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Abstract. This paper presents a mathematical model and a solution methedology for
determining the minimum fee, the best project duration time, and the optimal number of
analysts for projects that involve travel to multiple sites or subcontracts with analysts
from geographically dispersed locations. Computational experiments with the solution
algorithm on twenty-seven randomly generated projects show that (a) the solution
methodology efficiently provides an optimal solution, and (b) it provides decisionmakers
with alternative next best plans through ex post sensitivity analysis.

Introduction

Real estate analysis contracts are awarded by various methods, including com-
petitive bids and negotiated fees. In all cases the firm must be aware of the
approximate number of hours required by analysts to complete a proposed assign-
ment, in order to establish a minimum bid price or a price below which a fee is not
negotiable.

When a prospective assignment is of a routine nature, price determination is a fairly
simple procedure incorporating the distilled wisdom of past experience. For proposals
that are unique or are sufficiently large that analysts from other firms will have to be
utilized, either in a joint venture arrangement or by subcontracting a portion of the
work, fee determination becomes substantially more involved. The most common
approach then involves spreadsheet calculations that incorporate “what—if” questions
to compute the number of analysts and ultimate project costs. Although simple, this
approach is time consuming. Moreover, for complex assignments, its efficacy is
limited.

The complexity of cost determination grows geometrically when assignments
involve multiple properties that are geographically dispersed or when subcontractors
must be drawn from multiple locations. The trial-error approach, normally by spread-
sheet software, to such a task may cause the firm to lose potentially lucrative
opportunities due to having overestimated total project costs. Perhaps more seriously,
it may result in acceptance of assignments with fee structures such that the firm
actually suffers economic losses. Moreover, spreadsheet analysis cannot accommodate

*Department of Management Information Systems and Decision Sciences, The Fogelman College of
Business and Economics, Memphis State University, Memphis, Tennessee 38152.

**Department of Finance, Insurance, and Real Estate, The Fogelman College of Business and Economics,
Memphis State University, Memphis, Tennessee 38152.

Date Revised—July 1992; Accepted—October 1992.

265



266 THE JOURNAL OF REAL ESTATE RESEARCH

the trade-off relationship between total project costs, the size of the project team,
project duration, and related practical constraints.

Firms that vie for these complex assignments need a systematic managerial
decisionmaking model that accounts for costs, contraints, and trade-offs. This article
presents a general optimization model that incorporates all cost elements, interrelates
the decision variables, and includes restrictions confronted by the firm. Also, it
presents an algorithm that efficiently determines the minimum project price, the
optimum project duration time, and the optimal number of appraisers or analysts to
be assigned to a project where the work involves analysts’ travel from multiple
locations. The article concludes with a summary of computational experiments with
the solution methodology, utilizing a set of randomly generated project parameters.

Previous Research

There is no evidence in the literature that the project bidding problem has ever been
modeled or solved with mathematical programming technology. The most closely
related research is in the area of manpower planning, specifically audit staff planning
for public accounting firms. The research on audit staff planning has been focused on
developing single-period or multi-period models by employing linear goal program-
ming or multiple objective linear programming approaches.

Price, Martel and Lewis (1980) surveyed previous research on the topic. Early
modeling efforts reported by Bailey, Boe and Schnack (1974), Killough and Souders
(1973), Summers (1972) and Welling (1977), used the linear goal programming
approach to model single-period audit staff requirements for Certified Public Account-
ing firms. Weaknesses in the goal programming approach (i.e., a priori determination
of weights or priorities by decisionmakers) encouraged researchers to approach the
problem by multiple objective linear programming methodology. To include the
realism of staff requirement fluctuations, the planning horizon was increased from
single to multiple periods by Balachandran and Steuer (1982), Gardner, Huefner and
Lotfi (1990), and by Silverman, Steuer and Whisman (1988).

All of these researchers applied existing mathematical programming modeling and
solution methodologies to model and solve the project staff planning problem. The
minimum cost bid problem (MCB) is concerned with a managerial decision that is
different from the staff planning problem in that: (1) in the MCB problem we search
for a minimum bid price; (2) a new mathematical programming model (a nonlinear,
integer model with a single objective) is applied to formulate the problem; (3) there is
no existing methodology to solve the problem.

Model Development

The project minimum bid price computation incorporates categories of associated
costs and constraints, and key trade-offs. The size of the project team affects project
duration and related costs, so the optimal number of analysts is interrelated with the
optimal project duration and the number of sites that must be visited or the number
of locations from which analysts must travel. Furthermore, project completion time
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should be evaluated such that: (1) total project cost is minimized by minimizing the
number of periodic home visitations and/or travel time between site, (2) the project is
completed before the deadline, and (3) analysts’ living costs at the project site are
minimized.

