Some of their experience may prove useful in real
estate appraisal.15

The emerging field of spatial statistics, coupled with technological advances in
geographic information systems, holds forth the promise of both more fully
understanding real estate appraisal and improving its accuracy.

Notes
1For example, Dotzour (1988) found appraisals displayed about 10% root mean squared error
(exsample) using corporate relocation properties. This error rate represents a difficult (but not
impossible) target for other techniques to match.
2The rôle of judgment and art in appraisal makes it difficult to model how appraisers form and
update their priors. For this reason, the academic papers have resorted to using various
estimators. While many estimators would work, OLS has obvious theoretical and computational
advantages. See Colwell, Cannady and Wu (1983), Lipscomb and Gray (1990) or Vandell (1991)
for applications of the PG adjustment method.

Also, prior information enters into the selection and weighting of comparables. In fact, the
appraisal profession has partially described the relevant prior information via a number of
criteria. For example, part six of Appraising Residential Properties (1994) and Chapter 17 of
The Appraisal of Real Estate (1992) contain discussions relevant to these issues. As Appraising
Residential Properties (1994, p. 436) states, ‘‘... greater reliance is placed on comparables which
have been sold most recently, are most similar to the subject, and are subject to the fewer price
adjustments.’’ The appraisal texts generally emphasize the rôle of the appraiser’s judgment rather
than deterministic algorithms, although these also mention the possibility of using regression
to arrive at some of the adjustments (e.g., Appraising Residential Properties, 1994, p. 425).
The real estate literature generally seeks more deterministic ways of approaching the appraisal
problem. For example, Colwell, Cannady and Wu (1983), Isakson (1986), Vandell (1991), Gau,
Lai and Wang (1992, 1994) and Green (1994) have proposed various comparable weighting
and selection algorithms. These methods typically (1) estimate the distribution of price (b, s,
coupled with the assumption of normality) using an earlier sample of properties; and (2)
optimize some objective function (minimum variance or minimum coefficient of variation) with
respect to the comparable weights. Because these algorithms rely upon estimates of the
distribution of prices, problems in (1) affect the results in (2). The results herein pertain to (1).
3The term ‘‘plug-in’’ comes from statistics where it denotes the operation of substituting an
estimated quantity for some unknown parameter in a statistic.
4For example, in a comparison of OLS and the grid method, Kang and Reichert (1991) found
two markets where the PG method improved over OLS and one market where it did not.
5Nothing is gained or lost by this procedure. I used the same degrees-of-freedom as if I had
estimated an explicit intercept.
6This resembles the development of simultaneous autoregressive estimators. See Ripley (1981,
pp. 88–98). Pace and Gilley (1998) have estimated a simultaneous autoregression for the data
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used in Can (1989, 1992). As in this context, employing spatial information in estimation yields
substantial benefits.
7The weight matrix, W, will often have less than full rank. Although n$rank(W), as long as
rank(W)$k, WX can have full rank. However, one cannot include an intercept in X, as it would
turn into a vector of 0s after differencing and make Xc singular.
8If one estimated elements of C, this would become an estimated GLS estimator (EGLS). At
this stage, I assume known elements in C or some algorithm which does not involve goodness-
of-fit for specifying C.
9Before this was an n by 1 vector since any of the n sample properties could serve as a
comparable property. For m0 exsample properties, one only needs m0 weights.
10See Judge et al. (1985) for a more detailed description of the relevant assumptions and for a
proof of the Gauss-Markov theorem.
11Pace (1996) provided more specific demonstrations for the asymptotic efficiency of the PG
estimator relative to OLS when the conditions underlying OLS hold. In such circumstances, the
PG estimator with a small number of comparables displays substantially more variation than
OLS. For example, with three equi-weighted comparables, the PG estimator has 33% higher
variance than OLS.
12Having only area dummies available imposes a block diagonal structure on the variance-
covariance matrix and thus does not include potentially valuable interblock spatial information.
The spatial approach developed here results in estimates close to those from the spatial dummy
approach. However, relative to the dummy variable approach, the spatial approach weights less
heavily areas with fewer observations.
13See Pace and Gilley (1993) for a discussion of ex-ante expectations in semi-log models.
14See Cressie (1993, p. 340).
15Actually, the ‘‘plug-in’’ grid method corresponds to a stage in the Papadakis NN estimator
(1937). See Cressie (1993, pp. 338–45).

