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Abstract. Models for testing assessor performance have been widely discussed in the
literature. Many have been used in practice. The purposes of this study are to evaluate the
performance of existing models and to propose two new models. We find that existing
models can be used correctly to test for inequity when their functional form is consistent
with the pattern of the assessment-sales ratio data. Results from the application of different
models show inconsistencies since the appropriate functional form may vary for different
data sets. The new models have the ability to emulate the forms of the existing models as
well as handle more complex relationships.

Introduction

The uniformity of property tax assessments is an important issue for taxpayers,
assessors, and others involved in or affected by the assessment process. Ideally for a tax
jurisdiction, the assessed value should be the same fraction of the market value for each
property within a given class. One key question, then, is just how to test to see if such
uniformity is present in a statistically significant sense.

Many statistical models have been proposed to test for assessment uniformity. One
group of models includes the relatively simple coefficients of dispersion and variation.
These are especially helpful as measures of horizontal inequity, which is discrimination in
the tax base between similarly valued real property. A second set of models is used to test
for the presence of vertical inequity, that is, progressivity or regressivity in the tax base
between different value levels of real property.! These may be characterized as regression
models and include some fairly complex multiplicative functions. Whichever statistical
model is chosen, it must be able to accurately test for inequity. Therefore, correct statistical
modelling is critical in judging the equity of a property tax system.

One purpose of this study is to show that current models are not always able to properly
test for vertical insquity. The other purpose is to introduce two alternate models. These
alternate models allow for more flexibility in the functional form that may be needed to
reflect the patterns in assessment-sales (a¢—s) ratio data for many jurisdictions.

Various statistical models from the literature are described briefly in the next section,
along with a justification for an alternative type of model. The two proposed models are
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introduced in section three. Section four contains an application of the existing and
proposed models to real and simulated data sets. The final section includes a discussion of
the results and some conclusions about existing and proposed models.

Vertical Equity Models

In the property tax system there are two types of inequity. The first type is horizontal.
This occurs when equal-valued property of a certain kind is assessed at more than one rate.
Horizontal variation in a-s ratios is always assumed to be present and is acceptable within
limits. Some variation is acceptable because buyer and seller motivations differ from sale to
sale causing transaction prices to vary around the theoretically true assessed values.

The second form of inequity is vertical. This occurs when property tax rates are
systematically different for properties of different value. Two examples of vertical inequity
are progressivity and regressivity in the property tax structure. Regressivity in the tax
structure occurs when these a—s ratios tend to decline with increasing property value.
Progressivity occurs when a¢—s ratios increase for higher property values. These relations
arise for any class of property when a—s ratios are correlated with property values. In
general, statistically significant vertical inequity is not acceptable.

The existing vertical equity models assume these relations are linear, linear trans-
formable or of the simple quadratic type. But a more complex form of vertical inequity can
exist as we shall see.

Existing Models

Exhibit 1 contains a summary of models designed to test for the presence of vertical
inequity. Recent works by Bell [2], Cheng [6], Kochin and Parks [14], and Reinmuth [18]
point out that the use of a linear regression model, such as the Paglin and Fogarty or IAAO
model, does not allow for an accurate test of nonlinear conditions. The Cheng model, like

Exhibit 1
Tests of Vertical Inequity
Model Null Hypothesis Proposed by
AV= B+ p, SP Bo=0 Paglin & Fogarty [15]
AV/SP=ay+ ay SP u=0 1AAO [11]
AV= ¢,SP* ¢1=1 Cheng [6]
AV= 15+ 1,SP+ 1, SP? 75=17,=0 Bell [2]
SP= 2 AV 2,=1 Kochin & Parks [14]
where:
AV = assessed value of the property,
SP = sales price (market value) of the property,
AV/SP = assessed value to sales price ratio of the property,
B a ¢ 1.2 = coefficient estimators.
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the Kochin and Parks model, has the capability to analyze data whose ¢—s ratios are not
linear over the sales price range. Their major distinction is that they use long-transformed
data to test for vertical inequity. The Cheng model uses assessed value as the dependent
variable and sales price as the explanatory variable. Kochin and Parks reverse the dependent
and explanatory variables.? They justify reversing the regression model by assuming that
assessment error is less than market-driven error; however, Bell 2, pp. 127, 128] argues that
assessments are based on incomplete information and assessors are unable to be completely
objective, resulting in more error in these assessed values than in sales prices.

