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a b s t r a c t

In this study, an inexact fuzzy-stochastic energy model (IFS-EM) is developed for planning energy and
environmental systems (EES) management under multiple uncertainties. In the IFS-EM, methods of inter-
val parameter fuzzy linear programming (IFLP) and multistage stochastic programming with recourse
(MSP) are introduced into a mixed-integer linear programming (MILP) framework, such that the devel-
oped model can tackle uncertainties described in terms of interval values, fuzzy sets and probability dis-
tributions. Moreover, it can reflect dynamic decisions for facility-capacity expansion and energy supply
over a multistage context. The developed model is applied to a case of planning regional-scale energy
and environmental systems to demonstrate its applicability, where three cases are considered based
on different energy and environmental management policies. The results indicate that reasonable solu-
tions have been generated. They are helpful for supporting: (a) adjustment or justification of allocation
patterns of regional energy resources and services, (b) formulation of local policies regarding energy con-
sumption, economic development and environmental protection, and (c) in-depth analysis of tradeoffs
among system cost, satisfaction degree and environmental requirement under multiple uncertainties.

� 2010 Elsevier Ltd. All rights reserved.
1. Introduction

Effective management of energy and environmental systems
(EES) is a priority for many regions throughout the world. In the
past decades, rising energy demands and fossil fuel prices, increas-
ing environmental- and health-impact concerns, as well as shrink-
ing energy reserves and environmental capacities have forced
decision makers to contemplate and propose comprehensive and
ambitious plans for EES management [1–7]. However, such plan-
ning efforts are complicated with a variety of processes that should
be considered by decision makers, including the diversity of supply
and mitigation technology options available (influencing model
size and complexity), the temporal and/or spatial evolutions of
parameters over medium- to long-term time horizons, the dy-
namic variation of system’s conditions, the environmental and so-
cial arguments, as well as the various uncertainties during the
planning process [9,10]. Therefore, in response to these uncertain-
ties and complexities, more robust systems analysis techniques are
desired for effectively managing EES within a multi-sector, multi-
period, and multi-option context.

Previously, a number of inexact optimization techniques were
developed to deal with such uncertainties and complexities in
ll rights reserved.

.

the EES, such as fuzzy, interval and stochastic mathematical pro-
gramming methods (abbreviated as FMP, IMP and SMP) [11–30].
For example, Liu et al. [13] developed an interval-parameter
chance-constrained method for nonrenewable energy resources
management, which could deal with uncertainties expressed as
discrete intervals and probability distributions. Mavrotas et al.
[14] developed a fuzzy linear programming model to handle uncer-
tainties in energy costs presented as fuzzy sets. Sadeghi and Hosse-
ini [15] used fuzzy linear programming approach for optimization
of supply energy system in Iran, where uncertainties of investment
costs in the objective function coefficients were considered; the
study indicated that uncertainties would significantly affect the re-
sults of energy model when compared crisp and fuzzy models.
Muela et al. [17] developed a fuzzy possibilistic model for power
generation planning, in which environmental criteria was consid-
ered and uncertainties in various energy demands were presented
as fuzzy sets. Liu et al. [18] developed an integrated fuzzy-possibi-
listic joint-probabilistic mixed-integer programming model and
applied it to the expansion planning of power generation under
uncertainty. Lin and Huang [19] developed an energy systems
planning model through using interval-parameter integer pro-
gramming for the optimization problem of energy allocation and
capacity expansion within a regional jurisdiction, where interval
solutions allow for detailed interpretation of the trade-offs be-
tween environmental pollution risks and economic objectives. In
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general, fuzzy programming methods were effective in dealing
with decision problems under fuzzy goal and constraints and han-
dling ambiguous coefficients in the objective function and con-
straints; chance-constrained programming method could reflect
the reliability of satisfying system constraints under uncertainty;
interval-parameter programming method could handle uncertain
parameters that are expressed as intervals with known lower
and upper bounds, but unknown membership or distribution func-
tions. However, they had difficulties in facilitating the analysis of
various energy and environmental policy scenarios that were asso-
ciated with different levels of economic penalties when the pre-
regulated targets (e.g., electricity generation targets) were violated.

Stochastic programming with recourse was effective for prob-
lems where an analysis of policy scenarios is desired and coeffi-
cients are random with known probability distributions [31–36].
In this method, decision variables were divided into two subsets:
those that had to be determined before the random uncertainties
were disclosed and those (recourse variables) that could be deter-
mined after the uncertainties were disclosed [37–40]. Previously, a
number of two-stage and multistage stochastic programming with
recourse (TSP and MSP) were developed for tackling the above
uncertainties and complexities in the planning EES. For example,
Pereira and Pinto [11] proposed a multistage stochastic optimiza-
tion approach for the planning of a multi-reservoir hydroelectric
system under uncertainty, through associating a given probability
to each of a range of inputs that occurred at different stages of an
optimization horizon. Takriti et al. [41] proposed a MSP-based
model for the problem of generating electric power when demands
were uncertain; numerical results indicated significant savings in
the cost of operating power generating systems when the stochas-
tic model was used instead of the deterministic model. Nürnberg
and Römisch [42] developed a TSP model for the short- or mid-
term cost-optimal electric power production planning, where ran-
dom uncertainties in electricity load demand were considered. Re-
cently, Lin et al. [20] developed a hybrid interval-fuzzy two-stage
stochastic energy systems planning model to deal with uncertain-
ties that can be expressed as fuzzy numbers, probability distribu-
tions, and discrete intervals.

In general, TSP had advantages in reflecting complexities of sys-
tem uncertainties as well as analyzing policy scenarios when the
pre-regulated targets were violated; however, it had difficulties
in reflecting the dynamic variations of system conditions, espe-
cially for sequential structure of large-scale problems. In compari-
son, as an extension of dynamic stochastic programming methods,
MSP was effective in reflecting such a dynamic feature. MSP im-
proved upon the conventional TSP methods by permitting revised
decisions in each time stage based on the uncertainty realized so
far [31]. The uncertain information in a MSP was often modeled
through a multilayer scenario tree. The primary advantage of sce-
nario-based stochastic programming was the flexibility it offered
in modeling the decision process and defining the scenarios, partic-
ularly if the state dimension was high [31,32].

Therefore, as an extension of the previous efforts, an inexact
fuzzy-stochastic energy model (IFS-EM) will be developed for sup-
porting regional-scale energy and environmental systems (EES)
planning under uncertainty. The IFS-EM will incorporate tech-
niques of interval-parameter fuzzy linear programming (IFLP),
multistage stochastic programming (MSP) and mixed-integer lin-
ear programming (MILP) within a general optimization framework.
Uncertainties existing in the model stipulations and coefficients,
expressed as interval values, fuzzy sets and probability distribu-
tions, can be directly included in the model and communicated
into the optimization process, such that the solutions reflecting
the inherent uncertainties can be generated. Moreover, it will be
used for reflecting dynamics in terms of decisions for electricity
generation schemes and air pollution mitigation plans through
transactions at discrete points of a complete scenario set over a
multistage context. It can also be used for analyzing multiple pol-
icy scenarios that are associated with economic penalties when the
promised targets are violated. A case study will then be provided
for demonstrating applicability of the developed method. Three
cases will be considered based on varied energy and environmental
management policies. The results can help decision makers not
only discern optimal energy-allocation patterns and air pollution
mitigation plans, but also gain in-depth insights into the tradeoffs
among system cost, satisfaction degree and environmental
requirement under multiple uncertainties.
2. Methodology

2.1. Interval-parameter fuzzy linear programming

Consider an interval-parameter fuzzy linear programming
(IFLP) problem [43] as follows:

Min f� ¼
�

C�X� ð1aÞ

s:t: A�X�<
�

B� ð1bÞ

X� P 0 ð1cÞ

where A� 2 fR�gm�n
; B� 2 fR�gm�1

; C� 2 fR�g1�n and fR�g denote a
set of interval numbers, and m and n are real numbers (m P 1 and
n P 1); X� represent a set of decision variables; the ‘�’ and ‘+’
superscripts denote the lower and upper bounds of parameters/
variables, respectively; and symbols ¼

