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Abstract
An adaptive method is employed to speed up computation of high accuracy surface
modeling (HASM), for which an error indicator and an error estimator are devel-
oped. Root mean-square error (RMSE) is used as the error estimator that is formu-
lated as a function of gully density and grid cell size. The error indicator is developed
on the basis of error surfaces for different spatial resolutions, which are interpolated
in terms of the absolute errors calculated at sampled points while paying attention
to the landform characteristics. The error surfaces indicate the magnitude and
distribution of errors in each step of adaptive refinement and make spatial changes
to the errors in the simulation process visualized. The adaptive method of high
accuracy surface modeling (HASM-AM) is applied to simulating elevation surface of
the Dong-Zhi tableland with 27.24 million pixels at a spatial resolution of
10 m ¥ 10 m. Test results show that HASM-AM has greatly speeded up computation
by avoiding unnecessary calculations and saving memory. In addition, HASM-AM
improves simulation accuracy.tgis_1213 615..630
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1 Introduction

Elevation is the z-value in the third dimension to complement the x-value and y-value
representing location in a two-dimensional space (Atkinson 2002). Elevation is an
inexpensive and intensively sampled variable, and one of the most needed. Elevation
surfaces (ESs) are a fundamental input for various applications such as spatial
analyses of climate change, population distribution and ecosystem changes as well
as hydrological modeling and global circulation modeling (Kidner et al. 2000;
Schneider 2001; Yue et al. 2003, 2005, 2006). Accuracy of ESs is of crucial impor-
tance because errors will propagate and impact spatial analyses (Leigh et al.
2009).

An ES, even one of the highest quality, is an approximation to the continuous
real-world surface. ES errors include sampling errors, the errors introduced from data-
capturing equipment, errors introduced in the transformation of control points, errors
from the mathematical model for constructing the surface, the errors propagated from
the data source, representation errors, and errors caused by grid resolution and ori-
entation (Zhou and Liu 2002). The ES errors can be propagated through the simula-
tion process and become manifest in the final products (Huang and Lees 2005).
Although there are many types and sources of error and uncertainty in geographical
data and their processing, the problem is not simply technical (Unwin 1995) and it
arises from an evident drawback of GIS, which lacks a complete theoretical foundation
for surface modeling.

To find a solution for the error problem that had long troubled surface modeling, a
method for high accuracy surface modeling (HASM) was developed (Yue et al. 2007,
2008). Both numerical tests and real-world studies showed that accuracy of HASM was
much higher than the classical methods such as inverse distance weighting (IDW),
Kriging and splines (Yue 2010, Yue and Song 2008). However, computational speed of
HASM was too slow to be widely applied. Thus, HASM is combined with an adaptive
method to speed up computation in this article.

1.1 Adaptive Method

In most numerical procedures for solving partial differential equations, the problem is
first discretized by choosing algebraic equations on a finite-dimension approximation
space and then a numerical process is devised to solve this huge system of discrete
equations. The discretization process, which was unable to predict the proper
resolution and the proper order of approximation at each location, produced a grid
that was too fine. The algebraic system thus became unnecessarily large in size,
while accuracy usually remained rather low (Brandt 1977). The aim of adaptive
methods is the generation of a grid that is adapted to the problem such that a
given error criterion is fulfilled by the solution on this grid. An optimal grid should be
as coarse as possible while meeting the criterion in order to save computing time and
memory requirements (Schmidt and Siebert 2005). For stationary issues, a grid is
almost optimal when the local errors are approximately equal for all elements.
Therefore elements where the error is large will be marked for refinement,
while elements with a small estimated error are left unchanged or are marked for
coarsening.
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Adaptive procedures for the numerical solution of differential equations started in
the late 1950s. Birchfield (1960) found that reduction of truncation error by the use of
a smaller grid resulted in improved forecasts of hurricane movement trajectories, in
which 150 km ¥ 150 km grid cells only covered the neighborhood of the vortex and
the remaining part of the region was covered by 300 km ¥ 300 km grid cells. Morrison
(1962) stated that in the integration of a system of ordinary differential equations, the
simplest approach was to use a fixed step size, but over some parts of the range of
integration it was generally possible to take a larger step size without seriously affect-
ing the local truncation error. Harrison (1973) suggested that the domain to be
resolved with the highest resolution could be kept to a minimum in order to reduce the
computer space and time requirements significantly; utilizing a gradual reduction in
grid scale would essentially allow one to focus on a region of interest with a very fine
grid, while still maintaining relatively coarse resolution in the surrounding area. Ley
and Elsberry (1976) indicated that it seemed natural to consider a multiple-nested grid
arrangement rather than maintaining the same grid size throughout the domain if very
fine resolution was only required near the center.

