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ABSTRACT 
 

Incorporating Cost in Power Analysis for 
Three-Level Cluster Randomized Designs 

 
In experimental designs with nested structures entire groups (such as schools) are often 
assigned to treatment conditions. Key aspects of the design in these cluster randomized 
experiments include knowledge of the intraclass correlation structure and the sample sizes 
necessary to achieve adequate power to detect the treatment effect. However, the units at 
each level of the hierarchy have a cost associated with them and thus researchers need to 
decide on sample sizes given a certain budget, when designing their studies. This paper 
provides methods for computing power within an optimal design framework (that incorporates 
costs of units in all three levels) for three-level cluster randomized balanced designs with two 
levels of nesting. The optimal sample sizes are a function of the variances at each level and 
the cost of each unit. Overall, larger effect sizes, smaller intraclass correlations at the second 
and third level, and lower cost of level-3 and level-2 units result in higher estimates of power. 
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Many populations of interest in education and the social sciences have multilevel 

structures. For example, in education students are nested within classrooms, and 

classrooms are nested within schools. Experiments that involve nested population 

structures may assign treatment conditions to entire groups. In education, frequently, large-

scale randomized experiments assign schools to treatment and control conditions and these 

designs are often called cluster or group randomized designs (see Bloom, 2005; Donner & 

Klar, 2000; Murray, 1998).  

A critical issue in designing experiments is to ensure that the design has sufficient 

power to detect the intervention effects that are expected if the researchers’ hypotheses 

were correct. There is an extensive literature on the computation of statistical power (e.g., 

Cohen, 1988; Lipsey, 1990, Murphy & Myors, 2004). Much of this literature however, 

involves the computation of power in studies that use simple random samples and thus 

clustering effects are not included in the power analysis. Software for computing statistical 

power in single-level designs has also become widely available recently (Borenstein, 

Rothstein, & Cohen, 2001).  

Statistical theory for computing power in two-level designs has also been recently 

documented and statistical software for two-level balanced designs is currently available 

(e.g., Hedges & Hedberg, 2007; Murray, 1998; Raudenbush & Liu, 2000, 2001; 

Raudenbush, Spybrook, Liu, & Congdon, 2006). However, power analysis in nested 

designs entails challenges. First, nested factors are usually taken to have random effects, 

and hence, power computations usually involve the variance components structures 

(typically expressed via intraclass correlations) of these random effects. Second, there is 

not one sample size, but several sample sizes at each level of the hierarchy that may affect 
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power differently. For example, in educational studies that assign treatments to schools, the 

power of the test of the treatment effect depends not only on the number of students within 

a classroom or a school, but on the number of classrooms or schools as well. Methods for 

power computations of tests of treatment effects in multi-level designs have also been 

discussed in the health sciences (e.g., Donner, 1984; Hsieh, 1988; Murray, 1998; Murray, 

Van Horn, Hawkins, & Arthur, 2006). For example, Murray and colleagues (2006) 

provided ways for analyzing data with complicated nested structures and discussed post-

hoc power computations of tests of treatment effects within the ANCOVA framework. 

In addition, a more recent study discussed methods for computing power in three-

level balanced cluster randomized designs (Konstantopoulos, 2008). Many factors need to 

be taken into account when designing randomized experiments with a three-level structure. 

For instance, in three-level cluster randomized designs with two levels of clustering 

(second and third level) researchers need to take into account the clustering effects at both 

levels and consider trade-offs that involve sampling level-1, level-2, and level-3 units. In 

such designs maximizing the number of level-3 units in the sample has a larger impact on 

the power of the test of the treatment effect than maximizing the number of level1 or level-

2 units (see Konstantopoulos, 2008). Also, clustering effects, often expressed via interclass 

correlations, affect the power estimates inversely.  

In addition, the issue of optimal sampling of units at different levels of the 

hierarchy to maximize power is critical in designing multilevel experiments. Since larger 

units such as schools affect power much more than smaller units such as classrooms or 

students a researcher would be inclined to design large-scale experiments with numerous 

larger units and fewer smaller units. However, maximizing the number of larger units, such 
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as schools, is more expensive than maximizing smaller units, such as classrooms or 

students. The researcher then faces the challenge of designing a cost-effective study that 

will optimize the power of the test of the treatment effect given the budget. This requires 

incorporating cost-related issues when maximizing power in cluster randomized designs 

(see Raudenbush, 1997). The present study discusses optimal design considerations that 

incorporate costs of sample sizes at different levels of the hierarchy when designing three-

level cluster randomized designs with two levels of nesting. Specifically, I follow Cochran 

(1977) and Raundenbush (1997) and define cost functions that involve the cost ratios 

among level-1, level-2, and level-3 units, and then I determine the optimal number of 

level-1, level-2 (and level-3) units to maximize power, given the costs. Following 

Raudenbush and Liu (2000) I define optimal design, under specific assumptions, a design 

that results in the highest estimate of power for the treatment effect.   

The paper is structured as follows. First, I define the intraclass correlations in three-

level models with two levels of nesting. Second, I present the statistical model and provide 

an example for computing power in a three-level cluster randomized design. Then, I 

introduce cost functions that involve level-1, level-2, and level-3 units to maximize power. 