�
and <

�
represent fuzzy equal-

ity and inequality, respectively. In fact, a decision in a fuzzy envi-
ronment can be defined as the intersection of membership
functions corresponding to fuzzy objective and constraints
[44,46,47]. Given a fuzzy goal (G) and a fuzzy constraint (E) in a
space of decision alternatives (X�Þ, a fuzzy decision set (D) can then
be formed in the intersection of G and E. In a symbolic form, we
have D ¼ G \ E, and correspondingly:

lD ¼MinflG;lEg ð2aÞ

where lD; lD and lD denote membership functions of fuzzy deci-
sion D, fuzzy goal G, and fuzzy constraint E, respectively [38]. Let
lEi
ðX�Þ be membership functions of constraints Ei (i = 1,2, . . . ,m),

and lGj
ðX�Þ be those of goals Gj (j = 1,2, . . . ,n). A decision can then

be defined by the following membership function [47,48]:

lDðX
�Þ ¼ lEi

ðX�Þ � lGj
ðX�Þ ð3aÞ

lDðX
�Þ ¼MinfliðX

�Þji ¼ 1;2; . . . ;mþ 1g ð3bÞ

where ‘‘*” denotes an appropriate and possibly context-dependent
‘‘aggregator”; liðX

�Þ can be interpreted as the degree to which X�

satisfies fuzzy inequality in the objective and constraints. A desired
decision is thus the one with the highest lDðX

�Þ value:

Max lDðX
�Þ ¼Max Min½liðX

�Þ�; X� P 0 ð4Þ

where liðX
�Þ should be zero if the objective and constraints are vio-

lated, and 1 if they are totally satisfied. Consequently, the IFLP prob-
lem can be converted into an ordinary linear programming model
by introducing a new variable of k ¼ lDðX

�Þ, which corresponds
to the membership function of the fuzzy decision [38,46–48]. Spe-
cifically, the flexibility in the constraints and fuzziness in the objec-
tive (which are represented by fuzzy sets and denoted as ‘‘fuzzy
constraints” and ‘‘fuzzy goal”, respectively) can be expressed as
membership grades ðkÞ corresponding to the degrees of overall sat-
isfaction for the constraints and objective. Thus, model (1) can be
converted into:
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Max k� ð5aÞ

s:t: C�X� 6 fþ � k�ðfþ � f�Þ ð5bÞ

A�X� 6 Bþ � k�ðBþ � B�Þ ð5cÞ

X� P 0 ð5dÞ

0 6 k� 6 1 ð5eÞ

where f� and fþ are the lower and upper bounds of the objec-
tive’s aspiration level, respectively; k� is the control variable cor-
responding to the degree (membership grade) of satisfaction for
the fuzzy decision. An interactive two-step algorithm is devel-
oped to solve the above problem through analyzing the detailed
interrelationships between the parameters and the variables and
between the objective function and the constraints [44]. The
submodel for kþ corresponding to f� can be formulated in the
first step when the system objective is to be minimized; the
other submodel for k� can then be formulated based on the
solution of the first submodel. The IFLP can directly handle
uncertainties presented as interval numbers and/or fuzzy sets.
However, it has difficulties in tackling uncertainties expressed
as random variables in a non-fuzzy decision space and in provid-
ing a linkage between the pre-regulated policies and the associ-
ated implications.

2.2. Multistage stochastic programming with recourse

In many real-world problems, uncertainties may be expressed
as random variables, and the related study systems are of dynamic
feature. Thus the relevant decisions must be made at each time
stage under varying probability levels. Such a problem can be for-
mulated as a scenario-based multistage stochastic programming
(MSP) model with recourse as follows [47]:

Min f ¼
XT

t¼1

CtXt þ
XT

t¼1

XKt

k¼1

ptkDtkYtk ð6aÞ

s:t: ArtXt 6 Brt; r ¼ 1;2; . . . ;m1; t ¼ 1;2; . . . ; T ð6bÞ

AitXt þ A0itkYtk 6 witk; i ¼ 1;2; . . . ;m2; t ¼ 1;2; . . . ; T;

k ¼ 1;2; . . . ; kt ð6cÞ

xjt P 0; xjt 2 Xt; j ¼ 1;2; . . . ;n1; t ¼ 1;2; . . . ; T ð6dÞ

yjtk P 0; yjtk 2 Ytk; j ¼ 1;2; . . . ; n2; t ¼ 1;2; . . . ; T;

k ¼ 1;2; . . . ; kt ð6eÞ

where ptk is the probability of occurrence for scenario k in period
t, with ptk 6 1 and

PKt
k¼1ptk ¼ 1; and Kt is the number of scenar-

ios in period t, with the total number of scenarios being
K ¼

PT
t¼1Kt . In model (6), the decision variables are divided into

two subsets: the first-stage decision variables ðxjtÞ that must be
determined before the random variables are disclosed, and re-
course variables ðyjtkÞ that can be determined after the random
variables are disclosed.

2.3. Interval-fuzzy multistage linear programming

Obviously, model (6) can address uncertainties in the right-
hand sides of the constraints to be presented as random variables.
Therefore, one potential approach that can deal with multiple
uncertainties presented in terms of fuzzy sets, interval values,
and random variables is to couple MSP and IFLP into a general
framework; this leads to an interval-fuzzy multistage linear pro-
gramming (IFMP) model as follows [40,47]:
Max k� ð7aÞ

s:t:
XT

t¼1

C�t X�t þ
XT

t¼1

XKt

k¼1

ptkD�tkY�tk 6 fþ � k�ðfþ � f�Þ ð7bÞ

A�rtX
�
t 6 Bþrt � k�ðBþrt � B�rtÞ; r ¼ 1;2; . . . ; m1;

t ¼ 1;2; . . . ; T ð7cÞ
A�it X�t þ ðA

0
itkÞ
�Y�tk 6 wþitk � k�Dw�itk; i ¼ 1;2; . . . ;m2;

t ¼ 1;2; . . . ; T; k ¼ 1;2; . . . ;Kt ð7dÞ
x�jt P 0; x�jt 2 X�t ; j ¼ 1;2; . . . ;n1; t ¼ 1;2; . . . ; T ð7eÞ
y�jtk P 0; y�jtk 2 Y�tk; j ¼ 1;2; . . . ;n2; t ¼ 1;2; . . . ; T;

k ¼ 1;2; . . . ; kt ð7fÞ
0 6 k� 6 1 ð7gÞ

In model (7), a k� level close to 1 would correspond to a high
possibility of satisfying the constraints/objective under advanta-
geous conditions; conversely, a k� value near 0 would be related
to a solution that has a low possibility of satisfying the con-
straints/objective under demanding conditions. The detailed solu-
tion method for the IFMP model is presented in Appendix A to
this paper.

3. Application

3.1. Statement of problems

In a typical regional-scale energy and environmental system,
four main components are considered. They are (i) the energy re-
sources supply sector, which provides energy resources with dif-
ferent availability including diverse renewable and nonrenewable
resources to the system; (ii) the energy conversion sector, which
contains various electricity conversion technology and air pollu-
tion mitigation technology options with varied economic, environ-
mental and technological performance; (iii) the electricity-demand
sector, which involves kinds of demand side technologies that
drive energy consumptions by numerous end-users and is charac-
terized by varying socio-economic, geographical, demography,
technology advancement and environmental conditions; (iv) the
environmental protection sector, which regulates energy-related
environmental protection policies [23]. A decision maker is often
responsible for allocating energy resources/services from multiple
facilities to multiple end-users through multiple technologies un-
der multiple demand-levels and environmental constraints within
a multi-period horizon. The study problem can be formulated as
minimizing the expected value of net system cost with optimized
energy resources allocation patterns, pollution mitigation plans
and capacity expansion planning schemes over the planning hori-
zon. In addition, in the energy conversion sector, every power con-
version technology has a pre-regulated electricity generation
target and each pollution mitigation technology also has a pre-de-
fined pollution mitigation target. If the target is not exceeded, the
system will be encountered the regular cost; otherwise, the system
will be subject to penalties resulted from the extra labor, manage-
ment, operation and maintenance costs, or capacity expansion and
higher costs for imported energy.