Another extension of vertical equity models comes from Bell, who used a quadratic
functional form. His expansion of earlier models allows the assessor more flexibility in
identifying a progressive or regressive tax structure. By comparing the sign of the quadratic
and intercept terms, the assessor’s performance can be determined to be quadratic-
progressive (quadratic term is positive with a zero intercept) or quadratic-regressive
(quadratic term is negative with a zero intercept) when the data show a statistically
significant quadratic term. It also allows for the possibility that the assessor’s performance
is linear-progressive (intercept term is negative) or linear-regressive (intercept term is
positive) assessment process, should the quadratic term be statistically insignificant [2, p.
130]. Bell concludes that linear models are not sufficient to capture the true nature of some
data, and a model that includes a provision for nonlinearity is superior to one that does not
(2, p. 131].

Justification for an Alternative Type of Model

The basis for a different, more complex model is found in the works of Bell [2] and
Gaston [10]. First, Bell points out that Kochin and Parks [13] indicate the possible need for
a nonlinear approach [2, p. 129]. In addition, Bell draws on the fact that the regression of
a-s ratios on sales prices gives rise to estimates of parameters for a homogeneous nonlinear
(quadratic) model for the regression of assessment values on sales prices. Bell uses the
notion that these estimates are biased, along with the reference to nonlinearity by Kochin
and Parks, to introduce an orthodox quadratic type approach.

Bell’s observations on the possible nonlinear nature of the relationship between
assessments and sales is confirmed by Gaston’s quadrature test [10, p. 189]. Gaston’s test
revealed a nonlinear relationship between these variables. In fact, when the data were
plotted they revealed a serpentine or S-shaped relationship. Such an S-shape would be
concave from above for low- to medium-priced sales and convex from above for medium-
to high-priced sales. Should this S-shaped relationship exist, then the quadratic model
proposed by Bell would have to compromise one of the two curves in the relationship
because it is incapable of modelling a third derivative.

If the cost approach is used in a mass appraisal system for arriving at assessed values
there are several reasons why vertical inequity and the S-shaped relationship may exist. In
the cost approach, the difference between neighborhoods is reflected in land value. If the
land value attributed by the assessor to a neighborhood is not the same as that placed on
it by the market, vertical inequity may be the result. For example, if the assessor avoids
extreme ranges of land value (i.e., places too high a value on land in a low-priced
neighborhood and too low a value on land in a high-priced neighborhood), this will result
in a regressive tax structure and an S-shaped relationship.
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Cost manuals are often used in the cost approach. One shortcoming of the manuals is
that they are designed for the “average” house within each style and quality category. With
an appraiser valuing individual homes, this shortcoming can be taken into account. In
computer-assisted mass appraisal, however, the houses in extreme disrepair or the very
expensive custom houses may be improperly assessed. For example, in expensive houses,
the cost manual may substantially understate the value of customized, special order items,
or might not even provide for such items. This would tend to result in an underassessment
of such residences. Further, it is likely that the cost manual will not properly price certain
housing attributes. It may, for instance, understate the loss in value resulting from
depreciation, and older property may thus be assessed at too high a level. Since it is likely
that older properties will be in the lower priced range, this error will result in vertical
inequity. Another possibility is that with increasing real income, a general drift over the
long run toward higher priced homes and away from the lowest priced homes would
increase relative depreciation of older homes. Depreciation schedules may not capture this
effect and would thus tend to overstate the true values of these lowest priced properties.
Even though vertical inequity may result from each of these examples, existing models may
not detect a problem should an S-shaped relationship between assessed value and sales
price be present.

Each of the existing models allows for one particular functional relationship between
sales price and assessed value. The testing procedure is accurate as long as the assumed
relationship is appropriate. If the relation is incorrect, inconsistent results across different
models are to be expected (Cannaday, et al. [5]). There is a likely functional mis-
specification for some proportion of data sets when any single existing model is chosen.

Recognizing this problem, an alternative known as spline regression modelling is
proposed. This approach is capable of covering all the situations that can be handled by
existing linear or nonlinear models. In addition, the spline model is capable of accurately
testing for the conditions that Bell and Gaston point out.? The flexibility from using spline
models reduces errors in conclusions about vertical inequity that are bound to occur with
the existing models’ limited functional forms. The proposed new approach uses a
segmented polynomial that, in effect, allows multiple relationships to exist among low-,
average- and high-valued properties when comparing assessed values to sales prices. More
specifically, spline models have the flexibility to handle S-shaped relationships in which the
midrange of properties are correctly assessed, the very low-valued properties are over-
assessed, and the very high-valued properties are underassessed. None of the existing
models can accurately test for the presence of vertical inequity in this situation.