Finally, I summarize the usefulness of the methods and draw conclusions. 

 

Clustering in Multilevel Designs 

Suppose that a researcher samples level-3 units at the first stage, samples level-2 

units within level-3 units at the second stage, and then samples level-1 units within level-2 

units at the third stage. This is a three-stage cluster sample and the variance of the total 

population is the sum of the within-level-2 unit between-level-1 unit variance, 2
eσ ; the 
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within-level-3 unit between-level-2 unit variance, 2τ ; and the between-level-3 unit 

variance, 2ω  (see Cochran, 1977; Lohr, 1999). That is, the total variance in the outcome is 

decomposed into three parts and is defined as 2 2
T e

2 2σ σ τ ω= + + .  In such three-level 

designs two intraclass correlations are needed to describe the variance component 

structure.  These are defined as the second level intraclass correlation:  

2τ           (1) 2ρ 2
Tσ

=

and the third level intraclass correlation 

2ω           (2) 3ρ 2
Tσ

=

ijkl

where the subscripts 2 and 3 indicate the level of hierarchy.  

 

The ANOVA Model 

Consider a design where level-3 units are nested within treatment, and level-2 units 

are nested within level-3 units and treatment (Kirk, 1995), and both level-3 and level-2 

units are random effects. A structural model for an outcome , the lth level-1 unit in the 

kth level-2 unit in the jth level-3 unit in the ith treatment can be described in ACOVA 

notation as  

ijklY

 

( )i (i)j (ij)k ijk lμ +α β + γ + εY = + ,      (3) 

 

where μ is the grand mean, αi is the (fixed) effect of the ith treatment (i = 1,2), and the last 

three terms represent level-3, level-2, and level-1 random effects respectively. Specifically, 
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( )i jβ  is the random effect of level-3 unit j (j = 1,…, m) within treatment i, ( )ij kγ  is the 

random effect of level-2 unit k (k = 1,…, p) within level-3 unit j within treatment i, and 

( )ijk lε  is the error term of level-1 unit l (l = 1,…, n) within level-2 unit k, within level-3 unit 

j, within treatment i. I assume that the level-1, level-2, and level-3 error terms are normally 

distributed with a mean of zero and residual variances 2 2,e ,σ τ  and 2ω  respectively. For 

simplicity, I assume that there is one treatment and one control group and that the designs 

are balanced.  

 The objective is to examine the statistical significance of the treatment effect, 

which means to test the hypothesis 

 

H0: 1 2α α=  or 1 2 0α α− = . 

 

The researcher can test this hypothesis by carrying out the usual t-test. Following 

Konstantopoulos (2008) when the null hypothesis is false, the test statistic has a non-

central t-distribution with 2m-2 degrees of freedom and non-centrality parameter  

(assuming no covariates). The non-centrality parameter is defined as the expected value of 

the estimate of the treatment effect divided by the square root of the variance of the 

estimate of the treatment effect, namely 

λ

 

( ) ( )2 3

1
2 1 1 1

mpnλ ,
n pn

δ
ρ ρ

=
+ − + −

     (4)  

where m is the number of level-3 units in each condition (treatment or control group), p is 

the number of level-2 units within each level-3 unit, n is the number of level-1 units within 
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each level-2 unit, and 2 /1δ α -α Tσ= , where α1 and α2 are the treatment effect parameters 

from the ANOVA model (defined above) and σT  is the population standard deviation.  

The power of the two-tailed t-test at level α is  

 

p2 = 1 – Η [c(α/2, 2m-2), (2m-2), λA] + Η [-c(α/2, 2m-2), (2m-2), λA],  (5) 

 

where c(α, ν) is the level α two-tailed critical value of the t-distribution with ν degrees of 

freedom [ c(0.05,20) = 1.72], and Η(x, ν, λ) is the cumulative distribution function of the 

non-central t-distribution with ν degrees of freedom and non-centrality parameter λ. The 

test of the treatment effect and statistical power can also be computed using the F-statistic 

that has a non-central F-distribution with 1 degree of freedom in the numerator and 2m – 2 

degrees of freedom in the denominator and non-centrality parameter 2λ .   

 

The ANCOVA Model 

When covariates are included at each level the ANCOVA model is  

 

( )Ai A(i)j A(ij)k ijk lμ + α β + γ + εT T T
ijkl I ijkl C ijk S ij AY θ θ θ Ψ= + + + +X Z ,  (6) 

 

where T
Iθ  = (θI1, …, θIr) is a row vector of r level-1 covariate effects, T

Cθ  = (θC1, …, θCw) 

is a row vector of w level-2 covariate effects, T
Sθ  = (θS1, …, θSq) is a row vector of q level-

3 covariate effects, Xijkl is a column vector of r level-1 covariates, Zijk is a column vector of 

w level-2 covariates, and Wij is a column vector of q level-3 covariates, and the last three 

terms represent residuals at the third, second, and first level respectively. The subscript A 
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indicates adjustment due to covariate effects, that is, the level-2 and level-3 random effects 

are adjusted by level-2 and level-3 covariates respectively and the level-1 error term is 

adjusted by level-1 covariates. I assume that the covariates at each level are centered at 

their means to ensure that covariates explain variation in the outcome only at the level at 

which they are introduced. Note that although in practice covariates could slightly adjust 

the treatment effect, in principle, due to randomization the treatment effect should be 

unadjusted. I assume that the adjusted error terms first, second, and third level are normally 

distributed with a mean of zero and residual variances 2 2,Re R ,σ τ  and 2
Rω , respectively. 