In the EES problems, potential energy demand from a long-term
perspective may be expressed as random variable with a given
probability level in one case and the other uncertain parameters
may be expressed as intervals and/or fuzzy sets; besides, the rele-
vant electricity-generation plan would be of dynamic features and
a link to a pre-regulated policy is desired. The relevant decisions
must be made at each time stage under various uncertainties in or-
der to select the most appropriate power conversion technology
and type of fuel to meet the random electricity demand and the
most suitable pollution mitigation technology to satisfy the envi-
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ronmental constraints, according to the availability, economic,
environmental and technological characteristics of different fuels
and technologies. Therefore, the developed IFMP method is consid-
ered to be feasible for giving such a decision support.

3.2. Overview of the study system

A hypothetical but representative study system is developed for
illustrating applicability of the proposed inexact fuzzy-stochastic
programming approach based on representative cost and technical
data from EES management literatures. Three time periods are con-
sidered, with each having a time interval of five years (this can be
adjusted based on the decision makers’ interests while planning
real-world cases). In the theoretical energy and environmental sys-
tem (Fig. 1), multiple conventional and renewable energy re-
sources/technologies need to be allocated to multiple end-users
(i.e., industrial, commercial, agricultural, residential sectors), while
various air pollution mitigation technology options are to be
adopted to control air pollutants emissions in a region.

In detail, coal, natural gas, nuclear fuel and renewable energy
resources (hydropower, wind and solar) are mainly employed for
power generation. Power conversion technologies include those
for large-scale electricity generation, as well as those for small-
scale renewable resources utilization. Generally, large-scale tech-
nologies are mostly used for generating electricity from conven-
tional energy resources such as coal and natural gas. At the same
time, small-scale technologies are based on local availabilities of
renewable energy resources except hydropower [8,49]. The end-
user’s random electricity demands and electricity generation tar-
gets of each power conversion technology are presented in Table
Primary energy supply

Coal

Natural gas

Hydro

Wind

Solar

Nuclear fuel

Energy conversion

Coal-fired power

Natural gas-fired power

Hydropower

Wind power

Solar power

Nuclear power

SO2

Environment

Air p

SAS WLS LSD

Fig. 1. The schematic of regional ene
1. In the region, if electricity supply cannot sufficiently meet the
end-users’ demands, decision makers will face a dilemma of either
investing more funds in capacity expansions of the existing facili-
ties or turning to other electricity production options or putting ex-
tra funds into electricity imports at raised prices [8,49]. No matter
which way would be adopted in response to the deficiencies of
electricity productions, economic penalties would be incurred.
The peak load demands ðVtÞ are [1.5,3.0], [2.0,3.5] and
[2.5,4.0] GW in periods 1, 2 and 3, respectively. Table 2 provides
the economic and technological datum of each power conversion
technology. The initial installed capacity of coal-fired power, natu-
ral gas-fired power, hydropower, wind power, solar power and nu-
clear power conversion technologies are 1.00, 0.28, 0.26, 0, 0, and
0 GW, respectively. Sulfur dioxide ðSO2Þ, nitrogen oxides ðNOxÞ
and particulate matter (PM) are the main pollutants emitted from
power plants. There are many removal technologies that have been
used for controlling these pollutants. In this study system, soda ash
scrubber (SAS), wet limestone scrubber (WLS) and lime spray dryer
(LSD) are used to reduce the amount of SO2 emission, with the
average removal efficiencies being 92.0%, 83.0% and 77.5%, respec-
tively. Selective catalytic reduction (SCR) and selective non-cata-
lytic reduction (SNCR) are selected to control the amount of NOx

emission, with the average removal efficiencies being 85.0% and
70.0%, respectively. Fabric filiter/baghouse (BH), electrostatic pre-
cipitator (ESP) and wet collector (WC) are used to mitigate the
amount of PM emission, with the average removal efficiencies
being 99.0%, 95.0% and 90.0%, respectively. The regular costs
(including the capital and operating costs for mitigating pollutant
emissions) of different pollution control measures as well as the
penalties for handling the excess emission and paying the fine
End-users

Industry

Commerce

Agriculture

Residents

Regional 
power grid

Extra-regional 
power grid

Air pollutants

PMNOx

ollution control technologies

SCR SCNR BH ESP WC

rgy and environmental system.



Table 1
End-user’s total electricity demands and electricity generation targets.

Time period t = 1 t = 2 t = 3

Demand level Probability (%) Electricity demand Probability (%) Electricity demand Probability (%) Electricity demand

End-user’s total electricity demand (103 GW h)
Low (L) 25 [50,65] 20 [85,105] 15 [135,150]
Medium (M) 50 [65,81] 60 [105,127] 55 [150,175]
High (H) 25 [81,96] 20 [127, 147] 30 [175,200]

Electricity generation targets of each power conversion technology (103 GW h)

Coal-fired power, W�
1t

[27.5,50.0] [25.0,60.0] [22.5,70.0]

Gas-fired power, W�
2t

[6.0,20.0] [7.0,25.0] [8.0,30.0]

Hydropower, W�
3t

[5.0,10.0] [5.5,15.0] [6.0,20.0]

Wind power, W�
4t

[0,5.0] [0,5.0] [0,5.0]

Solar power, W�
5t

[0,5.0] [0,5.0] [0,5.0]

Nuclear power, W�
6t

[0,10.0] [0,15.0] [0,20.0]

Table 2
Economic and technological datum of each power conversion technology.

Conversion technology Time period

t = 1 t = 2 t = 3

Regular and surplus costs for power generation by each power conversion technology ($103/GW h)
Coal-fired power Regular cost, PV�1t

[5.0,7.0] [5.5,7.5] [6.0,8.0]

Surplus cost, PP�1t
[3.0,5.0] [3.5,5.5] [4.0,6.0]

Gas-fired power Regular cost, PV�2t
[4.5,6.5] [5.0, 7.0] [5.5,7.5]

Surplus cost, PP�2t
[2.5,4.5] [3.0, 5.0] [3.5,5.5]

Hydropower Regular cost, PV�3t
[4.0,6.0] [4.5,6.5] [5.0,7.0]

Surplus cost, PP�3t
[3.5,5.5] [4.0, 6.0] [4.5,6.5]

Wind power Regular cost, PV�4t
[2.5,3.5] [3.0, 4.0] [3.5,4.5]

Surplus cost, PP�4t
[1.5,2.5] [2.0, 3.0] [2.5,3.5]

Solar power Regular cost, PV�5t
[2.0,3.0] [2.5,3.5] [3.0,4.0]

Surplus cost, PP�5t
[1.0,2.0] [1.5,2.5] [2.0,3.0]

Nuclear power Regular cost, PV�6t
[10.0,14.0] [11.0,15.0] [12.0,16.0]

Surplus cost, PP�6t
[6.0,9.0] [6.5,9.5] [7.0,10.0]

Fixed ($106) and variable ($106/GW) costs for capacity expansion
Coal-fired power Fixed cost, A�1t

[325,395] [385,455] [445,515]

Variable cost, B�1t
[700,850] [750,900] [800,950]

Gas-fired power Fixed cost, A�2t
[300,375] [350,425] [400,475]

Variable cost, B�2t
[650,800] [700,850] [750,900]

Hydropower Fixed cost, A�3t
[700,900] [770,970] [840,1040]

Variable cost, B�3t
[1800,2300] [1900,2400] [2000,2500]

Wind power Fixed cost, A�4t
[800,1000] [880,1080] [960,1160]

Variable cost, B�4t
[1900,2450] [1950,2500] [2000,2550]

Solar power Fixed cost, A�5t
[900,1150] [990,1240] [1080,1330]

Variable cost, B�5t
[2000,2400] [2100,2500] [2200,2600]

Nuclear power Fixed cost, A�6t
[1000,1300] [1100,1400] [1200,1500]

Variable cost, B�6t
[1950,2350] [2100,2500] [2250,2650]

Variable upper bounds for capacity expansion of each power conversion technology (GW)
Coal-fired power, M1t 0.7 0.5 0.3
Gas-fired power, M2t 0.5 0.6 0.7
Hydropower, M3t 0.3 0.4 0.5
Wind power, M4t 0.1 0.2 0.3
Solar power, M5t 0.2 0.3 0.4
Nuclear power, M6t 0.3 0.4 0.5
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are listed in Table 3. Normally, the penalties are significantly high-
er than the regular costs, and the measure with higher pollutant re-
moval efficiency often has a relatively higher operating cost (due to
the high reagent cost). Thus, decision makers need to identify de-
sired energy-flow allocation, facility-expansion and air pollutants
mitigation schemes with a minimized system cost and a maximize
satisfaction degree.
The representative costs and technical data in Tables 2 and 3
were investigated based on governmental reports and other re-
lated Refs. [7,8,31,50–56]. The deterministic parameters (e.g.,
variable upper bounds for capacity expansion of each power con-
version technology) are based on the assumption that they can
be definitely determined by decision makers or that their uncer-
tainties are small enough to be ignored. The intervals indicate that



Table 3
Regular and penalty costs of pollution control techniques.