Spline Regression Modeling: An Alternate Approach

Spline regression models have been used to analyze data sets in various academic and
professional fields when those sets do not conform to computationally simple mathe-
matical equations. In other words, spline regression techniques are useful when different
regions of data are explained by different functions. Smith [20, p. 57] describes splines as
follows:

Splines are generally defined to be piecewise polynomials of degree n whose
function values and first n—1 derivatives agree at points where they join. The
abscissas of these joint points are called knots. Polynomials may be considered
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a special case of splines with no knots, and piecewise (also known as grafted or
segmented) polynomials with fewer than the maximum number of continuity
restrictions may also be considered splines. The number and degrees of
polynomial pieces and the number and position of knots may vary in different
situations.

Both the cubic and the piecewise spline regression models that are proposed in this paper
allow for a series of three jointly determined functional relationships to be tested. Each
relationship corresponds to a segment of the overall data range.

Significance tests of truncated variables can be biased due to the way knot locations are
chosen. Generally, knot locations should be chosen to correspond to the overall behavior
of the data; however, this introduces bias into the analysis. Such bias would require a lower
than conventional alpha value for testing purposes. One way to eliminate the problem,
should the data set be sufficiently large, would be to use a random sample of the data for
knot estimation and to use the remaining observations to test for vertical inequity. This
approach would not require a lower alpha value. In this analysis we are using splines to test
for inequity in the same data set that was used to estimate knot locations. Therefore a lower
than conventional alpha value was used.?

We should also indicate that smaller sample sizes may result in estimators that are not
very robust. An unusual datapoint might distort the estimators substantially.’ Care that
the data are free of recording errors prior to carrying out the analysis may be the best way
to reduce the importance of the issue. In general, larger samples are likely to generate more
robust estimators.

Wegman and Wright [23] state that the statistical properties of splines are not well
developed. In light of this, we reiterate the importance of having underlying reasons for
believing that splines exist. We earlier gave some reasons for such a view in favor of splines
for appraisal-sales regressions. The basis for using splines is thus founded, in part, on the a
priori expectation for their presence. It is also based on the strength of the statistical fit that
may be found in any given instance. A very good fit indicates a useful model has been
found. In any event, the statistical fitting and testing of splines should be done with these
matters in mind.

Cubic Spline Model

A cubic spline regression model is a special case of spline modeling [4, pp. 64, 65]). The
use of a cubic spline model will allow data to fit a cubic equation, without restricting its
ability to take on lower powered equation forms. In other words, the cubic spline model
can accurately portray linear, quadratic, and cubic relationships. If a cubic model is applied
to linear data, the higher powered estimators will be statistically unimportant, and only the
linear term will be significant. The same conditions hold true for the cubic term in the case
of quadratic relationships.

The cubic spline regression model is built from a nonlinear regression equation,
represented by:

AV;= B+ PSP+ Bl SP?— (SP,— 1) . 7]
+ Bl SP?—(SP,—1)> = 36,(SP,— 1) ]
+ Bu(SP,— 1)+ + Bul(SP,— 1), —(SP,— 1) 7]
+By(SP— 1), +5 M)
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where:

AV, assessed value of the j** property,
SP; sales price of the j* property,
L the first knot (the break-point between the first and second functions),
t the second knot (the break-point between the second and third functions),
& error term for the j** property,
(x); = any variable in the model whose value is limited to the range bounded
by zero and the true positive mathematical expression contained within
the parentheses, and

By through B, are parameters.

The notation “(x),” represents the variables within the cubic spline model where
truncated values are used. A truncated value will equal the mathematical value of the
expression contained within the parentheses when that value is non-negative, and it will
equal zero when the mathematical value of the expression contained within the parentheses
is negative. For example, if SP; is greater than 7, and (SP,— 1) is 12564.90, then (SP,— 1)),
is this same 12564.90. If, however, SP; is less than ¢, and (SP,—t,) is —123.25, then
(SP,—ty, is zero.

When this model reflects a linear relationship between assessed values and corres-
ponding sales prices, and when neither regressivity nor progressivity is present, f,=0,
B.=0, B;=0, B,=0, B,=0, and B,,=0. The use of truncated polynomials, or “(x),”
functions, allows data to be fit by ordinary least squares, while still allowing hypotheses to
be tested [20, p. 62]. .