 The objective in this case is to examine the statistical significance of the treatment 

effect adjusted by covariates, which means to test the hypothesis 

 

H0: 1 2A = Aα α  or 1 2 0A A− =α α . 

  

 Note that in this case δ  and the intraclass correlations are adjusted. Specifically, 

the numerator of δ  remains unchanged (because of orthogonality between the treatment 

and the covariates), whilst the denominator changes (because the total variance is now 

residual variance). The intraclass correlations are also adjusted. The second level intraclass 

correlation is now defined as  

 

2

2 2
R

A
RT

τρ
σ

=           

 

and the third level intraclass correlation is defined as  
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2

3 2
R

A
RT

ωρ
σ

= ,  

where subscript A indicates adjustment and subscript R indicates residual variance. When 

the null hypothesis is false, the test statistic has the non-central t-distribution with 2m-q-2 

degrees of freedom (where q is the number of level-3 covariates) and non-centrality 

parameter Aλ . Following Konstantopoulos (2008) the non-centrality parameter is defined 

now as  

 

( ) ( )1 2 1 2 3 1

1
2A

mpn

3

λ ,
n pn

δ
η η η ρ η η ρ

=
+ − + −

    (7) 

 

where 

 

2 2 2 2 2
3 2 1R R R/ , / , / 2

e eη ω ω η τ τ η σ σ= = = ,     (8) 

 

(see also Hedges & Hedberg, 2007; Murray, 1998). The η’s indicate the proportion of the 

variances at each level of the hierarchy that is still unexplained. For example when eη = 

0.50, this indicates that the variance at the student level decreased by 50 percent due to the 

inclusion of covariates. Alternatively, the η s can be defined as a function of the proportion 

of variance explained (R2) at each level, that is, 2 21 1 1 2
s s c c e eR , R ,η η η R= − = − = − . The 

power of the two-tailed t-test at level α is 
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p2 = 1 – Η [c(α/2, 2m-q-2), (2m-q-2), λA] + Η [-c(α/2, 2m-q-2), (2m-q-2), λA].  (9) 

 

The test of the treatment effect and statistical power can also be computed using the F-

statistic that has a non-central F-distribution with 1 degree of freedom in the numerator and 

2m – q – 2 degrees of freedom in the denominator and non-centrality parameter 2
Aλ .   

 The power is a function of the non-centrality parameter and the degrees of freedom, 

and larger values of those factors result in higher power. As equations 4 and 7 indicate the 

non-centrality parameter becomes larger as the level-3 units within a condition and the 

effect size parameter become larger. The intraclass correlations are inversely related to 

power, that is, larger clustering effects result in lower power. Level-3 units affect power 

via the degrees of freedom as well, that is, larger numbers of level-3 units result in higher 

power.  

To illustrate the computation of power consider an example from education. 

Suppose the effect size is δ = 0.2, there are m = 20 schools per condition with p = 3 

classrooms per school and n = 20 students per classroom, and the intraclass correlations are 

ρ3 = 0.1 and ρ2 = 0.05 (and no covariates at any level).  To compute the power of a two-

tailed test at significance level 0.05, first we compute 

  

 ( ) ( ) ( )
20 3 20 10.2 1.75

2 1 3 20 1 0.1 20 1 0.05
λ × ×
= =

+ × − + −
, 
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then we compute the critical value of the t-distribution with 2(20) – 2 = 38 degrees of 

freedom as c(0.05/2, 2(20) – 2) = 2.02, and then we use equation 5 to compute the power 

as 

 

 1 – Η [2.02, 38, 1.75] + Η  [-2.02, 38, 1.75] = 1 – 0.60 = 0.40, 

 

that is, the power in this example is 0.40.   

 

Determinants of Power in Three-Level Cluster Randomized Designs 

As equations 5 and 9 indicate mainly three factors impact power: the effect size 

parameter, the degrees of freedom, and the non-centrality parameter. The degrees of 

freedom are a function of the number of level-3 units and hence larger number of level-3 

units result in higher power. Larger effect sizes result in higher power estimates as well. In 

addition, as equations 4 and 7 suggest the non-centrality parameter is affected by the 

number of level-1, level-2, and level-3 units and the intraclass correlations at the second 

and third level. Of course covariates also affect power as indicated in equation 9.  