Pollution control technique Time period

t = 1 t = 2 t = 3

Regular cost for treating pre-regulated SO2 emission ($/tonne)
SAS, CS1t [55,75] [57,77] [59,79]
WLS, CS2t [45,60] [48,63] [51,66]
LSD, CS3t [30,40] [33,43] [35,45]

Penalty cost for treating excess SO2 emission ($/tonne)
SAS, DS1t [90,110] [95,115] [100,120]
WLS, DS2t [125,150] [130,155] [135,160]
LSD, DS3t [110,140] [115,145] [120,150]

Regular cost for treating pre-regulated NOx emission ($/tonne)
SCR, CN1t [55,75] [59,79] [62,82]
SNCR, CN3t [35,50] [38,53] [40,55]

Penalty cost for treating excess NOx emission ($/tonne)
SCR, DN1t [95,115] [100,120] [105,125]
SNCR, DN3t [110,130] [115,135] [120,140]

Regular cost for treating pre-regulated PM emission ($/tonne)
BH, CP1t [135,160] [140,165] [145,170]
ESP, CP2t [125,150] [133,158] [140,165]
WC, CP3t [115,140] [125,150] [135,160]

Penalty cost for treating excess PM emission ($/tonne)
BH, DP1t [185,215] [193,223] [200,230]
ESP, DP2t [195,225] [203,233] [210,240]
WC, DP3t [205,235] [213,243] [220,250]
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the specified values of parameters are unknown, but the lower and
upper bounds can be provided. For example, many factors may af-
fect the system cost, the emission loads of air pollutants, and the
operating cost in real-world cases. The cost for the study system
may change according to the fuel quality, the prices of fuels, the la-
bor fee, and the levels of regional economic development; the val-
ues of emission loadings are affected by the types of fuels, the
combustion conditions, the amount of electricity generation; the
operating cost is estimated based on the types of power conversion
technologies and mitigation measures to be adopted. Correspond-
ingly, the system cost, the emission loads of air pollutants, and the
operating cost would be sensitive variables which could be defined
as intervals with known upper and lower bounds but unknown
distribution information.

Based on the regional environmental protection policy, the
gross of air-pollutant emissions are interpreted as constraints in
the developed model. Correspondingly, different environmental
management policies may lead to varied power generation plans
and changed capacity expansion schemes. In this study, three dif-
ferent cases are considered in order to make in-depth analysis of
interactions among energy-supply security, economic cost, and
environmental requirement. These cases can be described as
follow:

� In Case 1, the totaling amount of air pollutants emitted are con-
fined with a certain level over the planning horizon, being
½45:0;60:0� � 103 tonnes for SO2; ½25:0;40:0� � 103 tonnes for
NOx and ½0:5;1:0� � 103 tonnes for PM in periods 1, 2 and 3,
respectively. Therefore, this case corresponds to decisions with
efforts for allocation and management of energy resources, ser-
vices, activities and investment under stabilized environmental
management policies in order to pose as a baseline case in this
study system.

� Case 2 is based on current status of the regional-scale energy and
environmental system without any particular regulatory, eco-
nomic or political barriers, targets or strategies; under this case,
the developed model is run without any exterior constraints
(e.g., without air pollution emission control constraints). Given
a range of energy resources and technology alternatives, it will
automatically choose the lowest-cost set of options to meet
the random electricity demand in the region.

� Case 3 provides an analysis of varied environmental management
policies for SO2; NOx and PM emissions allowances under an
aggressive environmental protection goal over the planning hori-
zon. Based on case 1, the gross of region’s air-pollutants emissions
are to be mitigated by 10%, 20% and 30% along with the time per-
iod, namely, [40.5,54.0], [36.0,48.0] and ½31:5;42:0� � 103 tonnes
for SO2, [22.5,36.0], [20.0,32.0] and ½17:5;28:0� � 103 tonnes for
NOx, [0.45,0.90], [0.40,0.80] and ½0:35; 0:70� � 103 tonnes for
PM in periods 1, 2 and 3, respectively.
3.3. Modeling formulation

Therefore, the problems under consideration are: (a) how
to effectively assign the power demand to the six power conver-
sion technologies and minimize the system cost and risk of
penalties under uncertainty, (b) how to incorporate energy and
environmental policies within the study problem with a low risk
of system failure, and (c) how to generate an optimized capac-
ity expansion scheme with sound timing and sizing
consideration.

In this case, since random variables (potential electricity de-
mand) with knowing probability ðpthÞ exist, three scenario trees with
a branching structure of 1–3–3–3 can be constructed. All of the sce-
nario trees have the same structure with one initial node at time 0
and three succeeding ones in period 1; each node in period 1 has
three succeeding nodes in period 2, and so on for each node in period
3. These result in 27 nodes (scenarios) in period 3. Moreover, mixed-
integer linear programming (MILP) technique is used for facilitating
dynamics analysis of the timing, sizing and siting in terms of energy-
supply capacity expansions. In the MILP, binary variables will be em-
ployed to help decide whether or not particular supply technology
development or expansion options will be undertaken; fixed-charge
cost functions will be introduced in the developed model to reflect
the economies of scale in capacity expansion [37,39]. It is assumed
that, if the system requires capacity expansion at the beginning of
a particular period, this expansion project has to be completed by
the end of the previous period. Therefore, through introducing MILP
into the IFMP framework, an IFS-EM for regional-scale EES planning
can be formulated as follows:

Max k� ð8aÞ

s.t.

(1) Constraints for system cost:
XT

t¼1

ðPEC�t Z1�t þPEN�t Z2�t Þþ
XT

t¼1

XHt

h¼1

pthPIE�t Z3�th

þ
XI

i¼1

XT

t¼1

PV�it W�
it þ

XI

i¼1

XT

t¼1

XHt

h¼1

pthðPV�it þPP�it ÞQ
�
ith

þ
XI

i¼1

XT

t¼1

XHt

h¼1

pthðA
�
it Y�ithþB�it X�ithÞ

þ
XI

i¼1

Xns

js¼1

XT

t¼1

CS�jstXS�ijs t þ
XI

i¼1

Xnn

jn¼1

XT

t¼1

CN�jntXN�ijnt þ
XI

i¼1

Xnp

jp¼1

XT

t¼1

CP�jptXP�ijpt

þ
XI

i¼1

Xns

js¼1

XT

t¼1

XHt

h¼1

pthDS�js tYS�ijs thþ
XI

i¼1

Xnn

jn¼1

XT

t¼1

XHt

h¼1

pthDN�jntYN�ijnth

þ
XI

i¼1

Xnp

jp¼1

XT

t¼1

XHt

h¼1

pthDP�jptYP�ijpth

6 fþ1opt� k� fþ1opt� f�1opt

� �
ð8bÞ



ergy
(2) Constraints for mass balance of fossil fuels:
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(4) Constraints for electricity supply and demand balance:
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(5) Constraints for electricity generation of every power conver-

sion technology:

W�
it þQ�ith�

Xt

t0¼1

X�ithST�it 6RCi STþit �k� STþit �ST�it
� �� �

; 8i; t; h¼1;2; . . . ;Ht ð8jÞ

W�
it P Q�ith P 0; 8i; t;

h¼1;2; . . . ;Ht ð8kÞ
(6) Constraints for electricity peak load demand:
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(7) Constraints for capacity expansion of electricity-generation

facilities:

Y�ith
¼ 1; if capacity expansion is undertaken
¼ 0; if otherwise

�
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(8) Constraints for air-pollution control demand:
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(9) Constraints for air-pollutants emissions:
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(10) Non-negative constraints:
Z1�t ; Z2�t ; Z3�th;W
�
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�
ith P 0; 8i; t; h ¼ 1;2; . . . ;Ht ð8xÞ

The detailed nomenclatures for the variables and parameters
are provided in Appendix B. The f�1opt and fþ1opt are the lower and
upper bounds of objective function values obtained from corre-
sponding interval multistage stochastic integer programming (IM-
SIP) model [39,40]. The objective is to maximize the satisfaction
degree for system objective and constraints under uncertainty.
Higher k� levels correspond to less strict system constraints, which
represent a higher satisfaction degree for the objective/constraints
under advantageous conditions; meanwhile, a higher k� level is
associated with a lower system cost. Conversely, a lower k� level
(a lower satisfaction degree) corresponds to more strict constraints
under demanding conditions, resulting in a higher system cost.

