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Abstract. The geographer’s spatial diffusion theory is combined with Geographic Infor-
mation Systems (GIS) technology to provide a new framework for predicting residential
single-family development patterns. We refer to the model as a multiple-stage “Cascade”
GIS diffusion model. Parameter calibration is done using two-stage least squares. The
model predicts new housing built and purchased by small submarket. Our example
submarket is at the census tract level; a smaller submarket could have been chosen. The
contribution to housing forecasting literature is a structural model that captures the
spatial diffusion process at various geographical scales. Model estimation and forecasts
are facilitated using GIS technology via a high resolution and high precision database
using county property tax rolls.

Introduction

This paper introduces a method for forecasting housing absorption for a small
target area. We refer to the method as a “Cascade GIS diffusion model.”” The model
builds upon the already extensive geographic literature on spatial diffusion. Spatial
diffusion studies are the systematic analysis of the spread of a phenomena across a
landscape (Morrill et al., 1988) which are influenced by contagion and/or hierarchical
processes. The diffusion phenomena examined here are the development of new
single-family dwellings, and the timing and location of that development. The target
area could be a quadrat (Boots and Getis, 1988), census tract, census block, trans-
portation analysis zone, planning district, or other small area.

Cascading refers to the mixture of several geographic scales, and the identification
of how phenomena at those different scales are linked. For instance, when population
increases in the county, some of that population is captured by the neighborhood, and
part of the neighborhood increase, in turn, is captured by the target site within the
neighborhood. For the purpose of this study, the neighborhood is comprised of all
census tracts adjacent to a target census tract. Adjacency is based on shared borders.
The geographic impact of population increase is conceptually cascading downward
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Exhibit 1
Location of St. Lucie County, Florida

L

from large scale to small. This Cascade diffusion model builds upon the premise that
population growth drives county housing growth, county housing growth sub-
sequently drives the growth of housing in the “‘neighborhood,” which in turn drives
the growth of housing in the smaller geographic/target areas.

Geographic Information Systems (GIS) is used to manage geographically referenced
data. A GIS is an organized collection of computer hardware, software, geographic
data, analytic techniques and personnel designed to efficiently capture, store, update,
manipulate, analyze, and display all forms of geographically referenced information.
A GIS is an integrated system that links data to graphics or digital maps to allow
spatial analysis of geographical map features. Until recently, cost and technological
limitations prohibited large-scale, data-intensive urban analysis. This limited most
empirical analysis and subsequent theoretical advancements to examining and being
based primarily upon relative measures of location (e.g., distance from the central
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business district—CBD). Advancements in computer hardware, GIS software, and
spatial reasoning now enable the researcher to process and analyze large data sets
where the attributes of the objects are positioned—absolutely—with high precision on
a map (Thrall and Marks, 1993).

The Cascade diffusion model presented here can be operationalized using appro-
priate data for any region, and any number and size of cascading scales of resolution.
To illustrate the model, spatially referenced housing data for St. Lucie County,
Florida, is used. For the purposes of this study, the county was chosen as the
geographic unit of lowest resolution. The intermediate scale is comprised of census
tracts that border the target census tract, and the high resolution target area for which
the forecasts are made is the census tract. Forecasts are made for all census tracts in
St. Lucie County. Parameters for the model are estimated using data up through 1990
and predictions are made for the target areas for 1991. To evaluate the accuracy of the
model, 1991 predictions for each target area are compared to the observed or actual
housing absorption for 1991 derived from the property appraisal file.

Background—St. Lucie County Study Area

There are about 13 million permanent residents in Florida. Four million persons are
projected to be added between 1990 and the year 2000. Much of this growth is
occurring in southern coastal areas (Florida Statistical Abstracts, 1990). St. Lucie
County is in the core of the state’s high growth region, located along the population
dense southeastern coast.

There are 143,214 persons in St. Lucie County. From 1980 to 1989, St. Lucie
County sustained a 72% increase in the number of households, and a 56% increase in

Exhibit 2
Population by Incorporated Unit in St. Lucie County
City 1980 1990 % Change
Fort Pierce 33,802 39,057 15.5
Port St. Lucie 14,690 48,051 2271
Unincorporated 38,099 55,505 457

Source: Florida Bureau of Economic and Business Research

total population. This translates into a sustained average increase in population of
approximately 5,600 residents per year during the past decade. It is anticipated that
200,000 people will reside in the County by the year 2000, suggesting that there will
be a 40% increase in St. Lucie County’s population during the 1990s. A permanent
population of 318,650 (382,380 including seasonal population) is projected for the
year 2015 by the comprehensive plan of the County. The population is dispersed
across the County as shown in Exhibit 2.
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Background—Theories of Land Use

A variety of theories have been used to describe, explain and predict urban
morphology. When combined with appropriate calibration and data analysis, these
theories can be used to prescribe actions that fit within an envelope of objectives.
These theories can be classified into two general categories: (a) those that depict the
change in land use and land values in terms of absolute locations (as measured by
latitude and longitude or a coordinate system); and, (b) those that use relative
locations in relation to some reference point, such as x miles from another important
location on the map.