Several interesting findings emerge from the results above. First, the power 

increases as the effect size increases. Consider an example in education where there are n = 

20 students per classroom, p = 3 classrooms per school, and m = 15 schools per treatment 

condition (and no covariates). When the school and classroom intraclass correlations are 

respectively 3ρ  = 0.1 and 2ρ  = 0.05, and the effect size is δ  = 0.25, the power of a two-

tailed t-test is 0.45. If the effect size is twice as large however, δ  = 0.5, and everything 

else remains unchanged the power is 0.95, more than two times as large. Second, the 
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power decreases as the intraclass correlations increase. In the previous example, when the 

effect size is δ  = 0.5, but the intraclass correlations at the school and classroom level are 

increased respectively to 3ρ  = 0.2 and 2ρ  = 0.1 (e.g., twice as large as in the previous 

case), the power of a two-tailed t-test is 0.76 (an absolute decrease of 19 percent from 

0.95).  

Third, the number of level-1, level-2 and level-3 units also affects power. However, 

the number of classrooms has a larger impact on power than the number of students per 

classroom, but the number of schools influences power much more than the number of 

classrooms per school or the number of students per classroom. For example, suppose that 

the total sample size is the same but the total number of schools is increased from 30 to 40 

(m = 20 per condition), there are p = 3 classrooms per school, n = 15 students per 

classroom, the intraclass correlations at the school and at the classroom level are 

respectively  = 0.2 and sρ cρ = 0.1, and the effect size is δ  = 0.5 standard deviations. The 

power of a two-tailed t-test in this case is 0.87 (a 11 percent increase from 0.76 above). In 

fact, as Konstantopoulos (2008) showed when the number of level-3 units becomes vary 

large the power tends to 1.  

 

The Effect of Covariates on Power Estimates 

As one would expect, the power is higher when covariates are included in the 

model. Overall, the larger the proportion of variance explained at each level, the higher the 

power, other things being equal. As Cook (2005) argues covariates with considerable 

predictive power are critical for reducing the number of larger units (such as schools) 

needed, and for making the study less expensive or affordable given a fixed budget (see 
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also Bloom, Richburg-Hayes, & Black, 2007). However, covariates do not affect power 

exactly the same. For example, in education, a school-aggregate measure of prior 

achievement is typically a very useful covariate, and recent work has shown that school-

level pretest measures are at least as effective in increasing power as student-level pretest 

measures in two-level cluster randomized designs (see Bloom et al., 2007; Hedges & 

Hedberg, 2007). Similarly, in three-level cluster randomized designs the level-3 covariates 

can influence power potentially as much or more than the level-2 or level-1 covariates 

(assuming covariates at different levels explain the same proportion of the variance at that 

level). Consider the following example in education. Suppose that the ANCOVA model 

includes only one covariate at a time, each time the covariate is at a different level, and that 

the covariate explains 50 percent of the variance at that level. When only a first level 

covariate is included in the model and explains 50 percent of the variance at the first level 

the second part of equation 7 becomes 

 

2 3 2 3

1
0.5(1 ) n pnρ ρ ρ ρ− − + +

.      (10) 

 

When only a second level covariate is included in the model and explains 50 

percent of the variance at the second level the second part of equation 7 becomes 

 

2 3 2 3

1 ,
(1 ) 0.5n pnρ ρ ρ− − + + ρ

      (11) 

 

 14



   

and when only a third level covariate is included in the model and explains 50 percent of 

the variance at the third level the second part of equation 7 becomes 

 

2 3 2 3

1
(1 ) 0.5n pnρ ρ ρ ρ− − + +

.      (12) 

 

In this example, the first level covariate adjusts the term 2 3(1 )ρ ρ− −  by one-half, the 

second level covariate adjusts the term 2nρ  by one-half, and the third level covariate 

adjusts the term 3pnρ  by one-half. In education, typically, the clustering effect at the 

second level is smaller than that in the third level, and the third level intraclass correlation 

is typically between 0.1 and 02 (see Hedges & Hedberg, 2007; Nye, Konstantopoulos, & 

Hedges, 2004). When there are at least 10 students per classroom and at least 2 classrooms 

per school, the terms 2nρ  and especially 3pnρ  are more likely to be larger than 1, whilst 

the term 2 3)(1 ρ ρ− −  is smaller than 1 (assuming the clustering effects are not exactly 

zero). With educational data the assumption 3 2pn nρ ρ>  is likely to hold, and the 

adjustment in equations 10 to 12 is typically larger when the third level covariate is 

included in the model. As a result, the non-centrality parameter becomes larger and hence 

the power becomes larger.  

For instance, suppose that there are n = 20 students per classroom, p = 3 classrooms 

per school, and m = 15 schools per treatment condition and only one covariate at the first 

level that explains 50 percent of the first level variance. When the school and classroom 

intraclass correlations are respectively 3ρ  = 0.15 and 2ρ  = 0.10, and the effect size is δ  = 

0.25, the power of a two-tailed t-test is 0.33. When only one covariate is included at the 
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second level and explains 50 percent of the second level variance, and everything else is 

unchanged, the power is 0.35. However, when only one third level covariate is included in 

the model and explains 50 percent of the third level variance, and everything else is 

unchanged, the power is 0.48 (much larger than 0.33 or 0.35). Of course different values of 

the parameters that affect power will produce different values of power, but overall level-1 

and level-2 covariates affect power similarly whereas level-3 covariates seem to have a 

higher impact on power under certain assumptions and using achievement data. However, 

the level-3 covariates, q, are included in the computation of the degrees of freedom of the 

test and, hence, it is preferable to include a small number of covariates with high 

explanatory power at the third level. These results hold for two-level cluster randomized 

designs. That is, assuming achievement data, level-2 covariates seem to have a higher 

impact on power than level-1 covariates.   