We pose the problem as follows: Determine the best allocation of available analysts
to complete the project within the time frame set by the prospective client, at
minimum total costs.

Model Objective Function

The total cost function may be presented as:
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where the model notations and conventions are defined in Exhibit 1. The problem’s
decision variables are P, the number of days to complete the project, and E, the
number of analysts from different locations assigned to the project. The parameters
are specified by the firm and its prospective client.

The following additional assumptions are made:

» P includes the entire project duration, including weekends and visitation
periods,

« home visitations are during weekends,

« each site visit requires the same average amount of time,

* a project starts on the first day of a week.

The components of the total bid cost equation, equation (1), may be explained as
follows:

Airfare Costs. One of the major costs in determining a bid on a large out-of-town
project is the round-trip airfare cost of the analysts who must do site visitation.
Airfare costs are defined by the first set of bracketed terms in equation (1):
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Exhibit 1
Model Variables and Conventions

n = maximum number of days to complete a project,

P = number of days to complete a project (including weekends and home visitation periods),
f = total number of sites to be visited in the same geographical region (city),

/ = index set associated with the independent analyst's home sites available for a project,
E; = number of analysts assigned to a project from location (i.e., branch, city, etc.) /,

u; = maximum number of independent analysts available at location J,

r = average number of days to inspect each property,

w = number of working days per week,

v = number of days each analyst visits home on each trip,

Ay = number of days between two subsequent home visits,

s = analysts’ average daily salary,

a; = round-trip airfare from location / to the project site,

m = analysts’ average daily meal and incidental costs,

h = daily hotel cost per analyst,

c = daily rental car cost,

d = overhead allocation per site visited or per analyst drawn from another location.

The following conventions are defined:

the smaller nearest integer value.
the larger nearest integer value.

L)
[
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The first term represents the cost of the initial round-trip to the project site; the
second accounts for periodic home visits. Obviously, the number of home visits must

be an integer variable.

Salary. Regardless of the location, analysts are offered the same average daily salary,
which is the second set of bracketed terms in equation (1):
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The term represents the total average salary of analysts while working at a project
site; analysts are not paid for weekends or for home visitation periods. Average
salaries are incorporated to simplify the presentation of the algorithm; the formu-
lation can be easily modified if different salary arrangements are involved.

Meal and Incidental Costs. Each analyst has a fixed allowance for meals and incidental
costs during his/her stay at the project site. The third set of bracketed terms in
equation (1) represents this cost:
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The first term accounts for the costs throughout the project duration, but the analysts
would not be reimbursed for the period of home visitations. This latter adjustment is
represented by the second term.

Hotel Costs. The fourth set of bracketed terms in equation (1) presents the total hotel
costs for the project (the first term), adjusted (the second term) for home visits during
which there are no hotel charges:

i P I

i=1 v i=1

Car Rental Cost. Each analyst is assumed to rent a car while working at a site, and
these costs are expressed by the fifth set of bracketed terms in equation (1). Anytime
an analyst returns home for a visit, the car would be returned to the rental company.
Car rental cost for the total site inspection period is formulated by the first term; the
second term adjusts for the home visitations period:
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Administration Costs. The last bracketed term in equation (1) defines fixed costs for
inspecting each property. This is allocation of overhead, d, for secretarial work and

office operations. .
To simplify the notation in equation (1), the following substitutions are employed:

P
d,
Y=Y, 3)
and
e P
R 4)

The variable X represents the number of home visitations during the project duration;
the variable Y denotes the number of analysts selected for the project team; and the
variable T indicates the project duration in terms of weeks.

Substituting these into equation (1) gives the following reformulation:
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Model Constraints

The total cost function, equation (5), is a nonlinear and mixed integer function that
is to be minimized over £, P, T, X, and Y, subject to some major constraints. First,
the number of analysts drawn from different locations in the country cannot exceed
the available number at each location. Second, the optimal project period cannot
stretch beyond the deadline determined by the client. Third all the sites and buildings
for a given project must be inspected within the project duration. Fourth, values for
all the decision variables must be non-negative and integer.

It should be noted that although in practice it takes longer to complete some site
inspections than others, the model uses an overall average (r) to represent the
productivity of analysts per day.