The literature that uses absolute spatial location to measure land use change includes
the work of Burgess (1925). His concentric zone model has rings of distinct land uses
radiating outward from the central business district. The “‘sectorial”” model introduced
by Hoyt (1939) shows urban form as shaped by land use development that proceeds
along transportation corridors, usually radiating out from the urban core. Hoyt’s
model depicts a high level of homogeneity of land use within each corridor or sector.
Harris and Ullman’s (1945) “Multiple Nuclei” model allows for a more complicated
pattern of land use: growth arises from spatially distributed activity centers, or nodes,
and land use patterns—perhaps like those advanced by Burgess or Hoyt—unfold
around each node.

Literature that uses relative spatial location to measure land use and land value
change includes that of Alonso (1964), Muth (1969) and Thrall (1987, 1991). The
approach of each author is different, but the overall effect is to provide a stylized
model of land value and land use change. These models generally include the
specification of an exogenous parameter or instrument (e.g., Thrall identifies the
instrument typically as either a ““budget constraint shifter” or a “utility shifter’”). The
values of the endogenous variables of the model can be changed by altering the
value of definition of the instrument. As the values change, the general trajectories of
the endogenous variables are revealed giving rise to a heuristic explanation and
expectation of how land use and land values change. Based upon relative measures of
location, the trajectory of change may be in one direction at the CBD, and in the
same or other direction at a node located some distance from the CBD. These models
are useful for heuristic purposes and until recently have been our best window into
understanding urban morphology.

In addition to the above models, a variety of alternative approaches have been
offered to explain the underlying processes that influence the evolution of the urban
landscape. Lowry (1964) examines the interaction of land use with transportation to
forecast residential land uses. Essential to Lowry’s model is the assumption that
demand for residential property increases with accessibility to employment oppor-
tunities. Lowry’s model is driven by population change and a variety of economic
indicators.

The “settlement spheres” approach taken by Sargent (1972) suggests that land
use patterns are shaped by land investors taking advantage of the creation of
transportation networks. The transportation network provides the feasible urban
boundary, while land speculation provides the sequence, location and timing of
development. Sargent (1972, p. 357) believes residential land use to be “‘commonly the
leading edge of urban expansion,” only to be followed later by commercial activity.
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Background—The Geographer’s Paradigm of Spatial Diffusion

The models discussed above have not proven entirely satisfactory for prediction as
they lack components that link spatial and temporal aspects of processes in a
geographic hierarchy. The geographer’s diffusion paradigm, according to Morrill et
al. (1988), can readily be applied to the study of urban growth as an alternative
approach. When mapped, the diffusion process might look in some respects similar to
the concentric zone model proposed by Burgess (1925). However, the diffusion process
is dynamic in that it incorporates both spatial and temporal components. Inter-
estingly, few researchers have applied diffusion theory to the study of metropolitan
growth (see Berry, 1972, on growth diffusion between regions). It is in this application
of diffusion theory that Morrill et al. (1988) believe there to be the greatest potential.
Morrill et al. (1988) explicitly call for the diffusion paradigm to be used to monitor
and forecast urban growth, and it is this subject area, they maintain, that should
receive priority for further advancement of the diffusion literature. Our research here
is an acceptance of the challenge posed by Morrill et al. (1988).

Diffusion as a Theoretical Framework: Higerstrand’s Model

Many geographers have contributed to the development of diffusion literature over
the past one hundred years. Most important to the formulation of the mathematical
approach followed here is the pioneering work of Hégerstrand (1952, 1965, 1967a,
1967b). Hégerstrand formally modelled the diffusion or spread of a given pheno-
menon, from a place of origin over space and through time (see Morrill et al., 1988),
explicitly including the temporal and spatial elements of the diffusion process.
Higerstrand’s analysis captures the “spatial bias™ of the “‘neighborhood effect,” where
once the phenomenon is introduced onto the landscape, the phenomena spreads
“contagiously” and outward from where it was introduced (much like the rippling
effect of water when a stone pierces its surface).

Morrill was one of the early geographers to use diffusion theory to explain and
predict urban land use and land value change, and to apply these concepts to
urban housing. Morrill (1965) (see also Alves and Morrill, 1975) demonstrated that
populations inhabiting housing submarkets expand or contract their areas of domi-
nance in a manner that could be explained and predicted using the general processes
of diffusion (see also O’Neill, 1981). Further advancements have also been made by
Brown (1968, 1975, 1981) who introduced macro-oriented diffusion modelling, and
Boyce (1966) who provided extensions of Hégerstrand’s general theoretical frame-
work, drawing upon population density gradients such as those proposed by Clark
(1951) to explain urban expansion. Boyce’s “Wave Theory Analog Approach’ likens
urban growth to that of ocean waves—successive flows of people spreading out-
ward in decreasing densities from the current urban periphery. Morrill (1968) also
characterized the diffusion process as a “wave-like phenomenon.” These approaches
can be applied to both commercial real estate site selection studies and analysis of real
estate markets.