 

Incorporating Cost in Three-Level Cluster Randomized Designs  

 In three-level balanced designs the researcher needs to choose three samples sizes: 

the number of level-1 units within level-2 units, the number of level-2 units within level-3 

units, and the number of level-3 units. Because of budget constraints however, the choice 

of sampling of each unit at each level is affected by the cost of the units. In survey methods 

there is a long tradition of optimum sampling in both stages of two-stage cluster designs 

(see Cochran 1977; Lohr, 1999). In psychology, methodologists have discussed optimal 

allocation and power analysis in generalizability studies and measurement designs with 

budget constraints (see Marcoulides, 1993, 1997). In addition, psychology methodologists 

have discussed optimal allocation methods for many aspects of experimental designs such 
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as the number of individuals to different treatment levels, and the number of measurements 

within individuals (Allison, Allison, Faith, Paultre, & Pi-Sunyer, 1997; McClelland, 1997).  

In education, statisticians have provided methods for optimal allocation in two-level 

cluster and block randomized designs with equal and unequal costs per unit of 

randomization (Raudenbush & Liu, 1997, 2000; Liu, 2003). Below I present methods for 

optimal allocation in three-level randomized designs with two levels of nesting. The 

methods resemble optimum sampling for two-stage sampling (see Cochran, 1977) and 

optimal design for two-level cases as discussed by Raudenbush (1997), and Raudenbush 

and Liu (2000). For simplicity I discuss balanced designs. 

Although level-3 units affect power more than level-2 or level-1 units in practice it 

may be too expensive to have numerous level-3 units (e.g., schools) in the sample. In 

contrast, it may be less expensive to add level-2 (e.g., classrooms) or level-1 (e.g., 

students) units in the sample. Hence, given the budget constraints, the researcher needs to 

configure the best allocation of resources possible to optimize power. This suggests that 

the researcher needs to incorporate the costs of level-1, level-2 and level-3 units in the 

design phase of the study. Following Raudenbush (1997) and Raudenbush and Liu (2000) 

consider a linear cost function for the total cost of the study 

 

1 2TC MpnC MpC MC= + + 3        (13)  

 

where TC is the total cost for all units in all levels, M = 2m is the total number of level-3 

units,  is the cost of each level-1 unit,  is the cost of each level-2 unit, and  is the 

cost of each level-3 unit, and all other terms have been defined earlier. It follows that  

1C 2C 3C

 17



   

 

1 2

2 TCM m
3pnC pC C

= =
+ +

.       (14) 

 

Now, suppose that the total cost as well as the cost for each unit at each level is fixed. 

Suppose also for simplicity that the cost for the units in the treatment and the control group 

is the same. The objective then is to determine the optimal number of level-1 and level-2 

units that maximizes power. As Raudenbush (1997) argued choosing the optimal samples 

size within larger units (or clusters) informs decisions about the total number of larger 

units (or clusters) that need to be included in the sample. To achieve that, one needs to 

maximize the non-centrality parameter  in equations 4 and 7 with respect to n and p (see 

Raudenbush & Liu, 2000). In the case of no covariates at any level when we substitute 

equation 14 in equation 4 

λ

λ  becomes  

 

( ) ( )

( ) ( ) ( )

2 3

1 2 3 2

1
4 1 1 1

1
4 1 1

Mpnλ
n pn

TCpn
pnC pC C n pn

δ
ρ ρ

δ
31ρ ρ

= =
+ − + −

+ + + − + −

.   (15) 

 

The task at hand is to maximize the above equation with respect to n (number of level-1 

units in each level-2 unit) and p (number of level-2 units in each level-3 unit). The 

maximization produces an optimal n of  

 

 2 32

1 2

1
opt

Cn
C

ρ ρ
ρ

− −
= ,       (16) 
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and an optimal p of  

 

 3 2

2 3
opt

Cp
C

ρ
ρ

= .        (17) 

 

The total number of level 3 clusters is then determined as  

 

1 2opt opt opt

TCM
3p n C p C C

=
+ +

.       (18) 

 

Note that in the two-level case with one level of nesting at the second level equation 16 

becomes  

 

2 2

1 2

1
opt

Cn
C

ρ
ρ
−

=  

 

which replicates the results by Raudenbush (1997) and Cochran (1977). The same logic 

holds when covariates are included in the model. However, in the case of covariates 

equation 13 becomes  

 

1 2TC MpnC MpC MC= + +* *
3
* ,       (19) 
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where the asterisk indicates that the cost of level-1, level-2, and level-3 units changes when 

covariates are measured. Suppose again that the total cost is fixed. When we incorporate 

equation 19 in equation 7 Aλ  becomes  

 

( ) ( )

( ) ( ) ( )

