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Abstract. Many of the results from real estate empirical studies depend upon using a
correct functional form for their validity. Unfortunately, common parametric statistical
tools cannot easily control for the possibility of misspecification. Recently, semiparametric
estimators such as generalized additive models (GAMs) have arisen which can
automatically control for additive (in price) or multiplicative (in ln(price)) nonlinear
relations among the independent and dependent variables. As the paper shows, GAMs
can empirically outperform naive parametric and polynomial models in exsample
predictive behavior. Moreover, GAMs have well-developed statistical properties and can
suggest useful transformations in parametric settings.

Introduction
Many functional forms of the variables and parameters lead to pricing functions that
agree with the information amassed by the substantial theoretical and empirical work
in hedonic pricing and mass assessment.1 Consequently, the exact specification to
adopt remains one of the central uncertainties of empirical work, especially since the
‘‘wrong’’ functional form leads to all sorts of disastrous consequences for traditional
estimators. In response to this problem, many nonparametric estimators have been
proposed which adapt to the data and do not require an a priori functional
specification. However, nonparametric estimator performance typically declines as the
dimensionality of the problem increases.2 As a compromise, various semiparametric
estimators have arisen that possess the adaptive traits of nonparametric regression
while retaining the estimation efficiency of parametric estimators. Projection pursuit
(Friedman and Stuetzle, 1981), neural nets, alternating conditional expectations
(Brieman and Friedman, 1985), additivity and variance stabilization (Tibshirani,
1988), regression trees (Brieman, Friedman, Olshen and Stone, 1984), P (Brieman,
1991), multivariate adaptive regression splines (Friedman, 1991) and sliced inverse
regression (Duan and Li, 1991) estimators represent some of the efforts in this
direction.3

In real estate, various applications of nonparametric and semiparametric regression
have appeared from time to time. For example, analysis of pairs of houses matched
on all but two or fewer characteristics via graphical methods would qualify as
nonparametric estimation. Isakson (1986) used a form of nearest neighbor
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nonparametric estimation.4 Sunderman, Birch, Cannaday and Hamilton (1990)
explored the relation between assessed value and market price using a bivariate spline
regression estimator. Meese and Wallace (1991) and Pace (1993b) applied
nonparametric multivariate regression estimators to real estate data. Meese and
Wallace employed locally weighted regression (see Cleveland and Devlin, 1988) to
form hedonic price indices. They conducted diagnostics on the sample fit to document
its generally good performance. Using two hedonic pricing examples, Pace (1993)
demonstrated the kernel nonparametric regression estimator could out-perform
ordinary least squares (OLS) in ex-sample prediction. Pace (1995) applies the
semiparametric index estimator (y5g(Xb)1«) of Hardle and Stoker (1989) and Powell,
Stock and Stoker (1989) to real estate data and showed it could compete with OLS
and the kernel regression estimator.

Coulson (1992) used a model incorporating some parametric components and a
bivariate spline estimator for the nonparametric component. Anglin and Gencay
(1993) used a model incorporating parametric components and a multivariate kernel
estimator for the nonparametric component to investigate the hedonic pricing
functional form. Their semiparametric estimates clearly outperformed their best
parametric ones.

Both the Coulson and the Anglin and Gencay estimators fall in the category of
Generalized Additive Models (GAMs). GAMs constitute perhaps the simplest class
of semiparametric estimators in terms of computation and visualization. Essentially,
GAMs in Equation (1) estimate the dependent variable as a sum of functions of the
independent variables.

y5ƒ (X )1ƒ (X )1...1ƒ (X )1«. (1)1 1 2 2 k k

Naturally, GAMs include linear models.

y5X b 1X b 1...1X b 1«.1 1 2 2 k k

GAMs can extend their range in the same way linear models extend theirs through
transformations and functions of the individual regressors.

y5b (X )1ƒ (X )1ƒ (X X )1ƒ (g(X ))1ƒ (X X )1...1ƒ (X )1«.1 1 2 2 3 1 2 4 3 5 2 3 k k

Effectively, Coulson used a model involving the first two terms while Anglin and
Gencay used a model involving the first and the fifth terms. Specifically, Anglin and
Gencay used a kernel estimator involving six dimensions or characteristics. Naturally,
the dependent variable, y, could represent a transformation of some other variable
(e.g., y5ln(z) or y5 which means GAM could also include multiplicative1 / 2z ),
modeling of z.

Graphs of the estimated transformation versus Xi constitute one of the mainƒ̃ (X )i i

products of the GAM estimator. These may have interest in their own right or can
serve as guides to transforming variables in the ordinary linear model. Alternatively,



APPRAISAL USING GENERALIZED ADDITIVE MODELS 79

these estimated transformations allow one to check on the linearity of and y in a
posited linear model.

This article examines the computation of the GAM estimator in section two and
applies the estimator in section three. Specifically, beginning with a typical
semilogarithmic specification using 442 observations from the Memphis Multiple
Listing Service (MLS), the GAM estimator suggests transformations that lead to a
linear double logarithmic model. For comparison, section three includes the
semilogarithmic and double logarithmic GAM and polynomial regression models.
Section three also includes a cross-validation prediction experiment that shows the
superiority of the GAM and the retransformed linear model to the original
semiparametric and polynomial regression models. Section four summarizes the key
results.

Computation of Generalized Additive Models
As mentioned previously, the GAM estimator is one of the simplest semiparametric
estimators to compute and visualize. One minimizes some loss function, typically
squared error, through the choice of functions as opposed to individual parameters.

˜ ˜ ˜min ẽ9ẽ where ẽ5(y2ƒ (X )1ƒ (X )1...1ƒ (X )). (2)1 1 2 2 k k

Hastie and Tibshirani (1990) extensively discussed the use of the backfitting algorithm
that iteratively minimizes Equation (2) an estimated function at a time. Let i
(i51,2,...k) represent the individual estimated functions ( (z)) and j ( j51,2,...m)ƒ̃i

represent the iteration. For each iteration j one minimizes Equation (2) with respect
to each of the estimated functions i(z). One continues the iterations until convergence.ƒ̃
Hastie and Tibshirani prove this algorithm will converge to an unique solution
independent of the starting values for symmetric smoothing functions such as
smoothing or regression splines. Interestingly, if for all i i(z)5Xibi, the backfittingƒ̃
algorithm yields, albeit slowly, the least-squares solution for a squared-error loss
function.