Summaries of the effect of diffusion processes are generally made using a logistic
“S” curve such as
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HT=kj(1+exF) | (H

where HT can be the cumulative sum of houses built by time period ¢ within a census
tract. The component k is the asymptote measuring, say, the carrying capacity, or
maximum number of housing units that can be built in a given time period because of
market conditions, zoning, or engineering considerations. Parameters o and 8, which
characterize the dynamics of the diffusion process, are to be estimated. The literature
provides many examples of diffusion processes conforming to a logistic S’ function
(Griliches, 1957; Casetti, 1969; Morrill, 1970; O’Neill, 1981; Thrall, 1983).

Since neighborhood or locational effects are a central feature of real estate and real
estate development, they must be explicitly represented in any real estate diffusion
model. Equation (1) must then have structural error since its summary glosses over
neighborhood effects giving rise to parameter estimates that are biased in an unknown
direction (Thrall, 1988). Structural error of equation (1) results in haphazard fore-
casts. In addition, an accurate measurement of k, or the carrying capacity, is
difficult to obtain. This is especially problematic when counties and cities oversupply
residential land. Estimation error arises when k is much greater than the cumulative
development, which is the usual case. To overcome the structural problems associated
with equation (1) for small area real estate and related analyses, we offer the Cascade
diffusion model.

The Cascade Diffusion Model

The Cascade diffusion model is a variation on Hégerstrand’s innovation diffusion
model. The model is parsimoniously comprised of the following elements:

P=population estimates for the county;
HC=cumulative sum of single-family houses in the county;
HN=cumulative sum of houses in the neighborhood excluding the target tract
(the neighborhood is defined as all tracts adjacent to the target tract);
HT=cumulative sum of houses in the target tract;
a=the existing number of homes at the beginning of the study period
(intercept);
B=the development rate over time (slope).

The non-recursive Cascade diffusion model is expressed structurally as

In HC=a,+ B*In P, (2)
In HN=o,+ ,*In HC , 3)
In HT=o;+ B*In HN . C)]

In equations (2) through (4) the dependent variable of equation (2) becomes an
independent variable in equation (3), and the dependent variable of equation (3)
becomes an independent variable in equation (4). This simultaneous system of three
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equations is estimated using two-stage least squares (2SLS). Essentially, in 2SLS,
parameters estimates for HC in equation (2) are estimated; the resulting estimated HC
is used as an independent variable in equation (3). In turn, estimated values of HN in
equation (3) are used as an independent variable in equation (4).

Equation (2) postulates that the product added (single-family dwellings) in the
county-wide area is proportional to the population growth of the county. Equation (3)
expresses HN as proportional to HC thereby implying that each neighborhood of the
county captures part of the total product added. Lastly, equation (4) expresses
the small target area as capturing part of the total development of its immediate
surrounding neighborhood, while the residual neighborhood development is spatially
distributed elsewhere in the neighborhood.

Using equations (2) through (4), the reduced-form equation can be shown to be:

In HT= o5+ Bs{o+ il + Bi(In P)]} . (5

The reduced-form equation is nonlinear with population remaining as the sole
independent variable. The value and arrangement of the parameters in equation (5)
allows for forecasts to take into consideration the neighborhood effect. Projections for
yearly absorption are calculated by estimating coefficients of equations (2) through
(4), and substituting the appropriate values into equation (5). Forecasts are created by
substituting estimates for P for the appropriate year for which the forecast is desired.

Because neighborhood effects are a central ingredient to growth of a small area,
then parameter estimates and forecasts that are based upon a model that does not
include neighborhood effects like equation (1) will produce parameter estimates that
are biased in an unknown direction. Likewise, because the important neighborhood
effect is not accounted for, a transformation of the model in equation (5) to be

In HT=a+ f(In P) , (6)
or
In HT=a+ In 1) , N

would also produce spurious parameter estimates and unreliable forecasts. To sum up,
a model of the phenomena investigated here is erroneous if the model does not
include geographic scale effects.

The Data

The data on the number of single-family housing units built and sold by year and
location comes from the St. Lucie County property tax appraisal computer tapes.
Property appraisal data were georeferenced and imported into Caliper Corporation’s
GIS software GisPlus; the method of georeferencing and database design used here is
detailed elsewhere (Thrall and Elshaw Thrall, 1991). The database was created with
property information current as of April 1992. The “tax tapes” contained data on
every real property in the county. Single-family dwellings were selected out from the
larger database using the revenue code for the property. There were 51,644 single-
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Exhibit 3a
St. Lucie County 1980 Census Tracts
1
12
10
9
8 31
4 5
7 13
22 s
14
15
20 18
21
19 1980 Census Tracts
Exhibit 3b