1.2 HASM

Slope, aspect and curvature are significant variables of surface analysis (Evans
1980). Thus, a method for surface modelling of cirques was constructed (Yue and Ai
1990) and then developed to detect changes of earth surface systems (Yue et al. 2002).
However, curvature, slope and intercept uniquely define a curve according to the
fundamental theorem of curves (Okubo 1987). A surface is uniquely defined by the
first and the second fundamental coefficients according to the fundamental theorem
of surfaces (Toponogov 2006). High accuracy surface modeling (HASM) was thus
developed in terms of the fundamental theorem of surfaces (Yue 2010, Yue et al.
2007).

If a surface is a graph of a function z = u(x,y) or r = (x,y,u(x,y)), the basic theoretical
equations of HASM could be formulated as:
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The first and second fundamental coefficients, E, F, G, L and N must be firstly

calculated in terms of sampled values when u is simulated. If uij{ } are the sampled values
of u at sampling points { (xi,yi) } and �ui j,{ } are interpolations in terms of the sampled
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values uij{ }. Let u uij ij
0 = � and h represents simulation step length, then the (n + 1)th

iteration of HASM could be formulated as:
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0 are boundary conditions.

If the computational domain is normalized to [0,1] ¥ [0,1], the basic equations can
be expressed as:
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developed to make the simulated values equal to sampled values at the sampling
points:
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where C(k,(i - 1) · M + j) = 1 and D k ui j( ) = , , which means that the sampled value is ui j,

at the kth sampling point (xi,yj).
For sufficiently large l, the algorithm (7) can be transferred into an unconstrained

least squares approximation:
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The parameter l is the weight of the sampling points and determines the contribution of
the sampling points to the simulated surface. l could be a real number, which means all
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sampling points have the same weight, or a sector, which means every sampling point has
its own weight. The area affected by a sampling point in a complex region is smaller than
in a flat region. Therefore, a smaller value of l is selected in a complex region and a
bigger value of l is selected in a flat region.

We formulate A Z C
Z
Ch

T T= [ ]⎡
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⎤
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λ λ and B Z C Q
Dh

n T T
n

( )
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λ
λ under consider-

ation of the simulation step length (or grid cell size) h. Then, formulation (9) can be
expressed as (Yue and Song 2008):

A U Bh
n

h
n+( ) ( )=1 (10)

2 Elevation Surface Simulation of the Dong-Zhi Tableland

2.1 Data Acquisition

Dongzhi tableland with its elevation of 1,350 m on average is located from 35°28′
to 35°40′N and from 107°39′ to 108°05′E. The total area is 2,778 km2 and the rela-
tively flat land covers 910 km2. The Dongzhi tableland was formed 2 million years
ago. Scholars mostly believe that loess plateau surfaces came into being after synthetic
geological effects for several million years under the influence of wind on loess. The
Dongzhi tableland is acclaimed as “the first loess tableland” because it has the biggest
flat land and the deepest soil depth in China’s loess plateau. The original Dongzhi
tableland, which was relatively homogeneous, has become fragmented and criss-
crossed with gullies because of vegetation reduction and soil erosion. The eroded area
is 2,724 km2, accounting for 98.1% of the total area (Figure 1 and Table 1). The
serious soil erosion leads to the rapid shrinkage of the tableland surface. According to
historic records, the Dongzhi tableland was 110 km in length and 32 km in width
during the period 618 to 917. However, the widest area of the Dongzhi tableland is
18 km and the narrowest area is only 0.05 km although its length is almost the same
as before.