One can employ a variety of methods to estimate the functions i(z). For example, oneƒ̃
can employ the kernel method, locally weighted smoothing, smoothing splines,
regression splines, nearest neighbor and polynomials.5

The advantage to GAM, as opposed to purely nonparametric methods, lies in the
reduction of the problem of estimating nonparametric surfaces to a sequence of
bivariate smoothing problems. These allow (1) visual inspection of the smooth; and
(2) the estimates converge as rapidly as parametric estimators.

In the following estimates, I used smoothing splines as the bivariate or scatterplot
smoother. Smoothing splines minimize Equation (3):

2˜ ˜ ˜min [(y2ƒ (X ))9(y2ƒ (X ))1l E (ƒ 0(t)) dt] (3)i i i i i
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where l represents a roughness penalty. If i(Xi) had a linear form, the secondƒ̃
derivative of a linear function, (Xi), would be 0. Alternatively, if i(Xi) rapidly˜ ˜ƒ0 ƒi

changed with Xi, the second derivative, (Xi), would have a large magnitude. If lƒ̃0i
equals 0, the smoothing spline would cause i(Xi) to match every point in y, resultingƒ̃
in no error. If l equals infinity, the heavy penalty on roughness would cause i(Xi) toƒ̃
return a linear fit, resulting in the least squares regression line.

Naturally, the parameter l greatly affects the smoothing splines behavior. A small
value of l means (Xi) is very flexible in the same way a high order polynomial isƒ̃
flexible. As most individuals do not have much prior information concerning l, Buja,
Hastie and Tibshirani (1989) provided a way of measuring the equivalent degrees-of-
freedom sacrificed by making very flexible. This greatly reduces the difficultyƒ̃ (X )i i

of smoothing parameter selection. The equivalence between l and degrees-of-freedom
makes it possible to perform approximate inference for GAM.

As a final note concerning l, by appropriate selection of li5g(Xi) one could maximize
the linearity of This could greatly reduce the value of (li) which reduces the˜ ˜ƒ (l ). ƒ0i i i

sensitivity of the overall solution to an inappropriate choice of l. We shall use this
technique latter in the actual estimation.

Polynomials constitute the traditional way of modeling functions of Xi ( (Xi)5ƒ̃i

a1bXi1 1...1 ) in linear models. A series of polynomials leads to a model2 p21cX ) pXi i

linear-in-the-parameters which least squares can fit directly. The difference between
nonparametric smoothers such as smoothing splines or the kernel method and
polynomial regression lies in the local nature of the nonparametric estimator fits versus
the global nature of the polynomial regression estimator fit. If the (y, Xi) plot linearly
over part of Xi but have a curved portion over another part of Xi, nonparametric
estimators can follow this (even with two degrees-of-freedom). A second degree
polynomial will have some curvature over all of Xi. Hence, polynomials of limited
degree do react to nonlinearities. Their global fit means any nonlinearity polynomials
detect in i(Xi) for some values of Xi will be spread over all Xi.ƒ̃

Finally, GAM are a generalization of generalized linear models (GLM) of McCullagh
and Nelder (1989). GLM parametrically fits models y5g(Xb)1« for different
distributions (with different variance specifications). Consequently, one can easily
apply GAM using other distributions such as Poisson, gamma and multinomial.
Hence, one can estimate count or duration data, survival data and probabilities with
the same flexibility in functional form.

Estimation Results

This section provides an empirical illustration of the advantages of GAM using real
estate data. Specifically, the first subsection provides the models and variables used
in the latter subsections, the second subsection discusses the data, the third subsection
focuses upon the graphs of the estimated functions versus their arguments, the fourth
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subsection presents the global sample estimates and the final subsection contains a
predictive cross-validation trial of the various estimators and models.

Models and Variables

AREAID, an dichotomous variable, refers to one of twenty-four districts within
Memphis. CARPORTS, GARAGE, CENAC, NONAC, FIRE, POOL, BRICK and ALUM

(aluminum siding) are also dichotomous variables with one representing the presence
of the characteristic. KITSF (kitchen area) and NONKITSF (non-kitchen area) added
together equal total area. LOTSF denotes lot area in square feet. BATHS denotes number
of bathrooms. ln(AGE) actually equals ln(AGE1e).6 In the results I will make reference
to the following models.

Common Model

ln(Price)5b intercept1b AREAID1b CARPORTS1b GARAGE1b CENAC1 2-24 25 26 27

1b NONAC1b FIRE1b POOL1b BRICK1b ALUM.28 29 30 31 32

Models 1-6 Common Model 1. . .

1. b33BATHS1b34NONKITSF1b35KITSF1b36LOTSF1b37AGE.
2. b33BATHS1b34BATHS21b35NONKITSF1b36NONKITSF21b37KITSF

1b38KITSF21b39LOTSF1b40LOTSF21b41AGE1b42AGE2.
3. b33BATHS1b34BATHS21b35ln(NONKITSF)1b36ln(NONKITSF)2

1b37ln(KITSF)1b38ln(KITSF)21b39ln(LOTSF)1b40ln(LOTSF)21b41ln(AGE)
1b42ln(AGE)2.

4. b33BATHS1b34ln(NONKITSF)1b35ln(KITSF)1b36ln(LOTSF)1b37ln(AGE).
5. b33BATHS1b34-35s(NONKITSF)1b36-37s(KITSF)1b38-39s(LOTSF)1b40-

41s(AGE).
6. b33BATHS1b34-35s(ln(NONKITSF))1b36-37s(ln(KITSF))1b38-39s(ln(LOTSF))1

b40-41s(ln(AGE)).