Individual Tracts and Their
Respective Neighborhoods

Census Nearest Neighbors
Tract (Neighborhood)
1 2,59 13

2 1, 3.5 9

3 2,4,9

4 2,357

5 1.2,4,6,13,14
6 4,5 7,14

7 4, 6,8, 9 14

8 7,9,10, 14, 22
9 1,2,3,7,8 10,12
10 8,9 11,12 22
11 10, 12, 22
12 9,10, 11,13
13 1,5,12, 14,17
14 5,6, 7 8 13, 15, 16, 22
15 14,16, 20, 21
16 14,15, 17,18, 20
17 13,16, 18
18 16,17, 19, 20
19 18, 20

20 15, 16, 18, 19, 21
21 15, 20, 22
22 8,10,11,14, 21
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Exhibit 4
Contagion Diffusion Process of Housing Development

1980 Census Tracts

Average Year Built for Single-Family Dwellings

e ] ]

1875-1929  1930-1949 1950-1959 1960-1969 ,1970-1990

family dwellings at the end of the 1991 study period, all of which were georeferenced
and included in the analysis.

United States Census Bureau TIGER/line files provided the geographic objects
necessary for the analysis. This included census tract, municipal and county bound-
aries. These geographic objects are an integral part of this GIS analysis. Census tracts
were selected as the geographic unit of measure because the areal unit is known to both
developers and planners. Instead of 1990 census tracts, the 1980 census boundaries were
used because they offered sufficient resolution for the purposes of illustrating small area
forecasting; and, there were only twenty-two tracts in 1980 as compared to thirty-seven
tracts in 1990 (for a larger discussion on this issue see Thrall, 1992). Each census tract
target area has its own unique set of neighbors. Exhibit 3a shows the location of the
census tracts, and the set of census tracts that form the neighborhood for each
individual target census tract for St. Lucie County. The GIS software was used to count
the number of homes built each year, by census tract, and to aggregate the counts
together as necessary to form counts for neighborhoods (see Exhibit 3b).
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The time sequence of development of census tracts is shown in Exhibit 4. The
average age of all single-family dwellings is calculated using the GIS for each census
tract. Exhibit 4 clearly reveals a contagion diffusion process in which growth emanates
outward from a central urban core. Housing development began initially in the core
of the City of Fort Pierce, and then expanded outward. Observation of a spatial
pattern like that of Exhibit 4 is sufficient justification for that growth being
represented as a spatial diffusion process (Morrill et al., 1988). The spatial description
of Exhibit 4 and the calculations required for the model estimation could not have
been performed without GIS technology. For example, to calculate age of dwellings
by census tract the GIS is first used to geoposition the observation within the census
tract. Afterwards, the GIS is used to average all observations that fall within the
borders of the census tract (a point-polygon operation).

Many census tracts had no, or very few, single-family houses prior to a recent base
year. Each target tract was therefore assigned a base year to reflect when the census
tract began some level of development. Modeling the timing of census tract takeoff
will be the subject of subsequent research. For this study, years prior to the observed
period of takeoff were truncated from the analysis. All census tracts were observed to
fall into one of three ““base year” groups; census tracts were assigned a base year of
1970, 1973 or 1978. The number of observations per census tract then ranged from
the most of 1991-1970=21, and from the least of 1991-1978 =13. To reduce bias that
could enter a time series analysis covering only a few time periods the Beach and
Mackinnon (1978) maximum likelihood estimation procedure was used to calculate
the 2SLS regression coefficients; their algorithm also minimizes the effects of positive
serial autocorrelation of the error terms.

The data were further divided into an historical period (covering the years 1970
through 1990) and a validation period (1991). For most census tracts, 1 through 14,
and 16 through 19 (as illustrated in Exhibit 5), data truncated to a base year of 1970
(n=21) provided acceptable validation period predictions. Validation period results
were greatly improved when truncation resulted in the number of time periods being
reduced to n=18 (tracts 15, 20, 22), and n=13 (tract 21). HC, HN and HT for the
base year of the analysis were derived by calculating the total number of houses that
had been constructed up through the base year. With our technology, we could have
used 1900 or an even earlier base year. However, the shorter time sequence reduced
positive serial autocorrelation and was found to provide better housing absorption
estimates for the 1991 validation period. An implication is that detail of the 1900
housing market has little bearing on the 1991 housing market, and, since the model is
driven by cumulative population estimates and development figures, the effects of
historical population and housing growth are automatically factored into each
successive time period. Essentially, our “base year” demarcates when the census tract
began development takeoff.

A future research agenda is to expand this line of geographic reasoning to include
forecasts as to when small areas such as census tracts begin their development take-
off. Another agenda is to include a variety of other structural variables in our
parsimonious model that take into account the demographic and income profile, and
changes in economic base; this should allow for forecasts not only of housing counts,
but also of housing by product type (price range, square footage, and so on).