The procedure used in this paper for finding the knot locations is the SAS routine known
as DUD. The procedure estimates where structural changes (knot locations) occur in the
data set. The routine calculates knot locations such that the three segments fit better, in a
sums of squares sense, than any other three segments over the data range. The procedure
iterates a series of knot location estimates, such that the error sums of squares of the final
iteration converge to a minimum [19, pp. 22-24]. When the process is complete, the
parameter estimates for these knot locations can be entered into the cubic spline regression
equation’s truncated values (as ¢, and ¢,) prior to estimation of the cubic spline’s regression
coefficients.

This estimation process requires the investigator to enter knot starting values that the
routine uses to search for the optimal knot locations. It is possible that the initial estimates
could yield locally rather than globally optimal knot locations. To avoid this problem,
running the DUD procedure several times with different initial knot starting values is
recommended. Identical results with different starting values indicate that global optimum
values are more likely to have been found.5

Piecewise Linear Spline Model

The piecewise linear spline regression model proposed here is a simplification of the
cubic spline regression model described above [17, p. 520}. The primary reason for
introducing the piecewise spline model is to have, as an option, a model that is easier to
use and understand. The same DUD iteration process is used for the piecewise spline as for
the cubic spline. The proposed piecewise spline regression model may be written in the
form:
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AV;= o+ 01SP;+ o LOW, + o HIGH;+ 0, LOWSP;+ a,,HISP;+ & 2)
where:

LOW,; = dummy variable equaling one if the j* unit sale price is lower than the
first knot. If higher, this equals zero;

HIGH; = dummy variable equaling one if the j™ unit sale price is higher than the
second knot. If lower, this equals zero;

LOWSP; = sale price of the j™ unit if the sale price is lower than the first knot. If

higher, this equals zero;

HISP; = sale price of the j* unit if the sale price is higher than the second knot.
If lower, this equals zero;

oo through a;, are parameters; and the other variables are as before.

When this model reflects a linear relationship between assessed values and sales prices,
the slope condition o= &, = a;, holds true. When this model reflects a non-progressive or
non-regressive relationship between the assessed values and sales prices, the intercept
condition agy = o, = o, =0 also holds true. This simplified spline model, when compared to
the cubic version, results in a less complex explanation for vertical inequity, should it exist.
In other words, if the problem is associated with a lack of linearity, then it is not true that
o= a4 = a,. Also if the problem lies in a linearly progressive or regressive assessed value
to sales price relationship, then it is not true that ay,= ag,; = o, =0.

The piecewise spline regression model gives results similar to that of the cubic spline
model even though the piecewise model is simpler. The piecewise model requires the use of
a Chow F-test for determining statistically significant conclusions that can be reached in
any application (see Chow [7] and Kennedy [12]). We recommend the use of the piecewise
model because of its relative simplicity and because cubic splines are generally not required
to show vertical inequity.

Analysis of Results and Findings

This section is divided into two parts. The first part uses data that has been contrived to
show clearly how existing models could give erroneous results. The second part uses actual
condominium sales data taken from an area near the Chicago central business district.

Contrived Data

A data set was constructed to demonstrate the usefulness of the cubic and piecewise
spline models. Data plots and the two spline models are shown in Exhibit 2. Plots of the
Kochin and Parks and Paglin and Fogarty models, along with the data, are shown in
Exhibit 3. The numerical results are in Exhibit 4.

As may be seen in these graphs the data set is designed to have an S-shape. The graphs
show that both spline models fit very well. Based on the statistical results shown in Exhibit
4, we may conclude that both spline models indicate clearly a nonlinear S-shaped
relationship. This may be seen by examining the last two columns of Exhibit 4, which show
probability (prob) levels in parentheses less than 0.05 for the two spline models. A
probability level less than 0.05 means there is less than a 5% chance that the corresponding
coefficient or F-statistic is zero. In the case of the cubic spline, if any one of the probabilities
is less than 0.05, there is strong evidence of vertical inequity.
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Exhibit 2
Contrived Data: Cubic Spline Regression Model
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Contrived Data: Piecewise Spline Regression Model
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Exhibit 3