Parts of 197 relief maps that together cover the Dongzhi tableland were scanned
and digitized, among which 60 pieces are on the scale of 1/5,000 and 137 pieces
on the scale of 1/10,000. The relief maps include contour lines and 6,692 sampled
heights of high accuracy scattered over the Dongzhi tableland. Errors created in the
scanning process are corrected by comparing every piece of the original contour
map with the sampled heights. Then all the scanned pieces of the contour maps are
combined into a whole by jointing ends of contour lines in the different pieces. The
Gauss-Krueger projection, in which each zone is 3° of longitude in width, is adopted
to transform Beijing geographical coordinates established in 1954 into rectangular
Cartesian coordinates for easier calculation and the Dongzhi tableland is projected to
the 36th zone. The Huang-Hai Elevation System, established in 1956, is used as the
elevation datum. After the transformation of the coordinate system, the contour lines
are transformed into scattered points and the sampled heights high accuracy are used
to test the simulated elevation surface and to create error surfaces in terms of absolute
error.
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2.2 Error Estimator and Error Indicator

The true error is not available generally during the computation, so an error estimator is
needed. Error estimators do not only provide the means for adaptive optimization of the
grid, but are also important for an assessment of the reliability of the results. It is very

Figure 1 Vector map of Dong-Zhi tableland generated by digitizing parts of 197 relief
maps

Table 1 Terrain parameters of the Dongzhi tableland

Terrain parameters
Relatively
flat area

Eroded
tableland Terrace Bridge Hill Gully

Standard deviation of
elevation (m)

20.9 43.0 64.4 74.3 60.4 69.0

Mean elevation (m) 1,371 1,380 1,233 1,383 1,326 1,256
Gully density(km/km2) 0.36 0.3 0.89 1.94 2.14 2.35
Mean slope (degrees) 1.97 6.67 14.1 22.3 24.5 25.7
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desirable to provide for reliable and computationally inexpensive error estimates. Such
estimates need to be available for various physically important norms in order to be
broadly usable. Miel (1977) proposed a stopping inequality with constant a for new
applications of a posteriori error estimates. Babuska and Rheinboldt (1978, 1981)
developed a mathematical theory for a class of a posteriori error estimates. Kelly et al.
(1983) found that one of the main features of these a-posteriori-error estimates was that
they involve local, rather than global, computations. They were given in an asymptotic
form which guaranteed accuracy when linked to adaptive refinement algorithms.
However, a difficulty was that these error estimates were historically related to adaptive
grid schemes so that the asymptotic character of the error estimates was accounted for.
De et al. (1983) proposed an error indication and an error estimation, which provided
information about where to refine a given grid and when to stop the adaptive process
respectively. A value that indicates which grid cells have the larger error, without
necessarily telling what the error is, is referred to as an error indicator (Mitchell 1989).
Error indication is closely related to the terrain characteristics (Carlisle 2005, Ehlschlae-
ger and Shortridge 1997, Fisher 1998, Hunter and Goodchild 1997, Kyriakidis et al.
1999, Schneider 2001, Theobald 1989, Wood 1994, Yue 2010, Yue et al. 2007). Loehner
(1987) suggested that the error indicator: (1) should be dimensionless so that several key
variables can be monitored at the same time; (2) should be bounded so that no further
user intervention becomes necessary as the solution evolves; (3) should not only mark the
regions with strong shocks to be refined, but also weak shocks, contact discontinuities
and other “weak features” in the flow; and (4) should be fast.

For an application of HASM-AM in Dong-Zhi tableland, the error estimator is
formulated as,

RMSE f Sfl l
l

= −( )
=
∑1

6692
2

1

6692

(11)

where RMSE is Root Mean-Square Error; fl is the sampled height on high accuracy at the
lth sampled point, l = 1,2, . . . ,6692. Sfl is the simulated value of f(x,y) in terms of data
transformed from contour lines at the lth sampled point.

Simulation results of Dong-Zhi tableland demonstrate that RMSE in all landform
types of loess plateau becomes larger as grid cell size increases and RSME has a close
linear relation with grid cell size.