Data

The sample data came from the Memphis MLS’s Multiple Listing Book (Memphis
Board of Realtors, January 1987). The actual transactions price came from the
cumulative index of sold properties. Characteristics data on each of the selected
properties came either from this index or from the original listing description. The
sample contains observations on 442 single-family dwellings sold within the previous
six-month period with complete information on each variable. Stratified random
sampling, whereby the proportion of properties in the sample from the twenty-four
different city areas matched the population proportion in these areas, was used to
insure a truly representative sample of the population of sold properties. As a result,
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the sample means of both the dependent and independent variables closely match their
population counterparts.

Depictions of Nonlinearities

This subsection examines the GAM and polynomial regression model estimated
functions (Xi) for various values of Xi. For the linear model i(Xi)5Xibi, hence any˜ ˜ƒ ƒi

departures from this provide evidence of nonlinearities.

As the semilogarithmic specifications seems the most common in real estate, I began
with it. Essentially, Model 1, the simple semilogarithmic model, represents this type.
Using this model but allowing the nondichotomous variables to act as an arguments
to a nonparametrically estimated functions gave rise to Model 5. The GAM estimated
transformations (and their confidence regions) of the selected independent variables
BATHS, LOTSF, AGE and KITSF for this model appear in Exhibit 1.7 I allocated two
degrees-of-freedom for each of these variables as I did for the polynomial regressions.
This set of graphs reveals the apparent need for some type of transformations for the
BATHS, LOTSF and AGE variables. Note, the estimated transformation for LOTSF actually
turns down after a 50,000 square feet. However, the confidence region for the graph
still admits of a monotonic transformation.

I used a logarithmic transformation of the AGE, LOTSF and KITSF variables as well as
the NONKITSF variable (not shown due to lack of space). Recall, the coefficients in a
double logarithmic specification estimate elasticities. Hence, GAM allows estimation
of variable elasticities. Subsequent estimation of a GAM model involving the
transformed variables (Model 6) produced the estimated transformations in Exhibit 2.
The estimated transformations have become much more linear than those in Exhibit
2.8 The new transformed independent variables gave rise to Model 4, the simple
double logarithmic model.

As a check upon the GAM, I estimated the equivalent polynomial models (Model 2,
the polynomial semilogarithmic specification and Model 3, the polynomial double
logarithmic specification) using quadratic polynomials (two degrees-of-freedom). The
polynomial semilogarithmic specification (Model 2) estimated transformations of the
original variables and associated confidence intervals appear in Exhibit 3. The
polynomial semilogarithmic specification provides estimated nonmonotonic
transformations of BATHS, LOTSF and AGE. This model also estimates nonmonotonic
confidence regions for the latter two variables.

Using ln(AGE), ln(LOTSF), ln(KITSF) and ln(NONKITSF) and their squares yielded Model
3. Subsequent estimation of the polynomial double log specification produced the
estimated transformations in Exhibit 4. The estimated transformations have become
more linear than those in Exhibit 3. However, the polynomial double logarithmic
specification still estimates a non-monotonic transformation of BATHS and ln(AGE).9

However, the confidence regions for both admit of monotonic transformations.

Generally, polynomial models approximate functions well within the factor space.
However, attempts to extrapolate outside of this, especially for the untransformed



APPRAISAL USING GENERALIZED ADDITIVE MODELS 83

E
x
h

ib
it

1

S
p

li
n

e
G

A
M

F
it

s
fo

r
S

e
m

i-
L
o

g
M

o
d

e
l



84 JOURNAL OF REAL ESTATE RESEARCH

VOLUME 15, NUMBERS 1/2, 1998

E
x
h

ib
it

2

S
p

li
n

e
G

A
M

F
it

s
fo

r
D

o
u

b
le

L
o

g
M

o
d

e
l



APPRAISAL USING GENERALIZED ADDITIVE MODELS 85
E

x
h

ib
it

3

P
o

ly
n

o
m

ia
l

G
A

M
F
it

s
fo

r
S

e
m

i-
L
o

g
M

o
d

e
l



86 JOURNAL OF REAL ESTATE RESEARCH

VOLUME 15, NUMBERS 1/2, 1998

E
x
h

ib
it

4

P
o

ly
n

o
m

ia
l

G
A

M
F
it

s
fo

r
D

o
u

b
le

L
o

g
M

o
d

e
l



APPRAISAL USING GENERALIZED ADDITIVE MODELS 87

variables, would likely produce poor results. For example, in Model 2 having over
seventy years of AGE actually adds value to the house. In Model 3 having six or more
BATHS would reduce the value of the house. On the other hand, the logarithmic
transformation of AGE did help in Model 3. It would take over 1000 years of AGE

before this would add to the value of the house.

Using GAM, as opposed to the traditional polynomial specification, resulted in
transformations more in accord with prior information. Specifically, one would expect
positive monotonic transformations of characteristics representing goods and negative
monotonic transformations of characteristics such as AGE. The GAM transformations
satisfied these priors while the polynomial specification often suggested nonmonotonic
transformations.10

Finally, the GAM results agree with those of Anglin and Gencay (1993) who found
the hedonic pricing function concave in bedrooms and in lot size using a combination
of linear (seven variables) and nonparametric kernel estimation (six variables).

Global Sample Estimates

Exhibits 5-10 contain the estimates for the respective models using the global sample
of 442 observations. Each of the models produced estimates with the expected signs.
Only two of the nonarea variables, ALUM (for aluminum siding) and POOL, had
estimates not significant at the 5% level or better.