Contrived Data: Kochin and Parks Regression Model
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Contrived Data: Paglin and Fogarty Regression Model
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Exhibit 4
Contrived Data: Results
MODEL  Paglin/ Kochin/ Cubic Piecewise
Test” Fogarty IAAO Bell Parks Cheng Spline Spline
Bo=0 -4.132 na na na na 3.685 na
Boo=0 (0.0665) (0.0001)
=0, ¢,=1 na —0.0003 na 1.0007 0.941 na na
2= (0.7524) (0.9848) (0.0829)
15=17,=0 na na F=2.1357 na na na na
(0.1290)
Po2=0 na na na na na —0.003 na
(0.0476)
Bo3=0 na na na na na —0.00003 na
(0.0003)
p1=0 na na na na na 1.2590 na
(0.0001)
Br2=0 na na na na na 0.0161 na
(0.0001)
B1=0 na na na na na —1.4573 na
(0.0001)
Ugo= o1 = na na na na na na F=449.03
o5=0 (0.0001)
H,: No
-Vertical Accept Accept Accept Accept Accept Reject Reject
Inequity

*The null test values given for the different models, as shown in Exhibit 1, are for the B, &, 7, 2, D«
B and a,, parameters of the Paglin and Fogarty, IAAO, Bell, Kochin and Parks, Cheng, cubic spline,
and piecewise spline models, respectively. Nonparenthetic numerical values in the first eight rows
indicate coefficient estimators. The piecewise and Bell models require an F-statistic to test the
hypotheses. The prob values for the F-statistics and coefficient estimators are given in parentheses.

All of the other models yield incorrect results when testing for the existence of vertical
inequity. This may be seen by inspecting the first five columns and the top three rows of the
exhibit. The probability levels shown there are all greater than 0.05. In essence these other
models do not detect the regressive and progressive structures designed into the data set.
These non-spline models lead to incorrect conclusions because they have linear, simple
nonlinear, or quadratic functional forms and are thus incapable of handling S-shaped
forms of varying segment length.

Chicago Condominium Data

Data from the Sandburg Village area in Chicago is used to show how the existing tests
can provide conflicting results.” Plots of these figures are included in Exhibits 5 and 6.
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Exhibit 5
Sandburg Village Data: Cubic Spline Regression Model
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Sandburg Village Data: Piecewise Spline Regression Model
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Exhibit 6

Sandburg Village Data: Kochin and Parks Regression Model
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The data set comes from the Sandburg Village area located just north of the Chicago
central business district. The data consists of forty-three condominium sales from January
1984 through December 1984.% In the modelling process, the 1984 assessed values are fitted
on the corresponding sales prices.

In examining plots in Exhibit 5, even though the data for Sandburg Village is not as
smooth as the contrived data, the relationship does not appear to be linear. The graph
shows that there are three distinct relationships; i.e., one each for the low-priced properties,
the intermediate-priced properties, and the high-priced properties. The piecewise spline
model shows that each of these groupings can be modelled with line segments of different
intercept and slope.® Exhibit 6 shows the model fits of Paglin and Fogarty, and of Kochin
and Parks.

The empirical results for Sandburg Village are in Exhibit 7. Most of the existing models
show no vertical inequity is present. This can be seen by looking at probability levels in the

Exhibit 7
Sandburg Village: Results
MODEL  Paglin/ Kochin/ Cubic Piecewise

Test” Fogarty IAAO Bell Parks Cheng Spline Spline

Bo=0 285.36 na na na na 38259 na

Poo=0 (0.4151) (0.0192)

=0, ¢1=1 na —2.23E-8 na 0.9317 1.0023 na na

=1 (0.7871) (0.0852) (0.9561)

p=17,=0 na na F=3.8870 na na na na

(0.0287)

By2=0 na na na na na 2.9E-5 na
(0.0069)

Po3=0 na na na na na —2.8E-11 na
(0.0038)

B1=0 na na na na na —-0.3038 na
(0.1404) :

B=0 na na na na na —1.9E-5 na
(0.0057)

B =0 na na na na na 0.2102 na

. (0.1127)

oo = A1 = na na na na na na F=7.101

oy =0 (0.0007)