For relatively flat area,

RMSE h R= + =2 622 0 099 0 9472. . , . (12)

where h is grid cell size, R is correlation coefficient between h and RMSE.
For eroded tableland,

RMSE h R= + =5 825 0 142 0 9632. . , . (13)

For loess terrace,

RMSE h R= + =3 085 0 34 0 9942. . , . (14)

For loess ridge,

RMSE h R= + =6 601 0 342 0 9902. . , . (15)

An Adaptive Method of High Accuracy Surface Modeling 621

© 2010 Blackwell Publishing Ltd
Transactions in GIS, 2010, 14(5)



For loess hill,

RMSE h R= + =7 785 0 375 0 9772. . , . (16)

For loess gully,

RMSE h R= + =9 157 0 397 0 9752. . , . (17)

In general,

RSME a b h= + ⋅ (18)

where a and b are determined by gully density, GD.
According to statistical analyis of data from the Dongzhi tableland, a and b are

expressed as the following linear regression equations,

a GD GD R= + ⋅ + ⋅ =3 068 0 472 0 830 0 8072 2. . . , . (19)

b GD GD R= − + ⋅ − ⋅ =0 038 0 416 0 103 0 8182 2. . . , . (20)

In terms of these careful analyses of the requested topographic information, the optimal-
grid criterion can be formulated as,

RMSE GD GD GD GD h= + ⋅ + ⋅ + − + ⋅ − ⋅( )3 068 0 472 0 830 0 038 0 416 0 1032 2. . . . . . (21)

The gully density in Dong-Zhi tableland is 0.79 km/km2. It is required that absolute error
is not allowed to be bigger than 40 m. Then, the spatial resolution of DEM should not
be coarser than 160 m ¥ 160 m in terms of equation (21). Thus, the starting grid-cell size
(or spatial resolution) is selected as 160 m ¥ 160 m for the whole region of Dong-Zhi
tableland.

The absolute error is formulated as,

AE f Sfl l l= − (22)

where fl is the sampled height at the kth sampled point, Sfl is the simulated value of f(x,y)
at the lth sampled point; l = 1,2, . . . , 6692.

Then, an error surface can be interpolated in terms of the absolute error calculated
at every sampled point under combination with equations (12), (13), (14), (15), (16) and
(17). The location of the sampled point determines which equation is used to interpolate
the error surface around the sampled point.

The error indicator is defined as

EI
AE

i j
i j

,
,=

40
(23)

where EIi,j is the error indicator at lattice (i,j); AEi,j is the interpolated absolute error at
lattice (i,j), i = 1,2, . . . ,I, j = 1,2, . . . ,J.
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2.3 Adaptive Refinement

For HASM-AM, grid cells on which EIi,j > 1 get into the refinement process. The
refinement process is stopped for grid cells where EIi,j � 1. The method to refine the grid
includes six steps as follows:

1. The whole domain is simulated on the optimal-grid cell size (or spatial resolution)
of h ¥ h for starting by operating HASM, A U Bh

n
h
n+ =1 , and the simulated values are

obtained on the spatial resolution of h ¥ h, in which h = 160 m.
2. AEi,j(i = 1,2, . . . ,I; j = 1,2, . . . ,J) on every grid cell (i,j) is interpolated by combining

the calculated absolute errors at the sampled points with equations (11) through
(17) under consideration of landforms. If EIi,j > 1, the grid cell (i,j) is flagged for
refinement.

3. The flagged grid cells are clustered into different refinement sub-domains, SD1,1,
SD1,2, . . . , SD1, K, where K is the number of sub-domains to be refined.

4. Every grid cell in the sub-domains, SD1,1, SD1,2, . . . , SD1,K, is bisected by connecting
the midpoints of two sides with their opposite sides, which forms four smaller grid

cells of equal areas with a spatial resolution of h h
2 2

× .

5. The information on coarser grid cells is transferred to the finer grid cells.
6. The equations of HASM, A U Bh h

n n

2 2

1÷ = , are solved respectively in the sub-domains,
SD1,1, SD1,2, . . . , SD1,K.