Exhibit 11 presents the estimates for common characteristics across the six models.
The last two columns provide the range of estimates across models and the highest
estimated standard error across the six regressions. As an informal way of identifying
model differences, I have shaded cells associated with variables where the range of
estimates exceeded the maximum standard error by a factor of two or more. Eight of
the thirty-one common nonintercept variables changed by this magnitude or more.11

Model 1, the original semilogarithmic model, and Model 4, the simple double
logarithmic model, yielded the most extreme estimates of the six models. For example,
Model 1 yielded the maximum estimate in five and the minimum estimate in one of
the eight nonintercept variables where the estimate ranges exceeded twice the
maximum standard error. Model 4 yielded the minimum estimate in five of the eight
nonintercept variables where the estimate ranges exceeded twice the maximum
standard error.

Can we state anything concerning the realism of these estimates given our prior
information? Model 1 produced an estimate of fireplace value of $5,439 when
transformed into price space.12 Also, Model 1 produced an estimate of central air-
conditioning value of $10,134 over that of window unit air-conditioning.13 This seems
somewhat unrealistic. In contrast, Model 4, the simple double logarithmic model
yields a fireplace value of $2462 and a central air-conditioning value of $7198 over
that of window unit air-conditioning. Hence, Model 1 exceeds the cost-bound priors
reported by Pace and Gilley (1993) for both fireplace values and central air-



88 JOURNAL OF REAL ESTATE RESEARCH

VOLUME 15, NUMBERS 1/2, 1998

Exhibit 5

Original Semi-Logarithmic Specification

Variable Estimate Std. Err. t-ratio Pr(.utu)

Intercept 10.336 0.043 239.2 0.000
AREAID 1 0.113 0.030 3.8 0.000
AREAID 2 0.120 0.016 7.7 0.000
AREAID 3 20.051 0.012 24.2 0.000
AREAID 4 0.035 0.008 4.3 0.000
AREAID 5 20.020 0.006 23.4 0.001
AREAID 6 0.006 0.005 1.4 0.175
AREAID 7 0.001 0.006 0.2 0.835
AREAID 8 0.013 0.005 2.5 0.014
AREAID 9 0.005 0.004 1.2 0.249
AREAID 10 0.007 0.004 1.6 0.112
AREAID 11 20.004 0.003 21.4 0.157
AREAID 12 20.003 0.002 21.1 0.257
AREAID 13 20.009 0.003 23.4 0.001
AREAID 14 20.003 0.002 21.6 0.104
AREAID 15 20.005 0.002 22.5 0.012
AREAID 16 20.007 0.002 23.2 0.001
AREAID 17 20.010 0.002 26.1 0.000
AREAID 18 20.015 0.002 27.4 0.000
AREAID 19 20.014 0.002 27.8 0.000
AREAID 20 20.002 0.001 21.9 0.059
AREAID 21 0.003 0.001 2.1 0.040
AREAID 22 0.000 0.001 0.3 0.750
AREAID 23 20.006 0.002 23.3 0.001
CARPORTS 0.023 0.009 2.4 0.015
GARAGE 0.055 0.009 5.9 0.000
CENAC 0.129 0.023 5.7 0.000
NONAC 20.205 0.050 24.1 0.000
FIRE 0.067 0.017 4.0 0.000
POOL 0.019 0.028 0.7 0.504
BRICK 0.058 0.015 3.9 0.000
ALUM 0.022 0.040 0.6 0.582
BATHS 0.070 0.019 3.6 0.000
NONKITSF 0.000 0.000 15.9 0.000
KITSF 0.001 0.000 5.7 0.000
LOTSF 0.000 0.000 2.4 0.016
AGE 20.003 0.001 22.8 0.006

Note: There were 442 observations; df5405; R 25.928; and F5145.6.

conditioning ($3700 and $6582, respectively). Model 4 exceeds the cost-bound prior
for central air-conditioning, but by a much lesser margin. The other models yield
estimates for these characteristics between those of Models 1 and 4.

Examining Exhibits 9 and 11 directly, note the close agreement in coefficients between
Model 4, the simple double logarithmic model, and Model 6, the GAM double
logarithmic model.14 Finally, the standard errors on the common coefficients differed
little across models.
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Exhibit 6

Polynomial Semi-Logarithmic Specification

Variable Estimate Std. Err. t-ratio Pr(.utu)

Intercept 11.072 0.025 439.7 0.000
AREAID 1 0.025 0.034 0.7 0.460
AREAID 2 0.120 0.015 8.2 0.000
AREAID 3 20.032 0.012 22.7 0.007
AREAID 4 0.046 0.008 5.6 0.000
AREAID 5 20.011 0.006 21.9 0.064
AREAID 6 0.013 0.005 2.8 0.005
AREAID 7 0.001 0.005 0.1 0.893
AREAID 8 0.012 0.005 2.5 0.012
AREAID 9 0.001 0.004 0.3 0.784
AREAID 10 0.003 0.004 0.8 0.419
AREAID 11 20.006 0.003 22.2 0.026
AREAID 12 20.004 0.002 21.6 0.101
AREAID 13 20.005 0.003 21.9 0.060
AREAID 14 0.000 0.002 20.1 0.957
AREAID 15 20.005 0.002 22.5 0.012
AREAID 16 20.006 0.002 22.7 0.008
AREAID 17 20.008 0.002 25.1 0.000
AREAID 18 20.013 0.002 26.4 0.000
AREAID 19 20.012 0.002 27.1 0.000
AREAID 20 20.001 0.001 21.0 0.340
AREAID 21 0.002 0.001 1.9 0.057
AREAID 22 0.001 0.001 0.4 0.708
AREAID 23 20.011 0.002 25.6 0.000
CARPORTS 0.026 0.009 3.0 0.003
GARAGE 0.045 0.009 5.2 0.000
CENAC 0.098 0.022 4.3 0.000
NONAC 20.180 0.047 23.9 0.000
FIRE 0.043 0.016 22.6 0.010
POOL 0.028 0.026 1.1 0.277
BRICK 0.052 0.014 3.7 0.000
ALUM 0.023 0.037 0.6 0.532
poly(BATHS,2)1 0.712 0.217 3.3 0.001
poly(BATHS,2)2 20.456 0.170 22.7 0.008
poly(NONKITSF,2)1 4.213 0.251 16.8 0.000
poly(NONKITSF,2)2 20.248 0.155 21.6 0.111
poly(KITSF,2)1 0.744 0.124 6.0 0.000
poly(KITSF,2)2 20.010 0.120 20.1 0.935
poly(LOTSF,2)1 0.500 0.132 3.8 0.000
poly(LOTSF,2)2 20.589 0.138 24.3 0.000
poly(AGE,2)1 21.065 0.337 23.2 0.002
poly(AGE,2)2 1.071 0.198 5.4 0.000

Note: There were 442 observations: df5400; R 25.939; and F5150.