Historical population figures prior to 1970 were obtained from the 1980 Census of
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Exhibit 5
Cascade Diffusion Model: First Structural Equation
HC=ex ph
In HC=o+ 5, In P
Census Tract o i R? D-W
1-14 and 16-19 —4.17101 1.25211
*n=21 (—8521) (29.172) .990970 1.59585
15, 20, 22 —4.67397 1.29537
“*n=18 (—6.506) (20.726) 987613 91108
21 —3.4209%4 1.18904
*N=13 (—6.961) (28.088) 1993610 50708

“years 1970-1990 used in evaluation
**years 1973-1990 used in evaluation
***years 1978-1990 used in evaluation
t-values are in parentheses.

Population: Florida Chapter A: Number of Inhabitants, Vol. 1, Pt. 1, 1982, United
States Department of Commerce. Yearly estimates from 1970 through 1991 are from
Florida Statistical Abstracts. Projected population estimates are from Population
Projections by Age, Sex and Race for Florida and its Counties, 1991-2010 (1992), Vol.
25, Nos. 3—4. The geometric mean was used to estimate population for time periods
in which data was not available (Norcliffe, 1977, p. 44).

Empirical Results

Coefficients for equations (2) through (4) were calculated in the manner described
above. Exhibits 5, 6, 7 summarize the results of calibrating the Cascade diffusion
model. The coefficients ¢ and B, for i=1,2,3, from Exhibits 5, 6 and 7 are substituted
as appropriate into the reduced form equation (5) to derive the forecasts.

In Exhibits 5 through 7, r-values are shown in parentheses beneath the estimated
coefficient. With the number of degrees-of-freedom here, the regression coefficients can
be regarded as being significant.

The R? statistic is usually drawn upon to show how well an estimated regression
line fits the data. However, in the 2SLS technique the R? is not defined. We follow the
convention here that when using 2SLS the R? statistic is reported as calculated by a
standard regression, independent of the other equations in the system. Values of R?
close to 1.0 are indicative of a good fit of the model to the data, heteroscedasticity and
related issues aside.

A Durbin-Watson “D” statistic is also provided in Exhibits 5, 6 and 7. Durbin-
Watson values greater than 1.08 (for n=15 observations), 1.16 (n= 18 observations),
and 1.22 (for n=21 observations) indicate little or no serial autocorrelation at the
95% confidence level (Chatterjee and Price, 1991).
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Exhibit 6
Cascade Diffusion Model: Second Structural Equation

In HN=e* HCP?

Census Tract a, b, R? D-W

1 5.85334 .235985 934745 45399
(18.708) (7.746)

2 6.56534 181541 933132 17570
(27.688) (7.744)

3 5.10239 299131 949675 1.28067
(15.287) (9.064)

4 7.31328 118968 .980033 1.26433
(85.037) (13.991)

5 4.77886 357429 991533 212274
(55.240) (41.776)

6 5.62909 293175 990156 2.00208
(58.796) (30.962)

7 4.44984 .399872 977780 1.61545
(17.740) (16.118)

8 3.656741 496609 965616 1.30852
(8.656) (11.885)

9 6.38965 203414 981375 1.69390
(47.073) (15.156)

10 —.118696 .831955 .963297 1.29674
(—.149) (10.542)

11 —.828455 .814457 896769 97960
(- .571) (5.678)

12 1.35522 679862 979749 1.45907
(2.735) (13.878)

13 3.92225 406177 991801 1.69471
(31.522) (33.005)

14 —.405409 950756 .977388 1.40031
(—.727) (17.233)

15 —4.67397 1.29537 987613 91108
(—6.506) (20.726)

16 —6.67268 1.55184 .987387 1.64260
(-9.709) (22.831)

17 —8.57603 1.63151 972138 1.44043
(—6.757) (12.998)

18 —7.77532 1.63504 968230 1.35737
(—5.086) (10.824)

19 —9.564902 1.76738 974757 1.66217
(—6.093) (11.409)

20 —8.46289 1.69657 978132 79570
(—8.050) (16.492)

21 —4.88537 1.37435 .991478 .50708
(—9.138) (26.696)

22 —3.65852 1.175563 1990793 1.48046
(—8.278) (27.165)

t-values are in parentheses.

Exhibit 5 provides estimated 2SLS parameters for equation (2) where HC=/[P];
also reported are the degrees of freedom (number of years of data remaining after the
truncation) for each target census tract, the Durbin-Watson “D” statistic for the
transformed data, and the R? statistic. Exhibit 6 shows the 2SLS parameter estimates
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Exhibit 7

Cascade Diffusion Model: Third Structural Equation

HT=e** HNF?
In HT=o;+ B, In HN

Census Tract a b, R? D-w

1 2.21800 312944 917530 1.64247
(6.599) (7.704)

2 3.17392 391529 977553 1.63437
(15.532) (16.093)

3 5.12253 267138 953600 .79849
(23.029) (9.757)

4 -16.7637 2.80406 .964968 1.93788
(12.985) (18.496)

5 5.265 231133 987391 1.89035
(72.418) (26.675)

6 - .650776 .825871 .885976 1.36986
(—.430) (5.536)