The complexities associated with electricity generation targets
W�

kt (i.e. the first-stage decision variables) are expressed as interval
numbers. In this study, an optimized set of target values will be
identified by letting ukt be decision variables. This optimized set will
correspond to the lowest possible system cost under the uncertain
electricity generation targets. Accordingly, let W�

it ¼W�
it þ DWituit ,

where DWit ¼Wþ
it �W�

it and uit 2 ½0; 1� [40,45]. Thus, when W�
kt ap-

proach their lower bounds (i.e. when uit ¼ 0Þ, a relatively low cost
would be obtained; however, a higher penalty may have to be paid
when the electricity demand is not satisfied. Conversely, when W�

it

reach their upper bounds (i.e. when uit ¼ 1Þ, a higher cost would be
generated but, at the same time, a lower risk of violating the prom-
ised targets (and thus lower penalty). Based on the solution method
described in Appendix A, the IFMIP model can be converted into two
deterministic submodels. Interval solutions can then be obtained by
solving the two submodels sequentially. The detailed solution pro-
cess can be summarized as follows:

Step 1: Formulate the IFS-EM [i.e. model (8)].
Step 2: Reformulate model (8) by introducing W�

kt ¼W�
ktþ

DWktukt , where DWkt ¼Wþ
kt �W�

kt and ukt 2 ½0; 1�.
Step 3: Transform the developed model in step 2 into two sub-

models, where f� is desired since the objective is to min-
imize f�; formulate the first submodel which
corresponds to f�.

Step 4: Solve the f� submodel and obtain solutions of kþopt; uktopt;

Z1�topt; Z2�topt; Z3�thopt; Q�kthopt; X�kthopt; Y�kthopt;

XS�ijstopt; YS�ijsthopt; XN�ijntopt; YN�ijnthopt; XP�ijptopt; YP�ijpthopt and
f�opt.

Step 5: Calculate W�
ktopt ¼W�

kt þ DWktuktopt.
Step 6: Formulate the second submodel which corresponds to

fþ.
Step 7: Solve the fþ submodel and obtain solutions of

k�opt; Z1þtopt; Z2þtopt; Z3þthopt; Qþkthopt; Xþkthopt; Yþkthopt;
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XSþijstopt; YSþijsthopt; XNþijntopt; YNþijnthopt; XPþijptopt; YPþijpthopt

and fþopt.
Step 8: Combine the two submodels’ solutions to obtain the

solution of model (8), including:
(a) Optimized decision maker’s satisfaction degree:
k�opt ¼ ½k
�
opt; kþopt�
(b) Optimized energy resources supply schemes:
Z1�topt ¼ Z1�topt; Z1þtopt

h i
; 8t

Z2�topt ¼ Z2�topt; Z2þtopt

h i
; 8t

Z3�thopt ¼ Z3�thopt; Z3þthopt

h i
; 8t; h ¼ 1;2; . . . ;Ht
(c) Optimized excess electricity-generation plans:
Q�ithopt ¼ Q�ithopt; Qþithopt

h i
; 8i; t; h ¼ 1;2; . . . ;Ht
(d) Optimized capacity expansion schemes:
X�ithopt ¼ X�ithopt; Xþithopt

h i
; 8i; t; h ¼ 1;2; . . . ;Ht

Y�ithopt ¼ Y�ithopt; Yþithopt

h i
; 8i; t; h ¼ 1;2; . . . ;Ht
(e) Optimized air pollution mitigation targets:
XS�ijstopt ¼ XS�ijstopt; XSþijstopt

h i
; 8i; js; t

XN�ijntopt ¼ XN�ijntopt; XNþijntopt

h i
; 8i; jn; t

XP�ijptopt ¼ XP�ijptopt; XPþijptopt

h i
; 8i; jp; t
(f) Optimized excess air-pollution control plans:
YS�ijsthopt ¼ YS�ijsthopt; YSþijsthopt

h i
; 8i; js; t; h¼ 1;2; . . . ;Ht

YN�ijnthopt ¼ YN�ijnthopt; YNþijnthopt

h i
; 8i; jn; t; h¼ 1;2; . . . ;Ht

YP�ijpthopt ¼ YP�ijpthopt; YPþijpthopt

h i
; 8i; jp; t; h¼ 1;2; . . . ;Ht
(g) Optimized system cost:
f�opt ¼ f�opt; fþopt

h i

Step 9: Obtain the optimal electricity generation schemes and

air pollution mitigation plans under each scenario;
Optimal electricity generation schemes of every power
conversion technology:
A�ithopt ¼W�
itopt þ Q�ithopt; 8i; t; h ¼ 1;2; . . . ;Ht
Optimal air pollution mitigation plans of each air-pollution control
technique:
S�ijsthopt ¼ XS�ijstopt þ YS�ijsthopt; 8i; js; t; h ¼ 1; . . . ;Ht

N�ijnthopt ¼ XN�ijntopt þ YN�ijnthopt; 8i; jn; t; h ¼ 1; . . . ;Ht

P�ijpthopt ¼ XP�ijptopt þ YP�ijpthopt; 8i; jp; t; h ¼ 1; . . . ;Ht
Step 10: Stop.

4. Results and discussion

4.1. Energy resources supply scheme

Figs. 2 and 3 show the energy resources supply schemes under
cases 1–3. In this study, coal and natural gas would be supplied
based on the results of the worst scenario (i.e. related to a maxi-
mum electricity deficit level); this is to guarantee the security of
energy supplies under uncertainty. Under case 1, as shown in the
Fig. 2a, the amount of coal supply would almost be stabilized at
a certain level over the planning horizon, being [490.7,730.1],
[489.7,648.9] and ½490:3;699:9� � 103 TJ in periods 1–3, respec-
tively. This is because the totaling amount of air pollutants emitted
would be confined with a certain level during the planning periods,
while coal-fired power conversion technology corresponds to a
higher air pollution-emission rate, compared with other power
conversion technologies. In comparison, the amount of natural
gas supply would be raised with the increasing electricity demand,
being [54.0,86.4], [420.6,538.7] and ½528:0;678:0� � 103 TJ in peri-
ods 1–3, respectively (Fig. 2b). It is demonstrated that significant
increase would occur in periods 2 and 3. This is because capacities
of gas-fired power would be expanded to meet the random elec-
tricity demands in these periods. For the imported electricity, there
would be no need to import electricity from other regions in peri-
ods 1 and 2 in spite of how the electricity demand-level is (Fig. 3);
in period 3, the imported electricity would be 3.34 and
28:34� 103 GW h when the demand-levels are medium and high.
This implies that, as one of the recourse actions to be chosen, im-
ported electricity would play an important part in period 3 under
case 1, especially when the demand-levels are high.