Cross-Validation of Prediction Errors

To gain insight into the six models, I conducted a predictive cross-validation
experiment. Specifically, for each of the 500 iterations I divided the sample into 221
insample and 221 exsample observations. I estimated the six models on the 221
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Exhibit 7

Polynomial Double Logarithmic Specification

Variable Estimate Std. Err. t-ratio Pr(.utu)

Intercept 11.070 0.026 432.7 0.000
AREAID 1 0.072 0.028 2.6 0.011
AREAID 2 0.115 0.015 7.9 0.000
AREAID 3 20.038 0.011 23.4 0.001
AREAID 4 0.039 0.008 5.1 0.000
AREAID 5 20.018 0.006 23.3 0.001
AREAID 6 0.010 0.004 2.3 0.021
AREAID 7 0.006 0.006 1.0 0.296
AREAID 8 0.016 0.005 3.3 0.001
AREAID 9 0.004 0.004 0.9 0.354
AREAID 10 0.004 0.004 1.0 0.315
AREAID 11 20.004 0.003 21.3 0.186
AREAID 12 20.002 0.002 20.9 0.349
AREAID 13 20.006 0.003 22.3 0.023
AREAID 14 20.001 0.002 20.5 0.585
AREAID 15 20.002 0.002 21.2 0.230
AREAID 16 20.007 0.002 23.1 0.002
AREAID 17 20.009 0.002 25.8 0.000
AREAID 18 20.013 0.002 26.7 0.000
AREAID 19 20.011 0.002 26.3 0.000
AREAID 20 20.001 0.001 20.6 0.538
AREAID 21 0.003 0.001 2.8 0.005
AREAID 22 0.002 0.001 1.4 0.176
AREAID 23 20.009 0.002 24.9 0.000
CARPORTS 0.018 0.009 2.1 0.036
GARAGE 0.041 0.009 4.8 0.000
CENAC 0.093 0.022 4.2 0.000
NONAC 20.169 0.048 23.5 0.000
FIRE 0.045 0.017 2.7 0.008
POOL 0.025 0.026 1.0 0.328
BRICK 0.049 0.014 3.5 0.001
ALUM 0.007 0.038 0.2 0.855
poly(BATHS,2)1 0.764 0.217 3.5 0.000
poly(BATHS,2)2 20.487 0.165 23.0 0.003
poly(ln(NONKITSF),2)1 4.113 0.251 16.4 0.000
poly(ln(NONKITSF),2)2 0.963 0.174 5.5 0.000
poly(ln(KITSF),2)1 0.757 0.122 6.2 0.000
poly(ln(KITSF),2)2 20.056 0.122 20.5 0.644
poly(ln(LOTSF),2)1 0.700 0.151 4.7 0.000
poly(ln(LOTSF),2)2 20.167 0.124 21.3 0.180
poly(ln(AGE),2)1 21.127 0.308 23.7 0.000
poly(ln(AGE),2)2 0.425 0.211 2.0 0.045

Note: There were 442 observations; df5400; R 25.940; and F5151.5.

insample observations and recorded their prediction errors on the 221 exsample
observations.15 I examined both root mean squared error (RMSE) and the median
absolute error.16 Exhibit 12 provides the mean and standard deviation of the errors
(both RMSE and median absolute errors) as well as relative mean and standard
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Exhibit 8

Double Logarithmic Specification

Variable Estimate Std. Err. t-ratio Pr(.utu)

Intercept 6.062 0.251 24.1 0.000
AREAID 1 0.075 0.026 2.9 0.004
AREAID 2 0.119 0.015 7.9 0.000
AREAID 3 20.044 0.011 24.0 0.000
AREAID 4 0.030 0.007 4.1 0.000
AREAID 5 20.016 0.006 22.8 0.006
AREAID 6 0.007 0.004 1.5 0.126
AREAID 7 20.001 0.004 20.2 0.830
AREAID 8 0.014 0.004 3.4 0.001
AREAID 9 20.003 0.003 20.8 0.442
AREAID 10 20.001 0.004 20.3 0.797
AREAID 11 20.007 0.003 22.9 0.004
AREAID 12 20.006 0.002 22.9 0.004
AREAID 13 20.007 0.003 22.5 0.014
AREAID 14 20.002 0.002 21.1 0.255
AREAID 15 20.005 0.002 23.2 0.002
AREAID 16 20.007 0.002 23.1 0.002
AREAID 17 20.009 0.002 25.9 0.000
AREAID 18 20.012 0.002 26.0 0.000
AREAID 19 20.011 0.002 26.6 0.000
AREAID 20 20.002 0.001 21.8 0.080
AREAID 21 0.002 0.001 1.6 0.108
AREAID 22 0.001 0.001 0.5 0.629
AREAID 23 20.010 0.002 25.6 0.000
CARPORTS 0.020 0.009 2.3 0.022
GARAGE 0.044 0.009 4.9 0.000
CENAC 0.091 0.022 4.1 0.000
NONAC 20.136 0.048 22.8 0.005
FIRE 0.030 0.017 1.8 0.076
POOL 0.031 0.027 1.2 0.246
BRICK 0.045 0.014 3.1 0.002
ALUM 0.017 0.038 0.4 0.656
BATHS 0.074 0.018 4.0 0.000
ln(NONKITSF) 0.529 0.034 15.8 0.000
ln(KITSF) 0.098 0.016 6.2 0.000
ln(LOTSF) 0.078 0.017 4.5 0.000
ln(AGE) 20.086 0.013 26.6 0.000

Note: There were 442 observations; df5405; R 25.933; and F5157.8.

deviation (scaled by the mean and standard deviation of Model 6). In addition, Exhibit
12 provides the proportion of iterations where each model improved over the others
for both types of error.