7 2.88629 523881 956498 1.29511
(6.492) (10.004)

8 —3.568578 986968 .984538 1.88356
(—12.188) (29.109)

9 —8.99166 1.93010 .860613 —.08745
(—3.049) (5.527)

10 2.81204 417769 969746 1.49255
(7.899) (9.740)

1 —.828455 .814457 .896769 97960
(—.571) (5.678)

12 1.3522 679862 978749 1.45907
(2.735) (13.878)

13 3.92225 406177 1991801 1.69471
(31.522) (33.005)

14 —.405409 .950756 977388 1.40031
(—.727) (17.223)

15 .288179 .841812 963162 1.06639
(.449) (11.983)

16 —2.78602 1.14180 938727 1.09177
(—2.340) (8.679)

17 —8.57603 1.63151 972138 1.44043
(~6.757) (12.988)

18 —-5.65127 1.29581 .886890 1.12408
(—2.602) (5.338)

19 2.04208 534791 974757 1.56217
(6.213) (13.569)

20 —-.207214 .975881 .949640 73457
(—.217) (9.132)

21 —-12.9750 211704 964939 1.07859
(—7.824) (11.986)

22 —1.44404 1.0005 752412 1.01852
(- .658) (3.818)

t-values are in parentheses.
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for equation (3), and Exhibit 7 shows the same for equation (4). A strong and positive
correlation is shown between the population of the county and the number of houses
built in the county, between the houses built in the county and the houses built in the
neighborhood market, and between the neighborhood housing market and that
captured by the target small area.

Autoregressive Integrated Moving Average (ARIMA) models were also estimated
for each census tract. Although the ARIMA model can provide an effective forecast
over short periods, its accuracy deteriorates quickly as the span of the forecast period
is increased. On the one hand, the short-term-forecasting ARIMA approach may be
simpler than the Cascade model as it only requires a univariate time series. On the
other hand, ARIMA has an inability to capture spatial processes, socioeconomic
conditions, and demographic change (e.g., geographic spillover effects, economic
cycles, and population growth) all within the same model; this contributes to reducing
ARIMA’s applicability as a medium- and long-term estimator.

The multidimensional and multivariate features of the Cascade model makes it
more intuitively appealing than the ARIMA model. Potentially, the Cascade model is
a much better overall forecasting tool. An obvious advantage that the Cascade
(equations (2) through (4)) has over logistic (equations (1) and (7)) and ARIMA
models is the Cascade’s inclusion of the neighborhood effect. However, if neighbor-
hood effects are not significant, then the Cascade may not yield results superior to the
ARIMA model. Indeed, the Cascade approach will not perform as well as an ARIMA
approach when the target area does not adhere to normatl localized phenomena,
including when the target area is independent of the growth processes influencing the
county and neighborhood. This can also arise when an error is made in the selection
of the scale (size) of the target area. If the size of the target area is too large, the
target area can encompass those neighborhoods that would otherwise be influencing
its development had the target area been defined with a higher resolution (smaller
area). Exacerbating this problem would be adjacent areas included in the calibration
of equation (3) that do not have a strong bearing on the development of the target
area. As the size of the target area increases, the target area moves beyond the scale of
the process itself.

To determine whether the Cascade model yields results superior to the logistic “S™
curve of equation (1), parameter estimates of the linear transformation of equation (1)
were first made. Values for the asymptote k were derived from area measurements
taken from the county-wide growth management plan as required by the State of
Florida Growth Management Act. The Durbin-Watson procedure indicated high
positive serial-autocorrelation. Both the Cochrane-Orcutt and maximum likelihood
transformation procedures were unable to correct for the severely autocorrelated error
structure of the logistic ‘S curve. Direct estimates of the nonlinear form of equation
(1) can potentially mask the effects of serial autocorrelation; but, parameter estimates
were shown to be highly sensitive to starting values required for the nonlinear
estimation procedures. Structural and estimation problems of the logistic “S” curve of
equation (1) leave that formulation suspect for yielding haphazard results.

The Cascade model did not have the estimation problems inherent with the logistic
approach. Importantly, the Cascade model better captures the principles of the
diffusion process as it incorporates both the ‘“neighborhood effect” and historical
county growth, and it is shown to minimize serial autocorrelation since it avoids the
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Exhibit 8
Cascade Diffusion Model: Validation Period Results

Cumulative Number of Homes as of 1991

Census Tract Predicted Observed Difference % Difference”
1 128 127 7 .55
2 673 670 29 4
3 1,653 1,546 7.3 47
4 1,548 1,507 40.8 2.7
5 1,424 1,420 41 .29
6 822 796 25.9 3.3
7 1,770 1,763 6.9 .39
8 203 219 15.7 7.2
9 1,856 1,877 79.4 4.2

10 675 672 2.6 .39

11 2,853 2,722 131.0 48

12 360 350 9.7 2.8

13 596 569 26.5 4.7

14 1,865 2,068 202.0 9.8

15 6,525 8,780 2,254.0 25.6

16 6,131 6,943 8115 11.7

17 564 250 314.0 125.0

18 1,398 1,385 13.2 .96

19 1,259 1,127 132.6 11.8

20 12,440 11,436 1,004.0 88

21 3,223 3,600 376.9 10.4

22 2,013 1,817 196.0 10.8

*difference as a percentage of the observed

direct use of time as an actual regression variable. Instead, the time dimension is
indirectly included in the Cascade model by way of the cumulative addition of county,
neighborhood and census tract housing and population variables.

