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A b s t r a c t This article examines the variation in rents per square foot among
regional shopping centers in the United States in response to
variation in retail sales per square foot. The analysis breaks new
ground by treating base and percentage rents as endogenous
functions of retail sales. The analysis further distinguishes
between de facto, if not de jure, fixed and percentage leases, and
between new versus existing leases. Simulation results suggest
that shopping center rents can easily increase in the short-run as
retail sales decrease, or they can easily decrease as retail sales
increase. In addition, the results suggest that shopping center
rents per square foot generally react more aggressively to an
increase in retail sales per square foot over time than to a
decrease in retail sales per square foot, all else equal.

I n t r o d u c t i o n

This article is concerned with the effects of variations in retail sales on the time
path of shopping center rents. On the basis of a variety of evidence, including a
recent article by Wheaton and Torto (1995), the case for examining the
relationship between retail sales and shopping center rents is compelling.1 Between
1968 and 1993, for example, retail sales in regional shopping centers in the United
States (in constant dollars per square foot) fell by 20% to 40%, while rents per
square foot (constant dollars) almost doubled. Since then shopping center rent and
retail sales changes, for many retailers, have been such that rents and retail sales
are now, as it were, just in balance. For other retailers, changes in shopping center
rents have continued to outpace changes in retail sales. Still for other retailers,
the changes in shopping center rent and retail sales would appear to be on the
‘‘yellow brick road’’ leading back to an equilibrium level (see Exhibits 1–10).

As an explanation for some of these trends—particularly, the tendency for changes
in shopping center rents to deviate noticeably from changes in retail sales in the
short-run—this article develops a theoretical model of shopping center rents, with
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Exhibi t 1 � Rents vs. Sales Per Square Foot: Specialty Foods (1961 � 100)
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Exhibi t 2 � Rents vs. Sales Per Square Foot: Ladies Specialty Wear (1961 � 100)
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numerical parameters. The objectives of the article are to describe the model and
to present a variety of simulations results based on it.

The particular model specified here and the simulation results obtained relate
wholly to regional shopping centers in the U.S. The model has several antecedents
in the literature (Benjamin, Boyle and Sirmans, 1992; Brueckner, 1993; and Miceli
and Sirmans, 1995). However, it breaks new ground by (1) treating base and
percentage rents as endogenous functions of retail sales; (2) distinguishing
between de facto, if not de jure, fixed and percentage leases; and (3) relaxing
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Exhibi t 3 � Rents vs. Sales Per Square Foot: Ladies Wear (1961 � 100)
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Exhibi t 4 � Rents vs. Sales Per Square Foot: Children’s Wear (1961 � 100)

0

200

400

600

800

1000

1200

19
61

19
63

19
66

19
69

19
72

19
75

19
78

19
81

19
84

19
87

19
90

19
93

19
95

19
97

Year

In
de

x

Rent

Sales

assumptions regarding lagged effects. The model is also unique in that it is
estimated completely with cross-section data. The model is used to generate a set
of ex post forecasts over time. Our major findings are:

1. There is not a direct proportionality between changes in retail sales and
shopping center rents, at least not in most cases and particularly not in
the short-run. In the short-run, shopping center rents can easily increase
as retail sales decrease, or they can easily decrease as retail sales increase.

2. The analysis here suggests that a given percentage increase in retail sales
per square foot raises rents per square foot over time, all else equal, with
the rent increases in the short-run being greater for shopping centers
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Exhibi t 5 � Rents vs. Sales Per Square Foot: Men’s Wear (1961 � 100)
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Exhibi t 6 � Rents vs. Sales Per Square Foot: Family Apparel (1961 � 100)
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experiencing rising retail sales per square foot than for centers
experiencing constant (or declining) retail sales per square foot.

3. In the long run, shopping center rents per square foot generally react more
aggressively to an increase in retail sales per square foot over time than
to a decrease in retail sales per square foot, all else equal.

These conclusions are, of course, subject to several limitations. First, the theory
underlying the analysis deals with rents per square foot and retail sales per square
foot for individual stores over time, yet the variables we measure are at a point
in time (except for retail sales per square foot) and apply to aggregate data.
Second, we use cross-sectional data to make inferences about how rents per square
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Exhibi t 7 � Rents vs. Sales Per Square Foot: Family Shoes (1961 � 100)
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Exhibi t 8 � Rents vs. Sales Per Square Foot: Jewelry (1961 � 100)
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foot would change from one equilibrium at a point in time to another equilibrium
at a later point in time. This use depends on the assumption that the cross-sectional
observations themselves represent equilibria. Third, to the extent that the estimated
parameters in our cross-sectional model change over time, our approach would
not necessarily be the best way to track a true rental price trend.2