For both types of error, Model 1 performs the worst and Model 6 performs the best.
I found the latter result rather surprising as the difference between the estimates on
Model 4 and Model 6 were rather small given the extra degrees of freedom used by
Model 6. In terms of median absolute error, Model 1 performs 15.1% worse in a
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Exhibit 9

GAM Semi-Logarithmic Specification

Variable Estimate Std. Err. t-ratio Pr(.utu)

Intercept 10.359 0.041 255.1 0.000
AREAID 1 0.085 0.028 3.0 0.003
AREAID 2 0.117 0.015 8.0 0.000
AREAID 3 20.044 0.011 23.9 0.000
AREAID 4 0.037 0.008 4.9 0.000
AREAID 5 20.017 0.006 23.1 0.002
AREAID 6 0.009 0.004 2.0 0.047
AREAID 7 0.000 0.005 0.1 0.956
AREAID 8 0.013 0.005 2.6 0.008
AREAID 9 0.003 0.004 0.7 0.454
AREAID 10 0.005 0.004 1.3 0.203
AREAID 11 20.006 0.003 22.0 0.051
AREAID 12 20.003 0.002 21.3 0.194
AREAID 13 20.007 0.003 22.8 0.005
AREAID 14 20.002 0.002 21.0 0.343
AREAID 15 20.005 0.002 22.5 0.013
AREAID 16 20.007 0.002 23.3 0.001
AREAID 17 20.009 0.002 26.0 0.000
AREAID 18 20.014 0.002 27.2 0.000
AREAID 19 20.013 0.002 27.6 0.000
AREAID 20 20.002 0.001 21.5 0.139
AREAID 21 0.002 0.001 2.1 0.039
AREAID 22 0.001 0.001 0.5 0.611
AREAID 23 20.009 0.002 25.0 0.000
CARPORTS 0.023 0.009 2.6 0.009
GARAGE 0.049 0.009 5.7 0.000
CENAC 0.107 0.021 5.0 0.000
NONAC 20.191 0.047 24.1 0.000
FIRE 0.052 0.016 3.2 0.001
POOL 0.021 0.026 0.8 0.419
BRICK 0.056 0.014 4.0 0.000
ALUM 0.022 0.038 0.6 0.567
s(BATHS,2) 0.065 0.018 3.6 0.000
s(NONKITSF,2) 0.000 0.000 17.5 0.000
s(KITSF,2) 0.001 0.000 5.9 0.000
s(LOTSF,2) 0.000 0.000 3.4 0.001
s(AGE,2) 20.004 0.001 23.1 0.002

Note: There were 442 observations; df5400; R 25.937; and F5166.

relative sense and 1.0% in an absolute sense. This means Model 1 has about $800
extra error than Model 6 when converting this into price space. As the proportions
show, Model 6 yields less error than Model 1 in 98.0% to 96.4% of the trials. As
expected, Model 6 outperforms the polynomial models.

Model 4, the simple double logarithmic model, outperformed every model except
Model 6 in terms of median absolute error. Model 4 outperformed Model 2 in terms
of mean RMSE and Model 3 in terms of improvement proportions. Hence, the results
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Exhibit 10

GAM Double Logarithmic Specification

Variable Estimate Std Err. t-ratio Pr(.utu)

Intercept 6.030 0.242 24.9 0.000
AREAID 1 0.074 0.025 3.0 0.003
AREAID 2 0.117 0.014 8.1 0.000
AREAID 3 20.042 0.011 24.0 0.000
AREAID 4 0.034 0.007 4.8 0.000
AREAID 5 20.017 0.005 23.0 0.003
AREAID 6 0.008 0.004 1.9 0.052
AREAID 7 0.002 0.004 0.4 0.670
AREAID 8 0.015 0.004 3.7 0.000
AREAID 9 0.000 0.003 ,0.1 0.996
AREAID 10 0.001 0.004 0.3 0.742
AREAID 11 20.006 0.002 22.4 0.016
AREAID 12 20.004 0.002 22.1 0.036
AREAID 13 20.006 0.003 22.3 0.020
AREAID 14 20.001 0.002 20.7 0.508
AREAID 15 20.004 0.002 22.5 0.014
AREAID 16 20.007 0.002 23.2 0.002
AREAID 17 20.009 0.002 25.9 0.000
AREAID 18 20.012 0.002 26.2 0.000
AREAID 19 20.011 0.002 26.8 0.000
AREAID 20 20.001 0.001 21.2 0.240
AREAID 21 0.003 0.001 2.3 0.020
AREAID 22 0.001 0.001 1.0 0.321
AREAID 23 20.010 0.002 25.6 0.000
CARPORTS 0.021 0.009 2.4 0.017
GARAGE 0.044 0.009 5.0 0.000
CENAC 0.095 0.021 4.5 0.000
NONAC 20.143 0.046 23.1 0.002
FIRE 0.037 0.016 2.3 0.022
POOL 0.026 0.026 1.0 0.324
BRICK 0.047 0.014 3.4 0.001
ALUM 0.017 0.037 0.5 0.652
s(BATHS,2) 0.070 0.018 4.0 0.000
s(ln(NONKITSF),2) 0.528 0.032 16.3 0.000
s(ln(KITSF),2) 0.098 0.015 6.4 0.000
s(ln(LOTSF),2) 0.079 0.017 4.8 0.000
s(ln(AGE),2) 20.076 0.013 26.0 0.000

Note: There were 442 observations; df5400; R 25.939; and F5170.2.

for Model 4 were mixed using RMSE. However, due to the measured lack of normality
of the residuals, I believe the median absolute error gives a clearer picture.