Compared with the results under case 1, the amount of coal
supply would significantly increase under case 2, being
[511.1,772.2], [849.7,1124.6] and ½955:8;1268:6� � 103 TJ in peri-
ods 1–3, respectively (Fig. 2a). Coal would play the most important
role in the energy supply activities under this case. This is due to
the following two facts: (i) there are no exterior constraints (e.g.,
without air pollution emission control constraints) under this case
and (ii) coal-fired power conversion technology has the lowest
operating and penalty cost of all the power conversion technolo-
gies. Natural gas supply would be reduced, being [54.0,69.0],
[151.4,293.6] and ½466:7;656:1� � 103 TJ in periods 1–3, respec-
tively (Fig. 2b). In addition, for the imported electricity, there
would be no need to import electricity from other regions in period
1; in period 2, the supply would be ½0;0:99� � 103 GW h when the
electricity demand-levels are low, medium and high in period 1
and high in period 2 with joint probabilities of 5%, 10% and 5%,
respectively; the supply would be ½0;3:58� � 103 GW h when the
demand-level is high in the period 3 (Fig. 3). The results indicate
that, as one of the recourse actions to be chosen, imported electric-
ity would not be the first selection under this case.

Under case 3, the role of coal supply would be ever decreasing
in the energy supply activities compared with the results under
cases 1 and 2 as shown in Fig. 2a. This is because, under this case,
strict environmental policies for air quality management would be
adopted. Thus, electricity generated from coal-fired power conver-
sion technology would significantly decrease natural gas supply
amount would increase under case 3, being [54.0,86.4],
[420.6,538.7] and ½528:0;678:0� � 103 TJ in periods 1–3, respec-
tively (Fig. 2b). This indicates more and more gas-fired power con-
version technology would be adopted, compared with cases 1 and
2. In comparison with cases 1 and 2, more electricity would be im-
ported from other regions to meet the increasing electricity de-
mand (Fig. 3). In period 2, the supply amount would be
8:98� 103 GW h when the electricity demand-levels are low, med-
ium and high in period 1 and high in period 2 with joint probabil-
ities being 5%, 10% and 5%, respectively. In period 3, the variant
would be more complicated than those in cases 1 and 2. For exam-
ple, if the demand-levels are both medium in the previous two
periods but are potentially low, medium and high in period 3 (with
joint probabilities of 4.5%, 16.5% and 9%, respectively), the supply
amount would be [5.89,6.69], 21.07 and 46:07� 103 GW h.
Whereas, if the demand-levels are both high in the previous two
periods but are potentially low, medium and high in period 3 (joint
probabilities are 0.75%, 2.75% and 1.5%, respectively), the supply
amount would be 5.89, 21.07 and 46:07� 103 GW h. This indicates
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that, under case 3, imported electricity would be one of the most
important recourses, especially when the electricity demand-levels
are medium and/or high in periods 2 and 3.

4.2. Electricity-generation plan

Figs. 4–9 present the optimized electricity generation schemes
of every power conversion technology under all possible 39 scenar-
ios over the planning horizon for the three cases. Under case 1, as
constraints for gross control of air-pollutants emission are added,
generation quantity of coal-fired power would not significantly in-
crease, due to its high SO2-;Nox- and PM-emission rates. Mean-
while, generation quantities of gas-fired power and hydropower
would markedly increase and clean power conversion technologies
(associated with low pollutants-emission rates) would be adopted.
Under this case, coal-fired power would play the most important
part in the electricity generation activities, whose optimized gen-
eration targets would be 29.20, 35.12 and 50:03� 103 GW h in
periods 1–3, respectively (Fig. 4a). For the gas-fired power, its
optimized generation targets would be 6.00, 25.00 and
30:00� 103 GW h in the three planning periods (Fig. 5a), respec-
tively, which would reach its upper target level in periods 2 and
3 (as shown in Table 1). For the hydropower, its optimized gener-
ation targets would fluctuate and increase during the three peri-
ods, being 10.00, 15.00 and 16:69� 103 GW h (Fig. 6a). This is
attributable to its relatively low operating cost and no pollutant
emission in the power conversion process. The optimized genera-
tion targets of nuclear would be 3.85, 3.91 and 7:95� 103 GW h
in the three planning periods, respectively (Fig. 7a). The optimized
generation targets of the wind and solar power would be 0, 4.00,
5:00� 103 GW h (Fig. 8a) and 1.00, 2.05, 2:09� 103 GW h in peri-
ods 1–3 (Fig. 9a), respectively.

Deficits would occur if the available generation targets cannot
meet the random electricity demand, especially when the de-
mand-level is high. In general, different power conversion technol-
ogy has varied excess generation quantities under changed
possible scenarios. For example, under case 1, the excess genera-
tion quantities would be ½19:87;29:20� � 103 GW h for the coal-
fired power, ½0;1:52� � 103 GW h for the gas-fired power,
½6:28;10:00� � 103 GW h for the hydropower, 3:85� 103 GW h for
the nuclear power and 1:00� 103 GW h for the solar power when
the demand-level is high in period 1 (probability is 25%). When
the demand-levels are medium in period 1 and low, medium and
high in period 2 (joint probabilities are 10%, 30%, and 10%, respec-
tively), the excess generation quantities would be 0, [0,11.08] and
½14:35;17:21� � 103 GW h for the coal-fired power, [0,16.39],
[20.01,22.26] and 22.26 � 103 GW h for the gas-fired power, 0,
[0,5.00] and [1.48,15.00] � 103 GW h for the hydropower, 0, 0
and 3.91 � 103 GW h for the nuclear power, [0,1.00], [0,1.00] and
[0,1.00] � 103 GW h for the wind power and [0,2.05], [0,2.05]
and [0,2.05] � 103 GW h for the solar power. When the demand-
levels are both medium in periods 1 and 2 and low, medium and
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Fig. 4. Generation plans of coal-fired power under cases 1–3.
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high in period 3 (joint probabilities are 4.5%, 16.5%, and 9.0%,
respectively), the excess generation quantities would be
[50.03,53.48], [50.03,56.91] and [50.03,56.91] � 103 GW h for the
coal-fired power, [50.16,54.10], 60.00 and 60.00 � 103 GW h for
the gas-fired power, [16.69,20.00], [16.69,30.83] and
[16.69,30.83 ]� 103 GW h for the hydropower, 7.95, [7.95,9.22]
and [7.95,9.22] � 103 GW h for the nuclear power, [8.13,10.00],
10.00 and 10.00 � 103 GW h for the wind power and [2.09,4.10],
[2.09,4.10] and [2.09,4.10] � 103 GW h for the solar power. In case
of insufficient electricity supply, coal-fired power would first be
chosen as the recourse action to compensate the deficits in period
1; but in periods 2 and 3, gas-fired power and hydropower gener-
ation would be the major recourse actions.

In comparison with the results under case 1, coal-fired power
conversion technology would play the most important part in the
electricity generation activities under case 2 (Fig. 4b). Gas-fired
power would be the secondary important electricity supply source,
while hydropower and nuclear power would be the supplement
(Figs. 5b–7b). The optimized generation targets of coal-fired power
would reach its upper target level in periods 2 and 3 (as shown in
Table 3). This is because coal-fired power conversion technology
has relatively low operating and penalty costs and comparatively
low capital cost for capacity expansion. Although hydropower
has lower operating cost compared with coal-fired and gas-fired
power, its optimized generation targets would only be stabilized
at 8.42� 103 GW h during the planning horizon; this is due to
the relatively high capital cost for its capacity expansion, which
limits the development of hydropower. Nuclear would enhance
the diversity of power generation, and thus increase the stability
and security of the study system. The excess generation quantities
of every power conversion technology would be different from
those under case 1 as shown in Figs. 4b–7b. In case of insufficient
electricity supply, coal-fired power would be vital important as the
recourse action to compensate the deficits over the planning hori-
zon, while the other power conversion technologies would only be
supplements.
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Fig. 5. Generation plans of gas-fired power under cases 1–3.
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Under case 3, as more strict environmental protection objec-
tives must be achieved than those under cases 1 and 2, the domi-
nant role of coal-fired power would completely be replaced by
other conversion technologies. The optimized generation targets
of coal-fired power would decrease to 29.37, 35.34 and
32.47 � 103 GW h in periods 1–3, respectively (Fig. 4c). For the
gas-fired power, hydropower and wind power, their optimized
generation targets would be the same as those under case 1 (Figs.
5c, 6c and 8b). However, the optimized generation targets of nu-
clear power and solar power would have slight increase as shown
in Figs. 7c and 9b, respectively. The excess generation quantities of
every power conversion technology would also be different from
those under cases 1 and 2. In period 1, the coal-fired power gener-
ation would still be an important recourse action in compensating
the electricity shortage. But from period 2, the gas-fired power and
the hydropower would play an increasingly important role. This is
because an aggressive environmental protection policy would be
adopted over the planning horizon under case 3. Therefore, more
and more environment-friendly power conversion technologies
would be chosen for electricity generation to satisfy the ever
increasing electricity demands and enhancing air-quality
requirements.
4.3. Capacity expansion