Given these constraints, the Minimum Cost Bid (MCB) model may be stated as,

!
Minimize F(EP,TX,Y)=[(1+X)) aE]+[TwsY]+

i=1

[tn+h+c)P—vX)Y+[[d], (6)
Subject to:
E<u, i=1, ...1I (7
P<n, ®)
wTY>rf, ©)
T>0, (10)
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and
E, P, X, Y, >0 and all integers. (1D

The MCB is a nonlinear, mixed integer mathematical programming model, in the
sense that equation (6) is a nonlinear and mixed integer function, equation 9) is a
nonlinear and mixed integer constraint, four of the decision variables are integer and
one, T, is real. The remaining constraints are integer and linear. Note that adminis-
trative overhead allocation, the last term in equation (6), is a fixed cost and may be
dropped without any affect on the optimal solution of the problem.

A Solution Methodology

A search has shown that there is no specific algorithm or procedure in the literature
that solves the MCB problem. The difficulty is that none of the existing solution
procedures for nonlinear or/and integer programming models are capable of dealing
with models that contain noncontinuous and nonlinear functions combined with the
condition imposed on X by equation (2). If these conditions are relaxed, then a
Lagrangian relaxation approach (Fisher, 1985) may be applied to provide a “‘good”
solution to the model or at least a lower bound on the optimal solution. It was
decided to devise a new, simple and efficient algorithm that can take advantage of the
practical characteristics of the problem to obtain the optimal solution with a
“reasonable” computational effort.

An aggregation of the constraint set, equations (7) through (11), generates a
solution region depicted in two dimensions by Exhibit 2. The feasible solutions to
the problem include all integer combinations of the decision variables above the
hyperbola defined by the constraint in equation (9).

The combinatoric nature of the model and conditions specified in equation (2) and
(3) make this appear to be a difficult problem, but the model’s practical characteristics
make it possible to design a simple optimal search solution method that can efficiently
be implemented on a personal computer. These practical characteristics are:

» The model includes few decision variables, and simple constraints.

* In practice the decision variables are bounded tightly. For example, the
project’s allowable duration is usually set by the client’s time frame for
accomplishing other aspects of the program that prompted the consulting
assignment, and hence the optimal project duration certainly cannot exceed
the client’s specification. Also, the number of locations and the number of
analysts in each location are bounded tightly.

+ Finally, and most importantly, the only cost that would encourage the firm
to select subcontractors from some locations and ignore some others is the
airfare cost. The other related costs are independent of the home locations
of the selected analysts.

The aforementioned characteristics permit an efficient enumerative algorithm
design, hereafter referred to as Brute Force Search Method (BFS). For a given
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Exhibit 2
Solution Region for the MCB Problem
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project, this approach suggests a partial enumeration of feasible integer combinations
of the pertinent decision variables within the areas labeled (iii, iv, vi) in Exhibit 2
while ignoring the infeasible solutions within the areas labeled (i, i, iii, iv, v).

Given the parameters associated with a project, the BFS method may be sum-
marized as follows:

Step I: Rank Available Analysts’ Home Sites
a. Rank airfare costs (a) in an ascending order along with the analysts’ home
sites
b. Leti=1, ..., Idenotes the home site location rank.

Step II: Determine the Minimum Required Number of Analysts
a. Compute the minimum number of analysts required to complete the project
within n days, Y, as Y. =[rf /(1/7.)wn].
b.  Compute the total number of available analysts, Y*, as

I
Y*=>Yu,
=1

¢. If Yy > Y* then set TC*=o00, and go to Step VI.
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d. Let i* denote the home site rank of the analyst Y, and u* denote the
number of analysts selected from location i*.
e. Seti=* u=u*, Y=Y,,— 1, and TC*= 00, and go to Step Ille.

Step I11: Add an Additional Analyst

a. Seti=i+1.

b. 1If i>1, then go to Step VL

c. Set u=0.

d. Setu=u+l.

e. If u<u, then set Y=Y+ 1 and go to Step IV, otherwise, go to Step Illa.

Step IV. Check the Feasibility Conditions
a. Set P=rfi(1/7.)wY.
b. If P>n, then solution is infeasible; go to Step 111d.

Step V: Update the Improved Feasible Solution
a. Applying equation (6), commute F* (E*,P,T.X,Y), where E*={E: J=1,2,
.. iy and a*={a; j=1,2, . . .}; applying equations (2) and (4), compute X,

and T.
b. If F* (E*,P,T.X,Y)>TC*, then go to Step II1d.
¢. Set TC*=F*E* P, T X,Y), P*=P, and E*={E:j=12,...,i—1}Uu

d. Go to Step I1ld.

Step VI: Check the Optimality Conditions
If TC*=o00, then the problem is infeasible; otherwise, the optimal solution is
at E* and P* with the minimum bid cost of TC*. Terminate!