Conclusion
GAM allows for the estimation of the dependent variable as a series of general
functions of the independent variables. Insofar as the dependent variable can be in
logarithms or powers, GAM can model multiplicative specifications as well. GAM
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Exhibit 11

Estimates of Common Variables Across Models

Variable Model 1 Model 2 Model 3 Model 4 Model 5 Model 6 Range Max SE

Intercept 10.336 11.072 11.070 6.062 10.359 6.030 5.042 0.251
1 0.113 0.025 0.072 0.075 0.085 0.074 0.088 0.034
2 0.120 0.120 0.115 0.119 0.117 0.117 0.005 0.016
3 20.051 20.032 20.038 20.044 20.044 20.042 0.019 0.012
4 0.035 0.046 0.039 0.030 0.037 0.034 0.016 0.008
5 20.020 20.011 20.018 20.016 20.017 20.017 0.009 0.006
6 0.006 0.013 0.010 0.007 0.009 0.008 0.007 0.005
7 0.001 0.001 0.006 20.001 0.000 0.002 0.007 0.006
8 0.013 0.012 0.016 0.014 0.013 0.015 0.004 0.005
9 0.005 0.001 0.004 20.003 0.003 0.000 0.008 0.004
10 0.007 0.003 0.004 20.001 0.005 0.001 0.008 0.004
11 20.004 20.006 20.004 20.007 20.006 20.006 0.003 0.003
12 20.003 20.004 20.002 20.006 20.003 20.004 0.004 0.002
13 20.009 20.005 20.006 20.007 20.007 20.006 0.004 0.003
14 20.003 0.000 20.001 20.002 20.002 20.001 0.003 0.002
15 20.005 20.005 20.002 20.005 20.005 20.004 0.003 0.002
16 20.007 20.006 20.007 20.007 20.007 20.007 0.001 0.002
17 20.010 20.008 20.009 20.009 20.009 20.009 0.002 0.002
18 20.015 20.013 20.013 20.012 20.014 20.012 0.003 0.002
19 20.014 20.012 20.011 20.011 20.013 20.011 0.003 0.002
20 20.002 20.001 20.001 20.002 20.002 20.001 0.001 0.001
21 0.003 0.002 0.003 0.002 0.002 0.003 0.001 0.001
22 0.000 0.001 0.002 0.001 0.001 0.001 0.002 0.001
23 20.006 20.011 20.009 20.010 20.009 20.010 0.005 0.002
CARPORTS 0.023 0.026 0.018 0.020 0.023 0.021 0.008 0.009
GARAGES 0.055 0.045 0.041 0.044 0.049 0.044 0.014 0.009
CENAC 0.129 0.098 0.093 0.091 0.107 0.095 0.038 0.023
NONAC 20.205 20.180 20.169 20.136 20.191 20.143 0.069 0.050
FIRE 0.067 0.043 0.045 0.030 0.052 0.037 0.037 0.017
POOL 0.019 0.028 0.025 0.031 0.021 0.026 0.009 0.028
BRICK 0.058 0.052 0.049 0.045 0.056 0.047 0.013 0.015
ALUM 0.022 0.023 0.007 0.017 0.022 0.017 0.016 0.040

estimate each function of the independent variables nonparametrically through
smoothing splines, locally weighted regression or the kernel method. Hence, GAM
attempt to combine the interpretability of additive modeling with the flexibility of
nonparametric estimation. Since GAM generally rely upon bivariate nonparametric
estimation, these estimates converge with , the same rate as parametric estimatorsÏn
and above the multivariate nonparametric estimator rate, which declines with
dimensionality. Moreover, the bivariate fits lend themselves to graphical presentation.
Hence, the user can see the estimated transformation versus its argument. This
knowledge can lead to variable transformations as an input to further estimation or
prove useful in its own right. Finally, GAM are a generalization of GLMs.
Consequently, one can easily apply GAM using other distributions such as Poisson,
gamma and multinomial using different variance specifications. Hence, one can
estimate count or duration data, survival data and probabilities with the same flexibility
in functional form.
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Exhibit 12

Cross-Validation of Prediction Errorsa

RMSE Model 1 Model 2 Model 3 Model 4 Model 5 Model 6

Mean 0.135 0.132 0.129 0.130 0.128 0.127
s 0.011 0.012 0.012 0.010 0.011 0.011
Relative Mean 1.062 1.037 1.013 1.021 1.011 1.000
Relative s 1.028 1.165 1.084 0.965 1.014 1.000

Panel A: Proportions of Trials where Model i RMSE,Model j RMSE

2,1 0.756
3,1,2 0.906 0.644
4,1,2,3 0.896 0.538 0.358
5,1,2,3,4 0.992 0.650 0.504 0.668
6,1,2,3,4,5 0.980 0.732 0.610 0.934 0.656

Panel B: Median ueu

Mean 0.074 0.066 0.068 0.066 0.069 0.064
s 0.006 0.005 0.005 0.005 0.005 0.005
Relative Mean 1.151 1.026 1.048 1.016 1.071 1.000
Relative s 1.109 1.005 1.032 1.012 1.032 1.000

Panel C: Proportions of Trials Where Model i Medianueu,Model j Medianueu

2,1 0.9480
3,1,2 0.9000 0.3720
4,1,2,3 0.9700 0.5600 0.6660
5,1,2,3,4 0.9320 0.2200 0.3580 0.2060
6,1,2,3,4,5 0.9640 0.6580 0.7820 0.6480 0.8900

aBased upon 500 iterations of resampling 221 insample and 221 exsample observations.

This article applied GAM to a sample of 442 houses with transactions data from the
Memphis area. The GAM estimator suggested logarithmic transformations to the
nondichotomous variables. In prediction cross-validation experiments the resulting
double logarithmic model outperformed the original semiparametric model by a large
margin. Specifically, the double logarithmic model improved on the semilogarithmic
model anywhere from 89.6% to 97.0% of the trials. In turn, the GAM model, despite
the five extra degrees-of-freedom used, improved over the simple double logarithmic
model (and all others). Specifically, the GAM improved on the semilogarithmic model
anywhere from 96.4% to 98.0% of the trials and improved over the double logarithmic
model in 64.8% to 93.4% of the trials. The GAM displayed about $800 less error on
average than the original semilogarithmic model.