� A n E c o n o m i c M o d e l f o r A n a l y z i n g R e t a i l R e n t s

The model is mainly based on a model of regional shopping centers proposed by
Brueckner (1993), although similar ideas are presented in Benjamin, Boyle and
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Exhibi t 9 � Rents vs. Sales Per Square Foot: Sporting Goods (1961 � 100)

0

100

200

300

400

500
19

61

19
63

19
66

19
69

19
72

19
75

19
78

19
81

19
84

19
87

19
90

19
93

19
95

19
97

Year

In
de

x

Rent

Sales

Exhibi t 10 � Rents vs. Sales Per Square Foot: Cards and Gifts (1961 � 100)
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Sirmans (1992), Miceli and Sirmans (1995) and Chun (1996).3 The theory assumes
that the shopping center owner behaves as a perfectly discriminating monopolist.
Thus, instead of facing a horizontal demand curve for retail space, each shopping
center owner faces a negatively sloped demand curve. This demand curve depends
on the quantity of space that is allocated to the store as well as on the space
allocated to other stores in the center (the latter reflecting the presence of inter-
store externalities).

To maximize profits, the shopping center owner quotes an individualized rental
price per square foot of space to each store and then allocates the store the amount
of space it demands at that price. The equilibrium condition is:
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Dj(Q) � �S /�Q � � � �S /�Q j � 1, 2, . . . , n, (1)�j j i j
i�j

where Dj(Q) is store j’s inverse demand curve for space, Sj � Sj(Q1, Q2, . . . , Qn)
is the sales volume of store j, Q is the vector (Q1, Q2, . . . , Qn) of space allocations,
and � is the total operating cost per square foot.4 This condition says that stores
with a high externality-generating ability have a low marginal cost of space.
Consequently, these stores are encouraged to expand through low rents.

We are particularly interested in the case in which Sj depends not only on the
allocation of space within the center, but also on store effort levels. In this case,
the necessary condition for maximization of shopping center profits is rj � pj �
�jSj /Qj, where pj is the minimum base rent payment (per square foot) and �j is
the overage rate. In addition, �j must satisfy:

� � � /(1 � � ), (2)j j j

where �j gives the effect of higher store j effort on sales elsewhere in the center.
This condition shows that stores whose effort levels generate the most externalities
(e.g., large anchor department stores) receive rental contracts with the largest
percentage-of-sales subsidies.

Formulating the problem in this manner overlooks two important points. First, in
actual contracts, the overage rate applies only above some threshold level of sales,
not to total sales. Second, actual contracts are negotiated at various points in time,
not all at once. Because these assumptions seem unwarranted in most instances,
it is useful to add some additional structure to the model.

To this end, consider the following setup. Suppose we have a set of retail leases
at time period t of n different ages. Suppose also that all retail leases specify a
base rent and additional rent calculated as a percentage of retail sales above a
given level of sales. We shall first discuss the size of the minimum rent required
on these leases, leaving until later the discussion of additional percentage rents.

Let p(k, t) represent the minimum rent required on a k year old lease. We can get
a simple model for the determination of p(k, t) by assuming that:

p(k, t) � �S(t � k), (3)

where S(t � k) equals the actual retail sales (per square foot of gross leasable
area) in period t � k. This choice of p(k, t) implies that base rents are stepped
up (or may be stepped down) to � percent of sales at each renewal date.
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The next step is to sum the value of p(k, t) for leases signed in period t through
t � n � 1. This gives us a general base rent formula:

p(t) � �[� S(t) � � S(t � 1) � � � � � � S(t � n � 1)],0 1 n�1 (4)

where p(t) is today’s total base rental income and �i is the number of leases (as
a percent of the total number of leases) either renewing or renewed in period t �
i. Next, we note that Equation (4) can be transformed into a regression equation
by assuming that the lag weights, �i, can be approximated by evaluating a
polynomial function at the appropriate discrete points in time.

To estimate Equation (4), we assume that �i � c0 � c1i � c2i
2 for i � 0, 1,

2, . . . , n � 1 and �i � 0 for i less than 0 and greater than n � 1. Substituting
and rewriting Equation (3), we get:

p(t) � � � �c (S(t) � S(t � 1) � � � � � S(t � n � 1))0

� �c (S(t � 1) � 2S(t � 2)1

� � � � � (n � 1)S(t � n � 1))

� �c (S(t � 1) � 4S(t � 2)2

2� � � � � (n � 1) S(t � n � 1)) � �(t), (5)

where � is a constant term and �t is a normal error term. This specification has
the advantage of not imposing a restrictive functional form on the estimates of �,
yet it allows the traditional polynomial specification of lag weights.