1 2 1 2 3 1 3

1 2 1 2 3 11 2 3

1
4

1
4 * * *

Mpnλ
n pn

TCpn
n pnpnC pC C

δ
η η η ρ η η ρ

δ
3η η η ρ η η ρ

= =
+ − + −

+ − + −+ +

.  (20)  

 

When we maximize equation 20 with respect to n and p we obtain an optimal n of  

 

( )1 2 32

1 2 2

1
opt

Cn
C

η ρ ρ
η ρ
− −

=
*

*
* ,       (21) 

 

and an optimal p of 

 

 3 2 2

2 3 3
opt

Cp
C

η ρ
η ρ

=
*

*
* .        (22) 

 

In this case the total number of level-3 units is determined as  

 

1 2opt opt opt

TCM
3p n C p C C

=
+ +

*
* * * * * * .      (23) 
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The last step involves the computation of the power of the test for the treatment effect. To 

compute power one needs to include the optimal values of n, p, and M in the computation 

of the non-centrality parameter (and the degrees of freedom).  

 

Computing the Optimal Number of Level-1 and Level-2 Units and Power 

 To illustrate the usefulness of the methods presented above I consider a simple 

example where the total cost TC = 1000, and the cost of level-1 units C1 = 1 (see e.g., 

Raudenbush, 1997; Raudenbush & Liu, 2000). The optimal n, and p, and the power for 

multiple values of the cost ratios, for multiple effect sizes (expressed in standard deviation 

units), and intraclass correlations are reported in Table 1 (assuming no covariates at any 

level). Specifically, Table 1 shows how sample sizes at each level and power are affected 

when level-3 units become much more expensive than level-2 units. Several findings 

emerged from Table 1. First, as level-3 units become much more expensive than level-2 

units, the number of level-3 units becomes smaller and the number of level-2 units 

becomes larger (as equations 17 and 22 suggest). For example, when level-3 units are five 

times as costly as level-2 units and level-2 units are two times as costly as level-1 units, the 

intraclass correlations at the second the third level are respectively 3ρ  = 0.03 and 2ρ  = 

0.02, the optimal number of level-1 units within level-2 units is n = 10, the number of 

level-2 units within level-3 units is p = 2, and the number of level-3 units is 32. In this 

example when the effect size is δ  = 0.3, the power is 0.79.  However, when the cost ratio 

of level-3 to level-2 units is four times larger (C3/C2 = 20) the optimal number of level-2 

units within level-3 units p = 4 and the number of level-3 units is 12. The power is also 

affected differently in this case and it is much smaller, 0.49.  
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--------------------------------------- 

Insert Table 1 Here 

------------------------------------- 

 

Second, the larger the intraclass correlations at the second and third level, the 

smaller the number of level-1 units (as equations 16 and 21 suggest) and the larger the 

number of level-3 units. In the previous example, when level-3 units are five times as 

costly as level-2 units and level-2 units are two times as costly as level-1 units, and the 

intraclass correlations at the second the third level are respectively 3ρ  = 0.08 and 2ρ  = 

0.12, the optimal number of level-1 units within level-2 units is n = 4, the optimal number 

of level-2 units within level-3 units is p = 2, and the number of level-3 units is 46. When 

the effect size is δ  = 0.3, the power is 0.50. 

In addition, equations 17 and 22 indicate when the intraclass correlation at the 

second level becomes larger relative to the intraclass correlation at the third level the 

optimal p becomes larger. In the previous example, when level-3 units are five times as 

costly as level-2 units and level-2 units are two times as costly as level-1 units, and the 

intraclass correlations at the second the third level are respectively 2ρ  = 0.20 and 3ρ  = 

0.05, the optimal number of level-1 units within level-2 units is n = 3, the optimal number 

of level-2 units within level-3 units is p = 4, and the number of level-3 units is 32. When 

the effect size is δ  = 0.3, the power is 0.53. 

As expected, larger effect sizes, smaller intraclass correlations at the second and 

third level, and lower cost of level-3 and level-2 units result in higher estimates of power 
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of the test of the treatment effect (see last column of Table 1). The magnitude of the effect 

size has a large impact on power and effect sizes larger than or equal to 0.8 standard 

deviations can produce optimal power estimates (e.g., 0.80) even when clustering effects 

and cost ratios are large. For example, when level-3 units are 20 times as costly as level-2 

units and level-2 units are two times as costly as level-1 units, the intraclass correlations at 

the second the third level are respectively 3ρ  = 0.20 and 2ρ  = 0.1, the optimal number of 

level-1 units within level-2 units is n = 4, the optimal number of level-2 units within level-

3 units is p = 3, and the number of level-3 units is 17. If the effect size is δ  = 0.8, the 

power is 0.83, slightly larger than the typical threshold of 0.80.   