In his discussion of the things statisticians can learn from neural net experiences,
Tibshirani (1994) stated, ‘‘Models with very large numbers of parameters can be
useful for prediction, especially for large data sets and problems exhibiting high
signal-to-noise ratios.’’ GAM, along with many other semiparametric and
nonparametric estimators, fall into this category. Moreover, we often have large data
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sets in real estate with high signal-to-noise (goodness-of-fit). Based upon this study
and others, semiparametric and nonparametric estimators would appear to have great
potential in real estate empirical research.

Notes
1Debate continues concerning the guidance theory provides concerning the directions or signs
of first and second derivatives of prices with respect to the bundled characteristics. Traditional
hedonic pricing theory (Rosen, 1974) does not offer much guidance. Coulson (1989) presented
conditions which could lead to a linear form. Pace and Gilley (1990) provided some arbitrage
arguments based upon home remodeling costs which bounded the derivative of price with
respect to the characteristics. Colwell (1991, 1993) presented in detail the theory behind such
arbitrage, which could result in nonmonotonic hedonic price functions in special cases. In
addition to the theory, numerous hedonic pricing and computer aided mass assessment
applications most often support hedonic pricing functions linear or concave in characteristics
representing goods.
2The so-called ‘‘curse of dimensionality.’’ Bivariate nonparametric estimators can often match
the rate on parametric estimators ( ), but multivariate nonparametric estimators converge atÏn
much slower rates.
3Projection pursuit predates and subsumes neural nets. However, neural nets often use so many
parameters that they often resemble nonparametric estimators more than semiparametric ones.
See Cheng and Titterington (1994) for more on the statistical interpretation of neural nets (many
of the eight discussants’ comments are quite interesting as well). See Do and Grudnitski (1993)
for a real estate application.
4He used parametric estimation to form the weights used in the nonparametric smoothing. His
results clearly show the advantages of nonparametric estimation. Unfortunately, he did not link
his method to the literature on nonparametric estimation.
5The S-PLUS program gives a choice of locally weighted regression smoothing, smoothing
splines, two forms of regression splines and polynomials for estimating GAM. Of these,
polynomials and regressions splines have parametric forms which methods such as least squares
can fit directly. For nonparametric estimation, S-PLUS also implements the supersmoother and
kernel methods. Similarly, GAUSSX supports kernel regression. Also, by combining the kernel
regression and maximum likelihood routines in GAUSSX, one could estimate GAM. However,
the kernel used in GAUSSX is not guaranteed to converge in GAM estimation, unlike smoothing
splines or locally weighted regression.
6Since new houses appeared in the sample, AGE equals 0 for some observations. This
necessitated the addition of a constant. Adding a constant changes the curvature of the function
with respect to the variable. Neural nets call this ‘‘bias.’’ I chose e as a constant based upon a
graph of ln(Price) versus AGE.
7One can identify the spline functions up to a constant (the polynomial functions are completely
identified). Also, due to scaling of the functions, the actual numbers on the y axis are difficult
to interpret. However, this does not affect the pattern of linearity or nonlinearity of the function.
8I also estimated a GAM using ln(BATHS). Both the BATHS and ln(BATHS) variables produced
approximately linear graphs. I retained the BATHS variable to act as a nondichotomous variable
common to all models.
9Using a neural network model, Do and Grudnitski (1993) found a nonmonotonic relation
between sales price and age. In estimating GAM using sales price, I noted a similar phenomenon
(as also present with the polynomial regressions). However, the introduction of an interaction
between total area and lot area eliminated this and led to greater linearity among all the
variables. In fact, the estimated functions were more linear when using Price than ln(Price).
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Incidentally, the neural net estimator predictions did not improve on those of OLS for a variant
of this data.
10Restricting the coefficients in the polynomial regression to produce monotonic transformations
over the factor space might cure some of its problems. One could accomplish this through
inequality constrained least squares. See Pace and Gilley (1993) for an application of this to
semilogarithmic models. Note, new software exists to do this. Both GAUSS and Matlab have
quadratic programming routines while S-PLUS includes a non-negative least-squares routine.
SHAZAM performs Bayesian inequality estimation. This would also prove quite simple to
implement in GAUSS or GAUSSX with the RNDTN function.
11The intercept variable possessed the greatest divergence of estimates relative to their standard
errors. However, the change in the definition of variables and the addition of other terms would
naturally cause this to vary greatly across regressions.
12One can estimate the value of a coefficient in price space given some model fitted in some
function of price space. See Pace and Gilley (1993) for an application and references. Note,
the adjustment varies depending upon whether Xi is continuous or discrete.
13The intercept would capture the effect of window unit air-conditioning since two dichotomous
variables measure no air-conditioning and central air-conditioning.
14It requires adjustment to compare the effects of the other variables across models. Spot
calculations show the different models tend to produce similar estimates at the mean of X. Note,
the polynomial regression routine in S-PLUS uses orthogonal polynomials and rescales Xi to
unit column length to prevent numerical problems. Hence, the scaling makes the numbers appear
large.
15The 500 iterations took 11.5 hours using S-PLUS on a 486DX250 computer.
16While all of these estimators minimize sum of squared error or equivalently RMSE, the median
absolute error may measure more precisely, in some sense, the performance of these estimators.
Squared error can have an asymmetric, long-tailed distribution. While sums of such random
variates approach normality, in this case, the resulting sums had not yet reached normality. The
mean does not possess much efficiency for such distributions. Hence, the mean may not measure
central tendencies as well as the median. Note, the median of squared error is the same as the
squared median absolute error (for series with odd-numbered lengths). Hence, the median
absolute error may provide information relevant to squared errors.
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