The major estimation problem here is having enough data to complete the
specification of the distributed lag effect. The choice of a second-degree
polynomial is, of course, arbitrary and may be set according to convenience. In
the initial experimentation, third and fourth-degree polynomials were tested, but
they generally did not improve the statistical fit of the equation.

The basic rental data, which are described in greater detail below, consist of rent
rolls for a cross-sectional survey of U.S. shopping centers for 1995 plus time-
series data on S(t). From this data, we can estimate Equation (5). Assuming �
obeys the classical assumptions, the parameters of this function will be the best
linear unbiased estimates. Given estimated values for c0, c1 and c2, it is a simple
procedure to calculate �k. To do this, we assume that .5 The alternativen�1� � � 1k�0 k

is to assume that � � 1 and allow the estimated lag weights to incorporate the
effect of the true parameter �. Additionally, from the variance-covariance matrix
of c, it is a simple procedure to calculate the standard errors for each �.6
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In estimating Equation (5), a number of values of n are tried, the first
corresponding to n � 6, the longest lag we could obtain for retail sales. In order
to assess the sensitivity of our results to this assumption, we also estimated
Equation (5) assuming lags of four and five years (most specialty store tenants in
a regional shopping center sign leases for five to ten years).

Turning now to the calculation of total rent, we let r(k, t) denote the total rent for
leases originated in period t � k. The expected level of r(k, t) is defined by the
following relationship:

p(k, t) � �(S(t) � S*(k, t)) for S(t) � S*(k, t)
r(k, t) � (6)�p(k, t) otherwise.

where S*(k, t) is the actual sales breakpoint specified in the lease. Now, summing
over k, we have:

r(t) � � r(0, t) � � r(1, t) � � � � � � r(n � 1, t), (7)0 1 n�1

which can be used to make forecasts of total retail rents, both forward and
backward in time beginning at time t, and to test for the responsiveness of rents
to changes in retail sales.

Finally, we point out that the model in Equation (7) can lead to situations where
the actual rate of change of r(t) may be opposite of that of S(t). First, we note
that any arbitrary �S(t) implies an associated �p(t) of the form:

dp p(t � 1) � p(t)
�

dS S(t � 1) � S(t)

(S(t) � S(t � n � 1)
g �

S(t)
� � �, (8)n�1 � �g

where g denotes the percentage rate of change in S(t), i.e., g � �S(t)/S(t). This
result implies that dp /dS � �n�1� �� 0 only when S(t) � S(t � n � 1) and �n�1

� 0, otherwise the value of dp /dS could be positive or negative, depending on
the perturbation in S(t) � S(t � n � 1) over the term of the lease. For example,
in the case where g is negative, but where S(t) � S(t � n � 1) is positive, it is
quite possible for dp /dS to be negative, implying p(t) should increase, rather than
decrease, beyond t. By analogous reasoning, it also is quite possible for the reverse
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to occur. That is, g could be positive, while S(t) � S(t � n � 1) could be negative,
implying a decrease in p(t) beyond t. This indeterminacy prevails whether actual
contracts are negotiated all at once, i.e., �n�1 � 1, or at various points in time. It
is only when we choose to work with n � 1 period leases instead of n � 5 or
n � 10 period leases that dp/dS unambiguously becomes positive. In this special
case, dp/dS takes on the value of �, regardless of the past values of S(t), and with
dp /p � (dp/dS)(dS /S)(S /p), dS/S � g, and p /S � �, this implies dp /p � g, which
is a very intuitive result.

Next, moving on to the relationship between the value of r(t) and S(t), it is
important to distinguish between two separate cases: one where S(t) � S*(k, t)
for all k and one where S(t) 	 S*(k, t) for all k. All other cases are simply some
combination of these two. Where S(t) � S*(k, t) for all k, we have that:

dr r(t � 1) � r(t)
�

dS S(t � 1) � S(t)

S(t) � S(t � n � 1)
g �

S(t)
� � �. (9)n�1 � �g

This result is, of course, nothing but a replay of Equation (8). This is because,
when S(t) � S*(k, t) for all k, no tenant pays any overage, and, so, any effect of
a higher S(t) on r(t) through higher overage rents is brushed aside, and the value
of dr /dS in Equation (9) is automatically equal to the value of dp /dS in Equation
(8).