Table 2 summarizes power estimates when the cost of level-2 units becomes 

increasingly large with respect to level-1 units and the cost of level-3 units to level-2 units 

remains constant. As Table 2 and equations 16 and 21 indicate when level-2 units are 

much more expensive than level-1 units, the optimal n becomes larger, other things being 

equal. For example, when level-3 units are five times as costly as level-2 units and level-2 

units are also five times as costly as level-1 units, the intraclass correlations at the second 

the third level are respectively 3ρ  = 0.03 and 2ρ  = 0.02, the optimal number of level-1 

units within level-2 units is n = 15, the optimal number of level-2 units within level-3 units 

is p = 2, and the number of level-3 units is 16. However, when the cost ratio of level-2 to 

level-1 units is four times larger (C2/C1 = 20), and everything else remains unchanged, the 

optimal number of level-1 units within level-2 units n = 31 and the number of level-3 units 

is 5. Note that in Tables 1 and 2 different values of cost ratios, intraclass correlations, and 

effect sizes will provide different estimates of power. However, overall the computations 

follow the same pattern.    
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--------------------------------------- 

Insert Table 2 Here 

------------------------------------- 

 

When covariates are included in the model the results are overall similar to those 

reported above. Note however that, as equation 23 indicates the number of level-3 units 

becomes larger as the number of level-1 and level-2 units becomes smaller, other things 

being equal. As equations 21 and 22 suggest, in order to decrease the optimal n and p, 

other things being equal, one would want to include in the model level-1 predictors that 

explain more variance at the first level than level-2 predictors at the second level, and 

level-2 predictors to explain more variance at the second level than level-3 predictors at the 

third level. That is, within the optimal design framework, level-1 covariates are more 

important than level-2 covariates in minimizing the number of level-1 units. In addition, 

level-2 covariates are more important than level-3 covariates in minimizing the number of 

level-1 units. And minimizing level-1 and level-2 units will result in maximizing level-3 

units (see equation 23). For example, suppose that the level-3 units are five times as costly 

as level-2 units, the level-2 units are two times as costly as level-1 units, and the intraclass 

correlations at the second the third level are respectively 3ρ  = 0.07 and 2ρ  = 0.10. Also, 

suppose that a level-1 covariate explains 80 percent of the variance at the first level, a 

level-2 covariate explains 40 percent of the variance at the second level, and a level-3 

covariate explains 20 percent of the variance at the third level. Then, the optimal number 
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of level-1 units within level-2 units is n = 3, the optimal number of level-2 units within 

level-3 units is p = 2, and the number of level-3 units is 56.  

However, when the covariates explain the same proportion of the variance and 

everything else remains unchanged the optimal number of level-1 units within level-2 units 

is n = 5, the optimal number of level-2 units within level-3 units is p = 2, and the number 

of level-3 units is 44. Finally, when a level-1 covariate explains 20 percent of the variance 

at the first level, a level-2 covariate explains 40 percent of the variance at the second level, 

and a level-3 covariate explains 80 percent of the variance at the third level, and everything 

else remains unchanged the optimal number of level-1 units within level-2 units is n = 6, 

the optimal number of level-2 units within level-3 units is p = 3, and the number of level-3 

units is 29. However, note that in these examples the power estimates are almost identical 

since first the non-centrality parameter is affected differently by the proportion of variance 

explained by the covariates (as discussed in previous sections) and the degrees of freedom 

become smaller as the level-3 units become smaller. That is, in the examples above, when 

the effect size is δ  = 0.4, the power is 0.97 or 0.98.   

 

Conclusion 

 In education three-level experimental designs are becoming increasingly common, 

and frequently such designs assign randomly entire clusters to a treatment and a control 

group. In these large-scale cluster randomized studies the researcher faces the challenge of 

obtaining sufficient power of the test of the treatment effect given budget constraints. That 

is, the researcher needs to incorporate the costs associated with recruiting samples at each 

level of the hierarchy and collecting data in the power computations (see Raudenbush, 
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1997). The present study provided methods for computing power of tests of treatment 

effects (within an optimal design framework) in three-level cluster randomized designs 

where nesting occurs at the second and at the third level. 

 Several findings emerged from this study. First, as in two-level designs the number 

of level-3 units impacts power more than the number of level-2 or level-1 units, and the 

number of level-2 units influences power more than the number of level-1 units. In 

addition, the number of level-3 units impacts power via the degrees of freedom of the t- or 

F-test. Second, the clustering at the second and third level affects power inversely. Third, 

larger effect sizes affect power positively. Fourth, useful covariates affect power 

positively. In addition, in education (e.g., achievement data), it appears that the level-3 

covariates have a larger impact on power than level-2 covariates.  

 Results from optimal allocation methods suggested that as level-3 units become 

much more expensive than level-2 units, the researcher should sample a larger number of 

level-2 units within level-3 units. Similarly, as level-2 units become much more expensive 

than level-1 units, the researcher should sample a larger number of level-1 units within 

level-2 units. However, when the cost of level-3 units is not much higher than the cost of 

other units, sampling more level-3 units is recommended because it results in higher 

power. Also, larger clustering effects result in a smaller optimal number of level-1 units 

within level-2 units and a larger number of level-3 units (other things being equal). When 

the clustering effect at the second level is smaller than that in the third level, the optimal 

number of level-2 units within level-3 units decreases and as a result the number of level-3 

units increases.  
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Covariates also affect optimal design computations. Specifically, level-1 covariates 

seem more important than level-2 covariates in maximizing the number of level-3 units. In 

addition, level-2 covariates seem more important than level-3 covariates in maximizing the 

number of level-3 units. However, power is affected differently via the non-centrality 

parameter and the degrees of freedom.  