7. The process from step (2) to step (6) is repeated until all grid cells meet the
requirement for accuracy.

The error distribution map (Figure 2a) shows that simulation error is closely related
to gully density. The higher the gully density, the bigger the error. All grid cells in flat area
satisfy EIi,j � 1. Error analysis demonstrates that the first simulation has a maximum
error of 224.7 m, mean error of 43.2 m, and standard deviation of 33.0 m. The number
of grid cells where EIi,j > 1 accounts for 30% of the surface.

The grid cells where EIi,j > 1 are bisected and then simulated on spatial resolution of
80 m ¥ 80 m secondly. The error calculation (Figure 2b) demonstrated that grid cells of
EIi,j > 1 account for 24% of the grid cells after the second simulation. The maximum
error decreases to 149.4 m, mean error to 27.3 m, and standard deviation to 20.1 m.

For the 24% of the grid cells where EIi,j > 1, refinement is conducted once again and
then simulation is implemented at a spatial resolution of 40 m ¥ 40 m. After the third
simulation, 3% of grid cells on which EIi,j > 1 remain. The maximum error is 99.4 m;
mean error is 15.1 m; and standard deviation is 10.8 m (see Figure 2c).

The 3% of grid cells on which EIi,j > 1 are thirdly bisected into finer grid cells at
a spatial resolution of 20 m ¥ 20 m. According to the error distribution map (see
Figure 2d), grid cells of EIi,j > 1 only account for 0.1% of the grid cells. The maximum
error decreases to 64.3 m, mean error to 10.7 m and standard deviation to 6.7 m.

The remaining grid cells on which EIi,j > 1 are refined fourthly. According to the
error distribution map of the fifth simulation conducted at a spatial resolution of
10 m ¥ 10 m (Figure 2e), all grid cells satisfy EIi,j � 1. The final maximum error is
40 m, mean error is 8.5 m and standard deviation is 5.3 m. The final elevation surface
of the Dong-Zhi tableland is obtained after the refinement process has been finished
(Figure 3 and Table 2).
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2.4 Test of Computational Efficiency

If the elevation surface of the Dong-Zhi tableland were to be simulated by HASM, 27.24
million of grid cells would be calculated on the spatial resolution of 10 m ¥ 10 m, while
HASM-AM only deals with about 870,000 grid cells, such that the computational
efficiency is greatly improved.

As the whole of the Dong-Zhi tableland is too big to be simulated at the
spatial resolution of 10 m ¥ 10 m for classic methods such as inverse distance weight-
ing (IDW) (Shepard 1968), Kriging (Krige 1951) and Splines (Watt 2000).
A region with an area of 26.5 km2 is selected to analyze comparatively the computa-
tion time of HASM-AM. In this region, the standard deviation of elevation is 53.5 m.
It is located from 35°49′59″ to 35°52′30″N and from 107°33′45″ to 107°37′30″E,
where the maximum elevation and minimum elevation are 1,450 and 1,225 m, respec-
tively (Figure 4).

Figure 2 Error distribution map: (a) the first simulated Dongzhi tableland on a spatial
resolution of 160 m ¥ 160 m; (b) the second simulated Dong-Zhi tableland after the first
local refinement on a spatial resolution of 80 m ¥ 80 m; (c) the third simulated Dong-Zhi
tableland after the second local refinement on a spatial resolution of 40 m ¥ 40 m; (d) the
fourth simulated Dong-Zhi tableland after the third local refinement on a spatial reso-
lution of 20 m ¥ 20 m; and (e) the fifth simulated Dong-Zhi tableland after the fourth local
refinement on a spatial resolution of 10 m ¥ 10 m
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The simulated elevation surface consists of 265,000 grid cells on a spatial resolution
of 10 m ¥ 10 m. The test results (Table 3) show that HASM-AM has the highest accuracy
and the fastest computation speed, compared with HASM, IDW, Splines and Kriging.
HASM-AM created a surface with an RMSE of 11.1 m and accomplished the simulation
process in 10.9 s. The RMSE and computing time of HASM are 11.5 m and 19.2 s,
respectively. It means that the introduction of the adaptive method improved both
computational speed and simulation accuracy. Kriging, IDW and Splines spent 2,807,
449 and 438 s to accomplish their simulation processes and created surfaces with RMSEs
of 12.3, 12.2 and 31.5 m, respectively. Both HASM-AM and HASM have much higher
computational speed and accuracy than the classic methods.