A different outcome emerges, however, when S(t) 	 S*(k, t) for all k. In this case,
we have:

dr r(t � 1) � r(t)
�

dS S(t � 1) � S(t)

S(t) � S(t � n � 1)
g �

S(t)
� (1 � � )� � � �. (10)n�1 n�1 � �g

This result enables us, assuming S(t) � S(t � n � 1), to write dr /dS � �. But
this suggests that dr /r, the rate of change in r(t), should be equal to g, the rate
of change in retail sales. This provides the intuition for Equation (10). For a value
of S(t) � S(t � n � 1), on the other hand, the resulting value of dr /dS can be
positive or negative, depending on the value of g. Likewise, for a value of
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S(t) � S(t � n � 1), the resulting value of dr /dS can also be positive or negative.
Again, such results are critically dependent on the value of g.

As the data will show, another important parameter in this regard is the breakpoint/
sales ratio, defined as S*(k, t)/S(t). Theoretically, the higher this ratio, the more
gradual is the change in rents—the argument being that a change in retail sales
will produce an immediate change in r(k, t), only if S(t) rises above S*(k, t) (or
if S(t) starts out above S*(k, t)); otherwise, r(k, t) will only gradually change as
leases are renewed and as p(k, t) is stepped up (or stepped down) to S(t).

In the following sections, we turn to several numerical simulation analyses of the
theoretical model. These simulations highlight interesting and nontrivial
interactions of theoretical parameters, and also the difficulty involved in attempts
to develop robust aggregate implications from such a framework. But before
proceeding to the simulation analyses, we shall try to give an empirical account
of the theoretical model and parameter values.

� E s t i m a t i o n a n d E m p i r i c a l R e s u l t s

D a t a D e s c r i p t i o n

The basic data assembled for this study, mean values of p(t), r(t), S(t) and
S*(k, t) /S(t) for tenants in U.S. regional shopping centers for 1995, are shown in
Exhibit 11. The exhibit also contains average store size (in gross leasable square
feet) and average lease term for various principal tenant types. The exact definition
of each variable, the source of the data, their nature, and their derivation are all
stated in considerable detail in the notes to the exhibit.7 Here the values are
arranged according to major groups: department stores, clothing and accessories,
shoes, home furnishings, home appliances/music, building materials/hardware,
hobby/special interest, gifts/specialty, jewelry, drugs, personal services, food and
food services.8

The data presented in Exhibit 11 show that jewelry stores, home furnishings, fast
food restaurants and other services (including optical stores, pet shops, flower
shops, stationers and news stands) are among the highest sales volume tenants
(per square foot) in a regional shopping center. The mean sales volume, for
example, for home furnishings and jewelry is between $650 and $800 per square
foot of gross leasable area. The mean sales volume of all non-anchor tenants is
$265 per square foot. Low sales volume tenants (excluding department stores)
include women’s wear, women’s specialty and gifts.9

Because jewelry stores, fast food restaurants and other services are among the
highest sales volume tenants in a regional shopping center, it comes as no surprise
to find that they also are among the highest total rent tenants in a regional shopping
center. The lowest total rent tenants (in rents per square foot) in a regional
shopping center are department stores that lease space from the shopping center
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Exhibi t 11 � Selected Characteristics of the Data

Merchandise Type
Average
Sales

Minimum
Rent

Total
Rent

Space
Occupied

Breakpoint Sales
Ratio

1994 1995

Family apparel 521 32.1 38.6 3623 1.25 2.22

Specialty apparel 430 34.4 37.6 2843 1.36 2.85

Men’s wear 463 32.4 41.4 2944 1.64 3.48

Women’s wear 279 22.3 24.4 5006 2.03 2.84

Women’s specialty 319 29.4 31.1 2668 1.69 3.04

Shoes 419 30.2 34.0 2174 1.97 2.00

Gifts 383 32.6 35.1 2176 1.77 2.64

Home furnishing 651 52.3 59.6 3926 0.99 2.05

Jewelry 796 68.6 77.6 938 1.40 1.75

Leisure &
entertainment

418 35.0 39.6 3390 2.40 5.79

Restaurant 413 21.3 27.6 7800 1.49 1.27

Fast food 617 59.5 70.5 1026 1.41 1.66

Specialty food 441 43.0 46.0 1016 1.66 2.05

Drug/Variety 564 49.7 53.3 9801 2.44 2.22

Services 523 82.5 34.1 1428 3.25 3.86

Others 831 71.3 91.1 1534 1.50 2.90

Mean 504 43.5 46.4 3268 1.77 2.66

Notes: All data are supplied by a large regional shopping center developer. All values (except for
space occupied) are measured per square floor of gross leaseable area. Except where otherwise
noted, all data shown here pertain to 1995.

owner.10 Total rent charges per square foot of gross leasable area for department
stores that lease space from the shopping center owner are $3.20, or about one-
seventh of that paid by specialty apparel stores. Similar rent differentials are
documented by Benjamin, Boyle and Sirmans (1992), who argue that such a
pattern arises because department store anchor tenants in most regional shopping
centers generate benefits for other stores by attracting consumers to the center.
These shopping externalities mean that the true marginal cost of space allocated
to a department store is quite low.