Fig. 10 displays the solutions of capacity expansion schemes of
each conversion technology under all possible 39 scenarios in the
whole planning horizon for the three cases. Generally, shortages
would occur if the electricity demand-levels are continuously high,
and a capacity expansion project would be undertaken to avoid
insufficient electricity supply. Under case 1 (as shown in
Fig. 10a), the results demonstrate that only 0.41 GW would be ex-
panded for coal-fired power conversion technology in period 1 de-
spite of the electricity demand scenarios. There would be 0.5 GW
to be expanded in period 1 and 0.6 GW in period 2 for gas-fired
power conversion technology, which would achieve its upper
bounds of capacity expansion in these two periods. When the de-
mand-levels are medium and high in period 3, 0.26 GW would be
expanded for gas-fired power. For hydropower conversion technol-
ogy, the conditions would be completely different under varied
electricity demand scenarios. For example, [0.28,0.29] GW would
be expanded in period 1; in period 2, [0,0.31] GW would be ex-
panded only when the demand-level is high in this period with
joint probabilities being 5%, 10% and 5%. When the demand-levels
are low in period 1 and high in period 2 but are potentially low,
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Fig. 6. Generation plans of hydropower under cases 1–3.
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medium and high in period 3 (joint probabilities are 0.75%, 2.75%,
and 1.5%, respectively), there would be no necessary for expansion.
Nevertheless when the demand-levels are high in period 1 and low
in period 2 but are potentially low, medium and high in period 3
(joint probabilities are 0.75%, 2.75%, and 1.5%, respectively), there
would be 0, [0,0.31] and [0,0.31] GW to be expanded. For nuclear
power conversion technology, capacity expansion project would
only occur in period 1, being [0.21,0.22] GW no matter how the de-
mand scenarios are. For wind power conversion technology,
0.20 GW would be expanded in period 2 and 0.21, 0.30 and
0.30 GW would be expanded in period 3 when the demand-levels
are potentially low, medium and high, respectively. This indicates
that wind power would reach its upper bound of capacity expan-
sion when the demand-levels are high. For solar-power conversion
technology, [0.10,0.16] GW would be expanded only in period 1.

Under case 2 (as shown in Fig. 10b), the results indicate that
more coal-fired power conversion technology would be ex-
panded over the planning horizon, especially when the de-
mand-levels are high. Accordingly, the expansion quantities
would be decreased for the other power conversion technologies.
For gas-fired power conversion technology, the expansion quan-
tity would be 0.5 GW in period 1 and 0 in period 2; in period 3,
the expansion scheme would be fundamentally different under
varied electricity demand-levels. For hydropower conversion
technology, the expansion quantity would be stabilized at
0.28 GW, while the expansion decision would be made only
when the demand-levels are continuously high in the three plan-
ning periods. For nuclear power conversion technology, capacity
expansion project would only be undertaken once in period 1,
being [0.28,0.30], [0.28,0.30] and [0.21,0.30] GW when the
demand-levels are low, medium and high, respectively. Wind-
and solar-power conversion technologies would not be devel-
oped under case 2.

In comparison, under case 3, more imported electricity
would be purchased from other regions as a recourse action
to compensate the electricity shortage than those under cases
1 and 2 as shown in Fig. 10c. Therefore, the expansion scheme
would be changed accordingly. For coal-fired power, 0.38 GW
would be installed only in periods 1. Gas-fired power would
be expanded during the whole planning horizon, being 0.5,
0.6 and 0.26 GW in periods 1, 2 and 3, respectively. For hydro-
power, [0.28,0.30] GW would be expanded in period 1; 0.30 GW
would be expanded in periods 2 and 3 when the demand-lev-
els are high in these periods. For nuclear power conversion
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Fig. 7. Generation plans of nuclear power under cases 1–3.
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technology, capacity expansion project would also only be con-
ducted in period 1, being [0.21,0.30]. For wind power conver-
sion technology, 0.20 GW would be expanded in period 2 and
0.30 GW would be expanded in period 3 despite of the demand
scenarios. For solar power conversion technology,
[0.11,0.17] GW would be expanded in period 1 no matter how
the demand-level is.

4.4. Air pollution emission control

In this study, a project of air-pollution control was considered,
in order to satisfy the ambient air-quality requirement and to re-
duce the penalty towards excess emission. Figs. 11–13 show the
optimized mitigation schemes for SO2; NOx and PM under the
three cases, respectively. Under case 1, the target amounts of trea-
ted SO2 would be [239.77, 292.35], [285.58, 349.30] and [401.41,
492.06] � 103 tonnes in periods 1, 2 and 3 (Fig. 11a), respectively.
For coal-fired power conversion technology, [88.60, 88.77], [88.54,
123.76] and [88.64, 101.61] � 103 tonnes of SO2 would be treated
by LSD, [150.86, 203.26], [195.92, 223.91] and [311.58, 388.65] �
103 tonnes of SO2 would be treated by SAS. For gas-fired power
conversion technology, [0.30,0.42], [1.13,1.63] and [1.20,1.80] �
103 tonnes of SO2 would be treated by SAS. The target amounts
of treated NOx would be [89.45,119.29], [114.34,156.46] and
[153.58,214.10] � 103 tonnes in periods 1–3 (Fig. 12a), respec-
tively. For coal-fired power conversion technology, [67.13, 84.18],
[101.84, 112.60] and [140.08, 190.10] � 103 tonnes of NOx would
be treated by SCR, [19.02,29.71], [0,22.61] and 0 � 103 tonnes of
NOx would be treated by SCNR. For gas-fired power conversion
technology, [3.30,5.40], [12.50,21.25] and [13.50,24.00] � 103 ton-
nes of NOx would be treated by SCR. The target amounts of treated
PM would be [26.28,39.42], [29.85,45.65] and [40.02,62.53] � 103

tonnes in periods 1–3 (Fig. 13a), respectively. For coal-fired power
conversion technology, [24.77,34.44], [27.81,37.96] and
[37.48,55.62] � 103tonnes of PM would be treated by BH,
[1.51,4.99], [2.04,7.69] and [2.55,6.92] � 103 tonnes of PM would
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Fig. 8. Generation plans of wind power under cases 2 and 3.

0 

3 

5 

1 39

Electricity demand scenario

(a) Solar power generation under case 1

Generation target lower excess generation upper excess generation

0 

3 

5 

1 39

Electricity demand scenario

(b) Solar power generation under case 3

Generation target lower excess generation upper excess generation

G
en

er
at

io
n 

qu
an

ti
ty

 (
10

3 
G

W
h)

G
en

er
at

io
n 

qu
an

ti
ty

 (
10

3 
G

W
h)

Fig. 9. Generation plans of solar power under cases 2 and 3.
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be treated by ESP. This implies that, when environmental con-
straints are added, high-efficiency mitigation measures must be in-
stalled to reduce the pollutant emissions and to satisfy the
environmental requirements. Thus, the results would provide use-
ful bases for generating decision alternatives with a desired tech-
nology combination that would lead to a satisfied environmental
quality as well as a minimized abatement cost.