The methods provided here apply to both experimental designs and any non-

experimental studies that involve nesting and estimate group differences in an outcome 

(assuming trivial correlations between observed covariates and treatment). The logic of 

power computations remains the same and one can compute the power of a test that 

examines a group difference using the results presented in this study.    

 One potential limitation of this study is that it provided methods for optimal design 

assuming balanced designs. Although researchers aim to design balanced experimental 

studies, imbalance often takes place in practice or sometimes by design (e.g., studies about 

class or school size effects). In principle, the results of the present paper should apply 

approximately to unbalanced designs when treatment and control groups (or level-2 and 

level-3 units) have similar sample sizes. When imbalance is extreme among groups 

however, the use of the harmonic mean is recommended to compute power (see Cohen, 

1998). In addition, the present study assumed that the cost in experimental and control 

groups is the same, which does not always hold. Liu (2003) discussed cases where the cost 

is unequal for treatment and control units.  
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Table 1. Power Computations that Incorporate Cost: No Covariates
Cost ratio: C3/C2 Cost Ratio: C2/C1 Second Level ICC Third Level ICC Effect Size Optimal n Optimal p M = 2m Power

5 2 0.02 0.03 0.20 10 2 32 0.46
5 2 0.02 0.03 0.30 10 2 32 0.79
5 2 0.02 0.03 0.40 10 2 32 0.96
5 2 0.04 0.06 0.20 7 2 39 0.36
5 2 0.04 0.06 0.30 7 2 39 0.67
5 2 0.04 0.06 0.40 7 2 39 0.89
5 2 0.08 0.12 0.20 4 2 46 0.26
5 2 0.08 0.12 0.30 4 2 46 0.50
5 2 0.08 0.12 0.40 4 2 46 0.74
10 2 0.02 0.03 0.20 10 3 20 0.37
10 2 0.02 0.03 0.30 10 3 20 0.68
10 2 0.02 0.03 0.40 10 3 20 0.90
10 2 0.04 0.06 0.20 7 3 24 0.28
10 2 0.04 0.06 0.30 7 3 24 0.54
10 2 0.04 0.06 0.40 7 3 24 0.78
10 2 0.08 0.12 0.20 4 3 27 0.19
10 2 0.08 0.12 0.30 4 3 27 0.37
10 2 0.08 0.12 0.40 4 3 27 0.58
20 2 0.02 0.03 0.20 10 4 12 0.25
20 2 0.02 0.03 0.30 10 4 12 0.49
20 2 0.02 0.03 0.40 10 4 12 0.73
20 2 0.04 0.06 0.20 7 4 14 0.19
20 2 0.04 0.06 0.30 7 4 14 0.37
20 2 0.04 0.06 0.40 7 4 14 0.58
20 2 0.08 0.12 0.20 4 4 16 0.14
20 2 0.08 0.12 0.30 4 4 16 0.25
20 2 0.08 0.12 0.40 4 4 16 0.40

Note: ICC = Intraclass Correlation  
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Table 2. Power Computations that Incorporate Cost: No Covariates
Cost ratio: C3/C2 Cost Ratio: C2/C1 Second Level ICC Third Level ICC Effect Size Optimal n Optimal p M = 2m Power

5 5 0.02 0.03 0.20 15 2 16 0.29
5 5 0.02 0.03 0.30 15 2 16 0.55
5 5 0.02 0.03 0.40 15 2 16 0.79
5 5 0.04 0.06 0.20 11 2 19 0.22
5 5 0.04 0.06 0.30 11 2 19 0.43
5 5 0.04 0.06 0.40 11 2 19 0.66
5 5 0.08 0.12 0.20 7 2 21 0.15
5 5 0.08 0.12 0.30 7 2 21 0.29
5 5 0.08 0.12 0.40 7 2 21 0.46
5 10 0.02 0.03 0.20 22 2 9 0.18
5 10 0.02 0.03 0.30 22 2 9 0.35
5 10 0.02 0.03 0.40 22 2 9 0.55
5 10 0.04 0.06 0.20 15 2 10 0.13
5 10 0.04 0.06 0.30 15 2 10 0.24
5 10 0.04 0.06 0.40 15 2 10 0.39
5 10 0.08 0.12 0.20 10 2 12 0.11
5 10 0.08 0.12 0.30 10 2 12 0.18
5 10 0.08 0.12 0.40 10 2 12 0.29
5 20 0.02 0.03 0.20 31 2 5 0.11
5 20 0.02 0.03 0.30 31 2 5 0.17
5 20 0.02 0.03 0.40 31 2 5 0.27
5 20 0.04 0.06 0.20 21 2 6 0.09
5 20 0.04 0.06 0.30 21 2 6 0.15
5 20 0.04 0.06 0.40 21 2 6 0.22
5 20 0.08 0.12 0.20 14 2 6 0.07
5 20 0.08 0.12 0.30 14 2 6 0.10
5 20 0.08 0.12 0.40 14 2 6 0.14

Note: ICC = Intraclass Correlation  