Another interesting comparison is between the average breakpoint/sales ratio for
different non-anchor tenant types. The values of this ratio range from a low of
1.27 for restaurants to a high of 5.79 for leisure and entertainment. These values
are believed to have an upward bias, due partly to new tenants, and partly to the
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use of partial year sales. For this reason, we also report the average breakpoint/
sales ratio on leases in their first full year of operation. The values of this ratio
(again for non-anchor tenant types) range from a low of 0.99 for home furnishings
to a high of 3.25 in services, with a mean value of 1.77 (see Column 5 of Exhibit
11). These results suggest that retail sales, on average, must grow by 7.50% to
12% per annum over the remaining term of the lease—and in some cases as much
as 16% per annum—if the tenant is ever to pay percentage rents. In the 1995
environment of, say, 3% expected inflation, it seems clear that most tenants will
never pay overage rents. While most stores in a regional shopping center may be
offered percentage-of-sales contracts rather than fixed rental contracts (see
Benjamin, Boyle and Sirmans, 1992; and Miceli and Sirmans, 1995), these are
generally far, far ‘‘out of the money’’ options and might reasonably be viewed as
fixed rent contracts. This evidence is also difficult to reconcile with the view that
percentage rent payments are smallest for stores that generate the most
externalities (see Brueckner, 1993).

We assume in the rest of this article that the units of observation are regional
shopping centers. This means, of course, that the variability of the data is greatly
reduced. Nevertheless, there are many reasons why rents per square foot and sales
per square foot will vary among regional shopping centers. Among the most
important are differences in age of the shopping center, and recent rates of
population and income growth. We proceed by regressing these average rents on
present and past values of aggregate retail sales in a manner consistent with the
statistical model described.

� E m p i r i c a l E s t i m a t e s

We estimated Equation (5) on our cross-section of shopping centers, with no
endpoint priors. The results are presented in Exhibit 12. In all cases, the structure
of the underlying model seems to fit the data reasonably well. The lag weights
implied by the second-degree polynomial distributed lag model in Exhibit 12 are
given in Exhibit 13, with standard errors reported in parentheses. It is apparent
that lag length has a minor impact on the coefficient estimates. Nonetheless,
several points should be made. First, Equations 1 and 2 in Exhibit 12 trace out a
humped distributed lag. Both lag structures peak at a lag of one year, and then
decline thereafter. Looking at the actual estimates, we find that the lag weights in
Equation 1 turn negative after three years, while those in Equation 2 turn negative
after two years. Second, the coefficients in Equation 3 result in a monotonically
declining lag structure. The lag weights (on the assumption that the �s sum to
one) range from 0.42 in period t to 0.01 in period t � 4. In period t � 5, the lag
weight is �0.11. Third, for the sum of the unadjusted coefficients (i.e., for the
expression � , the respective values for Equations 1–3 are 0.061, 0.064n�1� � )k�0 k

and 0.062. These are valid for a regional shopping center setting. They imply a
percentage rental rate ranging from 6.05% to 6.40% of retail sales, which is
entirely plausible.
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Exhibi t 13 � Responses to Lagged Changes in Retail Sales

Number of Lags

0 1 2 3 4 5

1 0.026 0.021 0.015 0.008 0.001 �0.007
(2.11) (3.37) (1.01) (0.35) (0.02) (�0.16)

2 0.019 0.026 0.023 0.009 �0.016
(1.43) (4.75) (1.74) (0.41) (�0.41)

3 0.016 0.033 0.025 �0.009
(0.98) (1.76) (1.39) (�0.32)

Notes: Responses are per square foot.

A simple ordinary least squares regression can also be used to estimate Equation
(5). The computational burden is considerably less than polynomial distributed
lag estimation techniques and the approach can be applied to models with a
modest number of lags. In Exhibit 14, we report the ordinary least squares
estimates of shopping center rents per square foot. It is worth noting that the
estimated lag weights in this case incorporate the effect of the true parameter �.
As such, these lag weights are not directly comparable to those reported in Exhibit
12. Moreover, these lag weights are estimated with less precision (which is why
we prefer the results reported in Exhibit 12). Still, if we restrict ourselves to the
sum of the estimated lag weights, we see from Exhibit 12 that the values of �
are within plausible ranges. The estimates of � range from a low of 0.059 (with
one lag) to a high of 0.064 (with five lags).