Summary results for the 1991 validation period for the Cascade model are shown in
Exhibit 8. This table compares predicted values with the actual cumulative number of
houses built in each census tract. The absolute difference and percentage difference
between predicted and observed are measures of the ability of the model to forecast.

The above discussion stressed the importance of selecting a target area the size of
which does not exceed the scale of the process that the Cascade model is intended to
measure. Therefore, a test was designed to determine if census tracts represent an
appropriate scale of resolution for the Cascade analysis. The test also can determine if
some phenomena other than county population increase and neighborhood effects are
driving the development of the target area. The test compares the results from the
Cascade model to a Box and Jenkins ARIMA model. The ARIMA model is very
similar to a model like that of equation (7) where only time is an independent
variable, and no neighborhood effects are considered. Predictions using the ARIMA
model for the 1991 validation period are displayed in Exhibit 9.

The ARIMA model generates predictions based solely on the historical growth
trend of the subject area itself. ARIMA predictions were generated using the Number
Cruncher Statistical Systems (NCSS) version 5.3 software program. When the time
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Exhibit 9
ARIMA-Time Series Model: Validation Period Results

Cumulative Number of Homes as of 1991

Census % Auto-Regressive t-
Tract Predicted Observed Difference Difference* Parameters** R? values
1 127 127 0 0 4107 .9926 .35
2 670 670 0 0 .7458 .9991 10.50
3 1,545 1,546 1 .06 .8687 .9994 15.50
4 1,507 1,507 0 0 .6857 .9978 6.82
5 1,420 1,420 0 0 7764 .9989 11.62
6 796 796 0 0 .8270 9989 13.75
7 1,768 1,763 5 .28 8737 .9993 15.14
8 219 219 0 0 6126 .9966 6.13
9 1,889 1,877 12 63 .8528 9991 15.14
10 672 672 0 0 .2976 9932 2.92
11 2,753 2,722 0 0 .9838 9989 20.50
12 359 350 9 2.6 .8374 9964 8.81
13 574 569 5 .28 .8511 9984 11.30
14 2,043 2,068 25 1.2 .8350 9982 12.67
15 8,916 8,780 136 1.6 1.2812 9970 23.66
16 6,944 6,943 1 .06 1.1187 .9982 26.00
17 250 250 0 0 .0930 .8987 A4
18 1,386 1,385 1 .06 .7145 .9892 9.14
19 1,129 1,127 2 18 .5856 .9866 4,08
20 11,513 11,646 33 .29 .9529 .9975 13.52
21 3,655 3,600 55 15 AT1-.6405 .3655 —3.55
AT2-.3013 -1.67
22 1,821 1,817 4 22 .6338 9932 7.36

*difference as a percentage of the observed
**ARIMA (1, 1, 0) 1st difference model gave best results
**ARIMA (2, 2, 0) 2nd difference model gave best resuits

horizon of the forecast was short, the ARIMA model provided absorption estimates
competitive with the Cascade model. However, in fast-growth tracts, the ARIMA
model tended to grossly overpredict, compounding the error for long-term forecasts.
The ARIMA model predicts 923,000 homes will be built in tract 15 by the year 2010;
this figure translates to a density of 186 residential single-family homes per acre. The
Cascade model instead predicts a more reasonable 15,634 houses, translating to a
density of 3.15 houses to the acre for the year 2010. This lends further credibility to
the Cascade’s usefulness in producing reasonable long-term projections.

Overall, the Cascade diffusion model provided good results; the results are
especially strong and appealing since the Cascade model is parsimonious; the median
error measured by the ““% Difference” of “Observed” and “Predicted”” columns in
Exhibit 8 does not exceed 5%. Parsimony lends credibility to the Cascade approach
since the model is based solely upon the spatial relationships of neighborhoods,
population estimates and housing counts. The Cascade model lends itself to improved
accuracy of forecasting and explanatory power since it can be extended to include
indicators other than population such as income, economic indices, interest rates, and
the demographic makeup of the households.
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The results, shown in Exhibits 8 and 9, indicate that both the Cascade and the
ARIMA models provide reasonable estimates for the city of Fort Pierce and the other
northern census tracts (tracts 1 through 13). However, the Cascade model was not as
reliable for the census tracts comprising the city of Port St. Lucie and its immediate
neighborhood (tracts 15, 16, 17, 19, 20, 21). The hypothesis test formulation then
suggests that two types of growth patterns are responsible for the manner in which
development occurs in St. Lucie County; in other words, for select census tracts, the
census tract may not be an adequate representation of the scale of the growth process.