3 Discussion and Conclusions

Defining a global grid for the discretization of a given problem independently of the
solution process is often insufficient. The adaptivity of grids is one of the major trends
in numerical simulation and scientific computing. In the adaptive multigrid process
finer and finer grids are not constructed globally. They are only constructed in

Figure 2 Continued
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those parts of the domain where the current discretization error is significantly large.
An adaptive simulation approach with grid selection strategies is highly significant for
HASM, which is a very desirable feature for an accurate analysis and an efficient
simulation. The adaptive approach can be distinguished into predefined refinement and
self-adaptive refinement. In predefined refinement, the refinement is determined before
the solution process is started; in self-adaptive approaches, the grid refinements are
carried out dynamically during the solution process (Trottenberg et al. 2001). In the
process of simulating the elevation surface of the Dong-Zhi tableland, the predefined
refinement and self-adaptive refinement are combined.

Adaptivity can help to resolve local scales that interact with global scales in a
consistent way (Behrens 2006). The most demanding difficulty for adaptive methods is to
find a suitable refinement criterion. An adaptive method is only as good as the refinement
criterion that controls adaptivity. Thus, a good understanding is needed for what accu-
racy really means in the context of the problem and full insight into the reason for error
is required if one aims at substantial improvement in the accuracy of the solution. An
effective refinement criterion needs to detect those areas that cause the highest error or
that are of the highest interest, concerning the relevant physical features. It is found that
gully density and grid cell size define the effective refinement criterion in the case of the
Dong-Zhi tableland.

HASM-AM helps to speed up the computation of HASM by avoiding unnecessary
calculations and saving memory. The test result shows that the introduction of the

Figure 2 Continued
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Figure 3 Shaded relief map in 3D of Dong-Zhi tableland simulated after the refinement
process is stopped (Light from 135° with a dip angle of 45°)

Table 2 Improving accuracy of simulation process by adaptive refinement

Simulation process
Maximum
error (m)

Mean
error
(m)

Standard
deviation
(m)

Percentage of
grid cells with
EI > 1 (%)

First simulation of the whole
domain

224.7 43.2 33.0 30

Second simulation after the
first refinement

149.4 27.3 20.1 24

Third simulation after the
second refinement

99.4 15.1 10.8 3

Fourth simulation after the
third refinement

64.3 10.7 6.7 0.1

Fifth simulation after the
fourth refinement

40 8.5 5.3 0
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adaptive method shortens computation time of HASM from 19.2 s to 10.9 s. The
computational speed of HASM-AM increases by 43.2% compared with HASM.
HASM-AM is 256, 40 and 39 times faster than the classical methods, Kriging, IDW and
Spline, respectively. In addition, HASM-AM has the highest accuracy.

The adaptive refinement technique is very successful in reducing the computational
and storage requirements for solving the partial differential equations of HASM. The
adaptive refinement technique places more grid cells in areas where the local error in the
solution is large instead of using a uniform mesh with grid cells evenly spaced on a domain.
If a non-uniform grid is generated by an adaptive refinement algorithm and portioned
into a number of sets equal to the number of processors, a parallel algorithm for the
adaptive refinement can be developed, which would much greatly speed up the computa-
tion of HASM-AM. Our next effort will be to create this HASM-AM parallelization.

Table 3 Comparisons of computing time and simulation
accuracy

Method Time (seconds) RMSE (m)

Kriging 2,807 12.3
IDW 449 12.2
Spline 438 31.5
HASM 19.2 11.5
HASM-AM 10.9 11.1

Figure 4 The sector map on a spatial scale of 1/10,000 of the test area, in which curves
are contour lines and black triangles are sampled heights of high accuracy
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