� C h a n g e s i n R e n t s D u e t o C h a n g e s i n R e t a i l S a l e s

Here we present a series of simulations to examine the relationship between
changes in retail sales per square foot and changes in rents per square foot over
time. Our approach is to assume that the �s and the � estimated in the last section
are constant over time. We then use Equations (5)–(7) to measure the impacts of
changes in S(t) on r(t). For each simulation we report the calculated values of r
(t) and briefly consider the time it takes for r(t) to adjust to a new equilibrium.

S c e n a r i o 1 : O n e - t i m e I n c r e a s e i n R e t a i l S a l e s

Four sets of simulations are considered here:

1. Base forecast. In this first experiment, we simulate Equations (5)–(7)
under the assumption that there is a one-time increase in retail sales per
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Exhibi t 15 � Response to One-time Increase in Retail Sales of 10%
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square foot of 10%. In addition, this simulation has S*(k, t) /S(t) � 1.75,
n � 6 and � 0.11 The simulation also uses historical values for past�̂5

S(t � k).
2. Natural breakpoint experiment. In this experiment, the value of

S*(k, t) /S(t) is reduced from 1.75 to 1.00 as a sensitivity test.

3. Shopping centers with growing sales. This experiment is identical to
Simulation 1 except now, instead of using historical values for retail sales
per square to forecast r(t), we assume that past sales per square foot were
growing at 10% per year. This more rapid growth in retail sales per square
foot should result in a more rapid growth of r(t).

4. Shopping centers with stagnant sales. In this last experiment, we
assume that past retail sales per square foot are constant. The other
parameters are the same as in experiment 3. The objective is to examine
how r(t) adjusts in shopping centers with stagnant sales per square foot.

The results of the first two simulations are presented in Exhibit 15. The
simulations suggest that rents are normally very slow to adjust to a new
equilibrium. For instance, in our baseline simulation a one-time increase in retail
sales per square foot of 10% causes rents to increase by slightly more than 8%
over a six-year period. Of this increase, something like 20% of the adjustment
occurs after three years, and then another 20% occurs in years four and five, with
the remainder of the adjustment occurring in year six.

Under Simulation 2, we see that there is no adjustment lag effect. Here a one-
time increase in retail sales per square foot of 10% leads to an immediate increase
in rents per square foot of about 8%, as one would expect. When the breakpoint
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Exhibi t 16 � Effect of Past Growth Rates in Retail Sales on Rent Increase
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/sales ratio is set equal to 1.00, the expression for r(t) simplifies to r(t) � �S(t)
for S(t) � S*(k, t); and r(t) � p(t) otherwise. Given this, a one-time increase in
S(t) of 10% should increase rents per square foot by � percent. Furthermore, this
increase should occur all at once, rather than being spread out over several years.
Note that in our case r(t) goes up by slightly more than � percent owing to our
simplifying assumption that � 0.�̂5

Our next two simulations address the question of path-dependency. From
Equations (5)–(7), it is clear that the calculated values of r(t) are enhanced by
higher past values of S(t). The procedure we propose to illustrate this is to simulate
values of r(t) using two different growth rates in past retail sales: one assuming
a high growth rate and the other assuming a low (or zero) growth rate. These
experiments suggest that, when past sales are constant, a 10% increase in retail
sales per square foot causes rents per square foot to increase by slightly more than
8%, but that, when the same 10% increase in sales follows an annual growth rate
in past sales of 10%, the percentage change in r(t) is approximately 18% (see
Exhibit 16). The explanation is that p(k, t) rises markedly upon lease renewal in
the latter experiment, but not in the former experiment.

S c e n a r i o 2 : O n e - t i m e D e c r e a s e i n R e t a i l S a l e s

We now consider the effect of a one-time decrease in retail sales of 10% on rents
per square foot. We do this by simulating the same four scenarios as above but
with a one-time decrease in retail sales of 10% instead of a one-time increase in
sales of 10%.

In our baseline simulation (with S*(k, t) /S(t) � 1.75, and � 0), a one-time�̂5

decrease in retail sales per square foot of 10% causes average rents per square
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Exhibi t 17 � Response to One-time Decrease in Retail Sales of 10%
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foot to fall by less than 1% after three years, and by less than 3% after years five
(see Exhibit 17). The surprising result is that by year six, the full impact of the
decline is less than 5.5%. This result suggests that, because the base shifts,
percentage increases and decreases in rents are not symmetrical (compare the
results in Exhibit 15 with those in Exhibit 17).