Growth in the northern part of the County, including the city of Fort Pierce,
corresponds to a “natural” diffusion process that is captured within the census tracts
by the Cascade model. But, development patterns in census tracts within the southern
portion of the County do not share the same diffusion process as the northern portion
of the County. Instead, a propagated diffusion process controls residential develop-
ment in the southern portion of the County. Brown (1981) provides the framework
for analyzing propagated diffusion patterns.

In the early 1960s all of the land comprising the city of Port St. Lucie was
purchased and platted by a single firm, General Development Corporation (GDC).
GDC was a multinational firm, marketing and advertising its housing product
through its branch offices in the U.S. Midwest, U.S. Northeast, as well as England,
Germany and other European countries. Migration to Port St. Lucie was therefore
propagated. Customers purchased the house and lot sight unseen; GDC—not local
market conditions—then controlled where and when new houses were built. Lots were
developed more as a function of the sequence when customers retired than on the
basis of where the lot was relative to other development.

An analysis of GDC-held properties in the property appraisers file suggested a
correlation between the census tracts in which GDC operated and the tracts where the
Cascade model validation estimates suffered. Brown describes propagators like GDC as
“Diffusion Agency Establishments” or ‘“Coordinating Propagators” (Brown, 1981,
p- 52). The coordinating propagator, in this instance GDC, controls the amount,
location, and size of the development. The gross pattern of diffusion is centrally
controlled by GDC. The Cascade model instead relies upon diffusion coming about
solely through the aggregation of individual actions and decentralized decisionmaking
(Brown, 1981, p. 53) The Cascade model is then better suited for areas that experience
normal growth. Port St. Lucie’s growth has been recent and rapid; it was not
incorporated by GDC until the early 1970s. The ARIMA model is better suited to those
situations where growth is outside the norm, is controlled by a central force, and when
time is the only force (or appropriate surrogate variable) influencing the phenomena.
The ARIMA model is a good alternative to the Cascade model for those areas where
interfering mechanisms are disrupting the natural growth processes. As noted earlier,
projections by the ARIMA model in such a context are limited to the very short term.

Also, the Cascade model as presented here does not include unusual characteristics
that would serve as barriers or inducements for development. The coastal islands
(tracts 12, 13 and 17) serve as an example of how the environment can induce
development at a rate greater than expected by looking at the pattern of growth of the
larger system. Those coastal islands are part of a different growth process dominated
by high-rise multifamily condominiums. Census tract 22 is an example of a barrier to
development; the tract is not in the urban service area as defined by the State’s
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Growth Management Act. Since infrastructure to support housing development will
not be installed in census tract 22 in the near term, citrus production is likely to
remain as the predominant use of land. Greater explanation, and forecasts of greater
accuracy, can be obtained from the Cascade model by installing inducements and
barriers in the framework.

One approach for installing inducements and barriers in the Cascade model would
be to assign probability-like scores to areas (census tracts) that are adjacent to the
target area (census tract). Each target area would be accompanied by a unique array
of scores assigned to its neighbors. The greater (lesser) the barrier between a target
area and its neighbors, the lower (greater) the score. The expected spillover effect from
the neighbor would then be measured as the product of the score and, say, the
number of houses in the neighboring tract. The above data analysis has implicitly
assumed neither inducements nor barriers thereby implying the value of the score to
be equal to 1. Inducements may be captured by assigning a score greater than 1.

The Cascade model, when combined with a knowledge of local conditions, can then
provide dependable estimates of growth patterns and can give insight as to why small
areas deviate from that which would otherwise be expected.

Conclusion

This study extends the geographer’s paradigm of diffusion to the role of being a
tool for forecasting expansion in housing markets. This study demonstrates that small
area forecasts can be accurately done using a combination of diffusion theory and
geographic information systems (GIS) technology. The Cascade diffusion model can
be used for monitoring and predicting growth patterns of residential single-family
development, but is not limited to that real estate product.

The Cascade diffusion model is flexible and can be applied to commercial, industrial
and multifamily land uses. Furthermore, additional explanatory factors can be added
to its formulation to include, for example, household income, interest rates, age
profile and other demographic characteristics, as well as local economic variables. The
Cascade model can be adjusted to include “inducements™ and ‘‘barriers” to growth.
The Cascade model can be extended to include more than three scales of resolution—
upwards to include larger regions such as groups of counties, downwards to target
areas smaller than a census tract such as a subdivision, and to intermediate scale
layers such as transportation analysis zones. The Cascade model can also be extended
to forecast product by subcategory, such as number of houses by price range.

The applications for this information are wide-ranging. Developers, lending
institutions, and real estate investors can significantly benefit from the use of the
methodology presented here. An understanding of spatial market forces reduces
development risk; the results affirm the importance of geographic reasoning to fore-
casting urban growth and real estate-related phenomenon.
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