In Step I, the algorithm starts by sorting the analysts based on their round-trip
airfare costs. The sorting process ranks the analysts in an ascending order of the
round-trip airfare costs. The main reason for sorting is to be sure that in Step II the
project team members are selected from the locations with the lowest airfare costs so
that total airfare cost will be minimized.

To determine whether available analysts are capable of completing the project
within the client’s time frame, Step II computes the minimum number of required
analysts; if it exceeds the number available, then the problem is infeasible and the
procedure is terminated. Otherwise, the algorithm moves to the next step.

In Step 111, the algorithm attempts to build up the project team. The selection
process adds one analyst at a time using the location-ranked list. If the number of the
project team members selected from one location exceeds the available number, then
the algorithm moves to the next ranked location; otherwise, it proceeds to check the
feasibility conditions. This step assures satisfaction of constraint (7).

Step IV answers the following question: How many days are required for the
current project team to review the sites? If the required period plus weekend and
home visitation periods exceeds the given deadline, then the present team is not
capable of completing the project; the algorithm goes back to Step III and adds an
additional member to the team. If the project team can complete the inspection
process before the deadline, then BFS proceeds to the next step. Satisfaction of
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constraints (8) and (9) are assured by this search procedure.

If the project can be completed with the current project team, then Step V applies
equation (6) to compute the associated total bid cost. Next, the quality of the new
solution is compared to the best previous solution. If the new solution has a lower
objective function value, then it is substituted for the older best solution and the
program returns to the Step III to continue the search for the least costly project
team.

After all available analysts are added to the project team in this iterative fashion,
Step VI determines if the optimal solution is obtained. The algorithm terminates with
the optimal solution or indicates that the problem is infeasible.

Convergence Proof

Theorem: The BFS algorithm converges to the optimal solution within Y*— Y . +1

iterations.

Proof: Assume that there exist at least a feasible solution. There are I ranked
locations and each location i consists of u; available analysts. Starting with Y,
available analysts from the highest ranked location and moving toward the lowest
ranked location, the algorithm selects one analyst at a time to build the final project
team. For each location the selection proceeds until all the available analysts at the
location are included. With addition of each team member, the procedure checks the
possibility of completing the project within n days. The search is continued until all
analysts in [ locations are included in the team, Y*. Hence, the algorithm arrives at
the optimal solution at most within Y*—Y_; +1 iterations. R

Obviously, the BFS algorithm rate of convergence depends on the problem
parameters. The number of iterations is a function of f, v, w, r, n, and Y. Knowing the
three facts that: (1) in practice, the values for these problem parameters are “small’’;
(2) the bound on the number of iterations is finite and *“‘small”; and (3) at each
iteration a new solution is visited, ensures the convergence of the algorithm within a
“reasonable time interval”. This is shown in the next section.

Computer Implementation of the BFS Algorithm

To examine and simulate the performance characteristics of the BFS algorithm, a
testing system was designed. The major components of the testing system include: (1)
a random project generator, (2) the BFS algorithm, and (3) a report generator.

The BFS testing system works as follows: given a random seed number and
intervals for the values of problem parameters, the project generator can create a
random project. Then the minimum cost bid is determined by the BFS algorithm, and
the project input characteristics and the solution results including the next best
solutions are reported.

A portable FORTRAN program was developed to implement the BFS testing
system on the ZENITH Z-386 SX PC computer. A uniform random number
generator was applied to generate (1) airfare costs from each location to the project
site, and (2) the maximum number of available analysts at each location. The BFS
software is portable on any other PC.
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An Example Project

Using the BFS testing system and the following real-world parameters, a random
example project was generated and the optimal solution was determined:

n=20, u=[1 to 3], d=250,
=6, a=[100 to 400], =20,
s=150, w=35.5, M =60,
r=2, v=2, h=170,
A4,=12, c=50,
useed = 42088129, and aseed=46354671.

For this project using the seed number useed, the number of analysts in each location
was randomly selected between one to three. As a result, a total of nine analysts were
available at six different locations. Also, the round-trip airfare costs from each
location to project site were generated randomly, where it varied from $100 to $400.
The random seed number used was aseed.

The optimal solution and the two next best solutions are shown in Exhibit 3. The
optimum solution was found in nine iterations and indicates that with eight analysts
the project can be completed within six days with the minimum total costs of $22,005.
The efficiency of the algorithm was shown to be incredible. On the ZENITH Z-386
SX, it took less than one minute to obtain the optimal solution.