Our next exercise is to simulate the rent adjustment process when the breakpoint/
sales ratio, S*(k, t) /S(t), is set equal to 1.00. Other than starting out at a slightly
higher rate, these results do not vary much from the previous result.

We also simulate the change in r(t) resulting from a one-time decrease in sales,
with and without a fairly large run-up in S(t) just prior to the fall in S(t) (see
Exhibit 18). In the former case, rents per square foot actually rise in years two to
five, before falling in year six. In the latter case, rents fall throughout, before
stabilizing in years six to ten. These results are generally sensible. The temporary
increase in rents in the former case comes about as old leases with low minimum
base rents renew. They then decline thereafter as newer leases rollover at lower
minimum base rents. In the latter case, both old and newer leases rollover at lower
minimum base rents. Consequently, r(t) decreases monotonically over time.

S c e n a r i o 3 : A c t u a l C h a n g e i n R e t a i l S a l e s

In this simulation, we start out with data on actual retail sales per square foot for
the years 1963–1995 from ULI’s survey of regional shopping centers. Average
rents per square foot are then projected for the years 1968–1995 to the same
tenant mix and quality of space that characterizes the regional shopping centers
in Simulation 1.
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Exhibi t 18 � Effect of Past Growth Rate in Retail Sales on Rent Decrease
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Exhibi t 19 � Simulated Shopping Center Rents vs. Actual Sales Per Square Foot (1968 � 100)
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The results of this simulation (deflated by the CPI deflator) are given in Exhibit
19. It is possible to get a rough idea of the relation between rents per square foot
and sales per square foot over this time period by calculating a Pearson correlation
coefficient in the following way. Note that observationally retail sales per square
foot show less of a decline (in constant dollars) during the 1980s and 1990s than
during the 1960s and 1970s. Also, during the 1980s, retail sales per square foot
increased slightly, only to turn downward again in the 1990s.12 We find a Pearson
correlation coefficient between our estimate of current rents per square foot and
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actual sales per square foot of 0.97 (with a p-value of 0.0001) during the period
1968–1980. In contrast, similar calculations for the period 1981–1995 show a
Pearson correlation coefficient between our estimate of current rents per square
foot and actual sales per square foot of 0.18 (with a p-value of 0.52). Over the
entire 1968–1995 period, it appears that the Pearson correlation coefficient
between our estimate of current rents per square foot and actual sales per square
foot is 0.86 (with a p-value of 0.0001).

These results are noteworthy in several respects. First, the results suggest much
the same predictions about the effects of retail sales growth on shopping center
rents as in our first two scenarios—faster retail sales growth is associated with
roughly proportionate higher rental growth, while a decline in retail sales will
cause a roughly proportionate decline in rents. Second, as regards short-run
dynamics, a faster rate of growth in retail sales will, at least in some neighborhood
of time t, cause r(t) to increase. This is attributable to the fact that any increase
in r(t) is conditional on the sluggishness inherent in the underlying retail lease
agreements, which in some sense is the core point of the article. Third, the results
indicate that r(t) will overshoot its new, lower, equilibrium value and converge
downward to it, when S(t � n � 1) � S(t � 1) � S(t). Similarly, r(t) will
undershoot its new, higher equilibrium value and converge upward to it, when
S(t � n � 1) � S(t � 1) � S(t). As regards the time path of r(t), from Exhibit
17 it is seen that while movements in S(t) do not induce exactly equal movements
in the value of r(t), the two values remain inextricably linked when looked at over
the entire time period. This occurs, in large part, because the value of r(t) is
projected to the same tenant mix and quality of space, which is in stark contrast
to Exhibit 1–10.

� C o n c l u s i o n

This article has accomplished the following. We began by developing an economic
model of retail rents. This model, which follows Brueckner’s (1994) treatment of
the optimal allocation of space in a regional shopping center, was then estimated
using cross-sectional data on average rents per square foot combined with some
corresponding time-series data on sales per square foot.

Interestingly, the evidence suggests that average rents per square foot in a regional
shopping center generally do not respond immediately to a change in the income-
generating capacity of the shopping center, but rather the response is ‘‘smoothed’’
out over time. Perhaps the most obvious reason for this rent smoothing is that
most retail lease agreements in regional shopping centers are de facto, if not de
jure, fixed lease arrangements. Part of this smoothing behavior also occurs because
not all retail leases agreements are negotiated all at once. Consequently, during
periods in which sales per square foot in a regional shopping center are rising
(falling), average rents per square foot for most retail leases that are already in
place will tend to remain relatively fixed. However, it is noted that some
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adjustment in rents does occur as leases rollover (at which time minimum base
rents are adjusted to some fixed percentage of retail sales).