References

Appraisal Institute, Appraising Residential Properties, Second edition, Chicago: Appraisal
Institute, 1994.

Appraisal Institute, The Appraisal of Real Estate Tenth edition, Chicago: Appraisal Institute,
1992.

Belsley, D. A., E. Kuh and R. E. Welch, Regression Diagnostics: Identifying Influential Data
and Source of Collinearity, New York: John Wiley, 1980.

Can, A., Modeling Spatial Variation in Housing Price Determinants, Ph.D. dissertation, Ohio
State University: Columbus, OH, 1989.

——, Specification and Estimation of Hedonic Housing Price Models, Regional Science and
Urban Economics, 1992, 22, 453–74.

Colwell, P. F, R. E. Cannaday and C. Wu, The Analytical Foundations of Adjustment Grid
Methods, Journal of the American Real Estate and Urban Economics Association, 1983, 11,
11–29.

Cressie, N. A., Statistics for Spatial Data, Revised edition, New York: John Wiley, 1993.
Dotzour, M. G., Quantifying Estimation Bias in Residential Appraisal, Journal of Real Estate

Research, 1988, 1–12.
Gau, G. W., T.-Y. Lai and K. Wang, Optimal Comparable Selection and Weighting in Real

Property Valuation: An Extension, Journal of the American Real Estate and Urban Economics
Association, 1992, 20, 107–24.



114 JOURNAL OF REAL ESTATE RESEARCH

VOLUME 15, NUMBERS 1/2, 1998

——, A Further Discussion of Optimal Comparable Selection and Weighting, and A Response
to Green, Journal of the American Real Estate and Urban Economics Association, 1994, 22,
655–63.

Gilley, O.W. and R. K. Pace, Improving Hedonic Estimation with an Inequality Restricted
Estimator, Review of Economics and Statistics, 1995, 77, 609–21.

Green, R. K., Optimal Comparable Weighting and Selection: A Comment, Journal of the
American Real Estate and Urban Economics Association, 22, 647–54.

Isakson, H. R., The Nearest Neighbors Appraisal Technique: An Alternative to the Adjustment
Grid Methods, Journal of the American Real Estate and Urban Economics Association, 1986,
14, 274–86.

Judge, G. G., W. E. Griffiths, R. C. Hill, H. Lutkepohl and T.-C. Lee., The Theory and Practice
of Econometrics, Second edition, New York: John Wiley, 1985.

Kang, H.-B. and A. K. Reichert, An Empirical Analysis of Hedonic Regression and Grid-
Adjustment Techniques in Real Estate Appraisal, Journal of the American Real Estate and
Urban Economics Association, 1991, 19, 70–91.

Lipscomb, J. B. and J. B. Gray, An Empirical Investigation of Four Market-Derived Adjustment
Methods, Journal of Real Estate Research, 1990, 5, 53–66.

Memphis Board of Realtors, Multiple Listing Book 2, Memphis, 1987.
Pace, R. K., Relative Efficiencies of the Grid, OLS, and Nearest Neighbor Estimators, Journal

of Real Estate Finance and Economics, 1996, 13, 203–18.
——, Appraisal Using Generalized Additive Models, Journal of Real Estate Research, 15, 77–

99.
Pace, R. K. and O.W. Gilley, Improving Prediction and Assessing Specification Quality in Non-

Linear Statistical Valuation Models, Journal of Business and Economics Statistics, 1993, 301–
10.

——, Using the Spatial Configuration of the Data to Improve Estimation, Journal of the Real
Estate Finance and Economics, 1997, 14, 333–40.

——, Generalizing the OLS and the Grid Estimator, Real Estate Economics, 1998, 26, 331–47.
Papadakis, J. S., Methode Statistique Pour Des Experiences Sur Champ, Institut d’Amelioration

des Plantes a Thessaloniki, Bulletin Scientifique, 1937, 23.
Ripley, B. D., Spatial Statistics, New York: John Wiley, 1981.
Vandell, K. D., Optimal Comparable Selection and Weighting in Real Property Valuation,

Journal of the American Real Estate and Urban Economics Association, 1991, 19, 213–39.

My thanks to Otis Gilley, two anonymous referees and the editors for their valuable
comments. I gratefully acknowledge support from the University of Alaska, the University
of Connecticut and Louisiana State University.