Exhibit 3
The Optimal Solution and the Next Best Solutions for
the Example Project

First Second
Optimal Best Best

Variables Solution Solution Solution
Analysts 8 5 4
Project duration 6 11 17
Airfare $1,165 $537 $856
Salary $7,200 $11,625 $15,600
Incidental $2,880 $3,300 $3,600
Hotel $3,360 $3,850 $4,200
Car $2,400 $2,750 $3,000
Administration $5,000 $5,000 $5,000
Total Costs $22,005 $27,062 $32,256

A Computational Experiment

To experiment with the BFS testing system, a set of projects were randomly
generated. The following parameters used to create the test projects are selected based
on the real-life projects:
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n=10,15,20, u=[1 to 3], d=250,
1=4,6.8, a=[100 to 400], f=20,30,40
s=150, w=35.5, m=60,
r=1, v=2, h=170,
A4,=12, c=50,
useed = 42088129, and aseed=46354671.

A total of twenty-seven projects were randomly generated and the optimum solutions
were obtained. The optimal solutions for each of the twenty-seven projects was
obtained in less than one minute on the ZENITH Z-386 SX. Exhibit 4 depicts the
information on the optimal solutions. Note that all twenty-seven projects had the
same costs parameters, except that airfare costs for each project were generated
randomly. Also, the number of analysts available at each location were randomly
generated.

The following observations can be made. As the number of locations (/) was

Exhibit 4
Optimal Solution Data for the Set of Randomly Generated Projects

Available Optimum Optimum Optimum

Project n / f Analysts Iter. Analysts Duration Cost(s)

1 10 4 20 5 " * " *

2 10 4 30 6 * " " *

3 10 4 40 5 " " * *

4 10 6 20 8 6 8 6 23,481

5 10 6 30 7 * " " -

6 10 6 40 8 * " " "

7 10 8 20 9 7 8 6 22,463

8 10 8 30 11 8 9 10 44,843

9 10 8 40 12 8 12 10 60,778
10 15 4 20 6 5 5 11 27,491
11 15 4 30 4 N * * *
12 15 40 40 6 " * * "
13 15 6 20 8 7 8 6 27,770
14 15 6 30 8 6 8 11 43,698
15 15 6 40 8 * * * "
16 15 8 20 12 11 8 6 22,048
17 15 8 30 10 8 8 11 43,483
18 15 8 40 10 7 10 11 55,186
19 20 4 20 4 4 4 17 33.148
20 20 4 30 7 6 6 17 51,144
21 20 4 40 * " * * *
22 20 6 20 9 9 8 6 22,005
23 20 6 30 8 7 8 1 44,166
24 20 6 40 * © " - "
25 20 8 20 10 10 8 6 22,316
26 20 8 30 9 8 8 1 43,662
27 20 8 40 9 7 8 17 65,372

*project infeasible
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increased: (i) a number of projects were found to be infeasible (indicated by the “*”),
This means that if the number of available analysts were not capable to complete the
review process within the deadlines then the project is declared to be infeasible. To
remove the infeasibility we need to increase the pool of the available analysts or/and
increase the project duration; (i) Given » and I, as the number of sites or properties
(/) to be visited was increased the optimal project duration and total project cost
were increased. Also, the optimal number of analysts was increased or stayed
unchanged. In many instances, the projects were completed a few days before the
deadlines and in some cases met the maximum durations.

Summary and Conclusions

A major problem when bidding on large projects that require the use of sub-
contractors from geographically dispersed locations is to determine the minimum fee
that will cover the firm’s costs, including its normal profit margin, yet provide a
reasonable chance of submitting the winning bid. The risk is twofold: A too-high fee
risks losing out on potentially profitable assignments, but a too-low fee risks winning
assignments that prove to be unprofitable.

To address the minimum cost bid problem confronted by appraisal or consulting
firms, we formulated a nonlinear and mixed integer mathematical model. The model
accounts for the major cost parameters and also the constraints involved. A new
optimization algorithm to determine the minimum cost bid is presented. The algo-
rithm was implemented on a ZENITH Z-386 SX personal computer. Computational
experimentation with the BFS code has shown that the algorithm can efficiently (in
less than one minute) determine the optimal total bid cost along with the optimal
number of analysts from diverse locations to a single assignment or the number of
analysts from a single location to dispersed sites, and the optimal project duration
time.

The model and algorithm presented in this paper are powerful managerial tools.
The stochastic nature of the parameters and changes in the pool of the available
analysts are a major concern of management in evaluating a project and preparing a
bid. The BFS algorithm and the computer code have the capabilities to look into
different scenarios and efficiently perform sensitivity/post optimality analysis to offer
alternative optimal plans and their associated costs.

From a practitioner point of view, the simplicity of the BFS algorithm and its
implementation (MINBID) allow the software to port on mainframe, micro, or PC
computers and provide quality and fast answers to the managerial questions regarding
a bid.
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