We then used our cross-sectional estimates to make inferences about how rents
per square foot would change from one equilibrium at a point in time to another
equilibrium at a later point in time. This use depends on the assumption that the
cross-sectional observations themselves represent equilibria, and that the model
itself can be applied through time (i.e., that none of the parameters changes
dramatically through time). The evidence suggests that average rents per square
foot are not nearly as tied to retail sales as most observers would believe. The
findings provide a useful perspective from which to view the theoretical models
of retail rents reported above.

� E n d n o t e s
1 A potential problem with Wheaton and Torto’s (1995) analysis is that their data are not

based on the same shopping centers over time, and, therefore, are not very comparable.
Furthermore, in the 1960s and 1970s most regional shopping centers included one or
more variety stores, one or more drug stores, and one or more supermarkets as leading
tenants. During the 1980s and 1990s, most regional shopping centers repositioned
themselves by shifting their emphasis from supermarkets, which have very high sales
per square foot but low rent per square foot, to smaller specialty stores, like apparel
stores, accessories, music and shoe stores, which have low sales per square foot but high
rents per square foot. Then too, a noticeable movement has occurred away from the
traditional arrangement in the 1960s and 1970s in which a department store leased space
from the shopping center owner in the same general manner as other stores in the center.
The current development trend is toward arrangements whereby the department store
building is owned by the store itself, not by the shopping center owner, and one might
expect this to have caused reported rents per square foot in regional shopping centers
to rise over time.

2 This is in contrast to the main problem associated with longitudinal studies of shopping
center rents, which is the difficulty of comparing rents and retail sales in a newly
developed shopping center with those in a shopping center that has, over time, become
more fully developed. The quality of the shopping center being different in the two cases
is a source of error that can easily lead to the notion that rents have risen somewhat
paradoxically over time, while what has, in fact, happened is that the risk of locating at
that center has gone down markedly between the two dates, thereby causing shopping
center rents to rise.

3 See also Eppli and Shilling (1995). They investigate the optimal time to develop a large
regional shopping center.

4 Note that � is constant cross-sectionally, presupposing a single tenant improvement
allowance. The theory also presupposes that all tenant improvements are paid for by the
shopping center owner.

5 As written, it is impossible to estimate �k and � directly unless it can be assumed that
n�1� � � 1.k�0 k

6 The calculated standard errors are a function of the variance-covariance matrix of the
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cs, appropriately weighted by the estimated values of c0, c1 and c2. We can write the
expression for var (�i) as var (�i) � var (c0 � c1i � c2i

2) � var (c0) � i2 var (c1) �
i4 var (c2) � 2i cov (c0, c1) � 2i2 cov (c0, c2) � 2i3 cov (c1, c2) for i � 0, 1, 2, . . . ,
n – 1.

7 The data are proprietary, obtained from a single large shopping center developer/owner.
Because the developer has asked to remain anonymous, many details cannot be made
explicit. Information was collected not at the shopping center level, but specifically at t
the tenant level.

8 The data cover 178 stores and 8,538 specialty store tenants. Among the largest anchor
tenants in the sample are JC Penney, Inc., Sears, Roebuck & Co., Dillard Department
Stores, Federated, The May Department Stores, Montgomery Ward & Co., Inc., Dayton
Hudson Corporation and Nordstrom, Inc. Among the specialty store tenants included
are The Limited, F. W. Woolworth, Intimate Brands, The Gap, The Musicland Group,
Edison Brothers Stores, Inc., County Seat and Borders.

9 Pashigian and Gould (1995) use reported sales per square foot from ULI’s survey of
shopping centers and find similar sales differentials across the various tenant types.

10 Six out of ten department stores in the sample own their own stores and the land
underneath. Many department stores in the sample fall in both categories. That is, they
lease space from some shopping centers, while owning their own stores in other
shopping centers. For example, Montgomery Ward and Co., Inc. and JC Penney, Inc.,
own approximately 60% of their stores operated within the sample.

11 Setting equal to zero was done as a matter of convenience. While this formulation�̂5

causes a slight overstatement in the calculated values of r (t) (see text for more details),
none of the qualitative results are changed when r(t) is calculated assuming � 0�̂5

compared with those when r (t) is calculated assuming � �0.1138.�̂5

12 The decrease is especially noticeable during 1993–1995. One might have expected this
decrease given the shifting priorities of the Baby Boomers away from apparel toward
family-oriented home and electronic purchases.
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