H,: No

Vertical Accept Accept Reject Accept Accept Reject Reject

Inequity

*The null test values given for the different models, as shown in Exhibit 1, are for the B, a,, T, 2, @
B and a,, parameters of the Paglin and Fogarty, IAAQ, Bell, Kochin and Parks, Cheng, cubic spline,
and piecewise spline models, respectively. Nonparenthetic numerical values in the first eight rows
indicate coefficient estimators. The piecewise and Bell models require an F-statistic to test the
hypotheses. The prob values for the F-statistics and coefficient estimators are given in parentheses.
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first five columns and first three rows of the exhibit. The Bell model gives weak rejection,
with a probability level of 0.0287. The spline models both gave strong rejection of the
hypothesis of no vertical inequity. The cubic spline model rejects the hypothesis, as
suggested by probability levels much below 0.05 for the coefficients By, S, B, and B,
Recall that only one of the probabilities in this column need be less than 0.05 for rejection
of the hypothesis. For the piecewise spline model, the very high F-statistic and its
corresponding low probability level show that there is a difference in treatment between the
assessment percentage of low-, middle- and high-valued property. Apparently vertical
inequity is present.

Findings

The existing models that are used to test for vertical inequity are sufficient for cases
where the a—s ratios within the assessment district are either linear or nonlinear with a
continuous first derivative (the Bell, Kochin and Parks, and Cheng models). The existing
models, however, are incapable of properly testing for vertical inequity in a situation where
the relationship is nonlinear with a discontinuous first derivative, as is shown with the
contrived data. This also appears to be the case for the actual data. The cubic spline and
the piecewise spline models appear to be superior to existing models in detecting vertical
inequity.

Conclusion

The issue of vertical inequity within jurisdictions will continue to be an important topic
for as long as states and municipalities use property taxation based on assessed values.
Depending on the models used to test for vertical inequity, inconsistent results will often be
obtained. The question of which model to use depends on which end of the complexity/
accuracy continuum the assessing district chooses.

The spline models introduced in this paper can be used to handle situations and give
results that encompass those for existing models, as well as handle more complex
situations. Therefore, the spline models are superior in testing for vertical inequity. The
increased complexity of spline modelling must be compared with the likely increased
accuracy in discerning the existence of vertical inequity. The choice depends on the extent
to which it is felt that S-shaped vertical inequity may be present in the jurisdiction and how
important it is to test for such inequity. The potential inequity in a tax system could be
extensive. Such extensive inequity would remain undetected if only previously proposed
models were to be used.

Notes

ISee Bell [2), Cheng [6], Kochin and Parks [13 and 14], Paglin and Fogarty [15], and Reinmuth [18].
2An extension of the Cheng and the Kochin and Parks models would be one using Box-Cox
estimation. This would improve the statistical fit for the family of one independent variable
models. The Box-Cox procedure is designed to provide a best model form within a family of
models. Such a transformation for data fitted with the Cheng or Kochin and Parks models would
not, however, provide a good functional form for the nonlinear cases discussed on pages 321
through 322. See Kennedy [12, p. 83] and Fomby, et al. [9, pp. 424ff].

VOLUME 5, NUMBER 3



TESTING FOR VERTICAL INEQUITY 333

3An extension of Bell’s model by adding a cubic term is insufficiently flexible. Such a model implies
a constant third derivative, which may not be the case at all.

“For an exposition of the proper use of splines, see Suits, et al. [21] and Wold {24).

SWegman and Wright [23, p. 362] have indicated the development of the underlying statistical
properties for robustness of small sample estimators is only at its beginning stages. It has been
suggested that estimating with other than a sum of squares method can improve matters (see
Anderssen, et al. [1]).

%Connor [8] has conducted research on uniform distributions regarding optimal knot locations
with different numbers of segments. He found that for a model with three segments, the optimal
knot locations are the 27th and 73rd percentile observations. These locations could be used by the
investigator as initial starting points for the DUD procedure.

"Since the purpose of this paper is to show how the existing tests may give conflicting results, these
results do not measure the amount of inequity, examine the probable cause(s) of the inequity, or
discuss how to correct for the inequity. To explore these other areas further, see Sunderman, et al.
[22] and Birch, et al. 3].

$Wold [24] determined the minimum number of observations required per interval could be as few
as four or five. This would suggest a three-segment model could be run with as few as twelve to
fifteen observations. This point is further substantiated by Poirier {16], who states that the
minimum number of observations required to test a cubic model is fifteen. Therefore, our sample
size is sufficient with forty-three observations, in total, including as few as eleven in one of the three
segments.

9The Sandburg data were plotted by connecting the observations with line segments. It should be
noted also that there are no datapoints between sales prices of approximately $73,000 and
$85,000. This is why there is such a large difference between the cubic and piecewise spline graphs.
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