In addition, there would be some excess emissions of SO2; NOx

and PM, due to the excess electricity generation of coal-fired and
gas-fired power conversion technologies. Take excess SO2 emission
for example. There would be [0,20.68], [63.34,180.44] and
[162.90,292.14] � 103 tonnes mitigated by SAS in period 1, when
the electricity demand-levels are low, medium and high (probabil-
ities are 25%, 50% and 25%), respectively. When the demand-levels
are medium in period 1 but are potentially low, medium and high
in period 2 (joint probabilities are 10%, 30%, and 10%, respectively),
there would be [0,1.07], [0.90,111.15] and [117.20,171.87] � 103

tonnes of SO2 mitigated by SAS. When the demand-levels are med-
ium in period 1 and low in period 2 but are potentially low, med-
ium and high in period 3 (joint probabilities are 0.75%, 2.75%, and
1.50%, respectively), there would be [0.81,1.45], [1.20,69.25] and
[1.20,69.25] � 103 tonnes of SO2 mitigated by SAS. For this case,
no excess emission was allotted to WLS or LSD as well. This is
attributable to two facts: (i) the SAS has the highest efficiency
and lowest penalty in treating the excess SO2 emission and (ii)
when the SO2 generation rate is high, a mitigation measure with
a high efficiency must be installed to reduce the excess emission
and to satisfy the ambient air quality standard. As the main source
of SO2 emission, coal-fired power generation would be reduced for
this case, thus the mitigation amount of SO2 would also decrease.

Under case 2, the target amounts of treated SO2, NOx and PM
would be significantly increased along with the ever increasing
electricity demand-levels as shown in Figs. 11b–13b. This is attrib-
uted to the fact that the developed model is run without any exte-
rior constraints (e.g., without air pollution emission control
constraints) under case 2. In order to make comparison with case
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Fig. 11. SO2 mitigation plans under cases 1–3.
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1, excess SO2 control plans would also be taken as an example to
illustrate the excess mitigation schemes. There would be
[0,101.37], [123.09,258.93] and [157.69,298.98] � 103 tonnes of
SO2 mitigated by SAS in period 1, when the electricity demand-lev-
els are low, medium and high (probabilities are 25%, 50% and 25%),
respectively. When the demand-levels are medium in period 1 but
are potentially low, medium and high in period 2 (joint probabili-
ties are 10%, 30%, and 10%, respectively), there would be [0,10.62],
[128.87,223.59] and [209.39,304.68] � 103 tonnes of SO2 miti-
gated by SAS. When the demand-levels are medium in period 1
and low in period 2 but are potentially low, medium and high in
period 3 (joint probabilities are 0.75%, 2.75%, and 1.50%, respec-
tively), there would be [37.20,128.37], [127.01,203.91] and
[221.14,326.46] � 103 tonnes of SO2 mitigated by SAS. No excess
emission would be allotted to WLS or LSD despite of SO2 genera-
tion rate. This is because SAS has the lowest penalty cost in treating
the excess SO2 emission. Similar interpretations can also be made
for the other mitigation techniques.
Under case 3, the target amounts of treated SO2, NOx and PM
would be significantly decreased along with the time periods as
shown in Figs. 11c–13c. This is because an aggressive environmen-
tal protection goal must be achieved under this case. Therefore,
electricity generated from coal-fired and gas-fired power conver-
sion technologies would be reduced accordingly. And thus, mitiga-
tion measures with higher efficiency must be installed to reduce
the pollution emissions and to satisfy the stricter environmental
requirements. In comparison with cases 1 and 2, excess SO2 would
also be mitigated by SAS only but the mitigation amount would
significantly be decreased. There would be [0,2.82],
[62.63,162.78] and [161.87,274.01] � 103 tonnes of SO2 mitigated
by SAS in period 1, when the electricity demand-levels are low,
medium and high (probabilities are 25%, 50% and 25%), respec-
tively. When the demand-levels are medium in period 1 but are
potentially low, medium and high in period 2 (joint probabilities
are 10%, 30%, and 10%, respectively), there would be [0,1.07],
[0.90,56.80] and [21.46,56.80] � 103 tonnes of SO2 mitigated by
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Fig. 12. NOx mitigation plans under cases 1–3.
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SAS. When the demand-levels are low in period 1 and high in per-
iod 2 but are potentially low, medium and high in period 3 (joint
probabilities are 0.75%, 2.75%, and 1.50%, respectively), there
would be [1.20,1.80], [1.20,40.56] and [1.20,40.56] � 103 tonnes
of SO2 mitigated by SAS.

4.5. System cost and satisfaction degree

The IFS-EM is to achieve a maximized satisfaction degree for
system objective and constraints under uncertainty. Under case
1, the expected system cost is $[26.39,44.14] � 109, with the de-
gree of satisfaction k�opt

� �
being [0.024,0.996]. The lower system

cost value represents as an alternative with a lower energy de-
mand-level, whereas the higher one corresponds to an alternative
with a higher energy demand-level. As a result, planning with a
higher system cost would guarantee that the energy requirements
and environmental regulations are met; in comparison, as the plan
aims toward a lower system cost, these requirements may not be
met. The k� level corresponds to the decision makers’ preference
regarding environmental and economic tradeoffs. In detail, k�opt =
0.024 corresponds to a higher system cost (fþopt = $44.14 billion),
representing a maximum degree of satisfaction under demanding
conditions. In comparison, kþopt = 0.996 corresponds to a lower sys-
tem cost (f�opt = $26.39 million), representing a maximum degree of
satisfaction under advantageous conditions. Thus, the solution of
k�opt denotes the degree of satisfying the system objective/con-
straints under uncertainty. Similar analysis can also be conducted
under the other two cases. Under case 2, the expected system cost

is $[18.80,34.96] � 109, with the degree of satisfaction k�opt

� �
being

[0.244,0.989]. The system cost and the upper bound of satisfaction

degree kþopt

� �
is lower than those under case 1, while the lower
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Fig. 13. PM mitigation plans under cases 1–3.
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bound of satisfaction degree k�opt

� �
is higher than that under case 1.

This is due to the removal of environmental protection constraints,
which would change the constraint condition of the model and
thus decrease the cost of energy supply and air pollution emission
control. Under case 3, the expected system cost is $[34.27,54.21] �
109, with the degree of satisfaction k�opt

� �
being [0.004,0.982]. In

comparison, under case 3, the system cost is higher and the satis-
faction degree is lower than those under case 1. This is because the
raised strictness both on the lower and upper boundary and/or the
admissible violation of the uncertain emissions allowances (i.e.
shrunk fuzzy intervals) was conducted. Tightened limitations of
emission allowances (i.e. aggressive environmental management
policies) would then be associated with lower constraint-violation
risks. Decisions with lower constraint-violation risks would be
associated with a higher system cost but an increased system reli-
ability; a desire for lower cost could result in raised risks of violat-
ing the system constraints.

The system cost includes expenses for energy resources supply,
operating costs and capacity expansion costs for power conversion
technologies, and operating costs for air-pollution control tech-
niques. Fig. 14 presents the detailed systems cost under different
cases. The costs for energy resources supply are
$[15.33,27.43] � 109 (or [58.08,62.15]% of the total system cost)
under case 1, $[11.07,24.25] � 109 (or [58.90,69.37]% of the total
system cost) under case 2, and $[23.21,37.31] � 109 (or
[67.73,68.83]% of the total system cost) under case 3. This indicates
that the strict environmental policies would lead to an increased
energy resources supply cost. The operating costs for power con-
version are $[1.95,3.46] � 109 (or [7.38,7.83]% of the total system
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cost) under case 1, $[2.14,3.58] � 109 (or [10.24,11.40]% of the to-
tal system cost) under case 2, and $[1.85,3.37] � 109 (or
[67.73,68.83]% of the total system cost) under case 3. This demon-
strates that the strict environmental policies would lead to reduced
operating costs for power conversion. The expenses for capacity
expansion of power conversion technologies are $[9.02,13.04] �
109 (or [29.55,34.17]% of the total system cost) under case 1,
$[5.45,6.87] � 109 (or [19.64,29.00]% of the total system cost) un-
der case 2, and $[9.13, 13.35] � 109 (or [24.63,26.64]% of the total
system cost) under case 3. This is due to more power conversion
technologies with high price but low pollutant emission rates
would be adopted in cases 2 and 3 compared with those in case
1. The operating costs for air-pollution control techniques are
$[0.09,0.21] � 109 (or [0.37,0.47]% of the total system cost) under
case 1, $[0.13,0.26] � 109 (or [0.71,0.75]% of the total system cost)
under case 2, $[0.08,0.17] � 109 (or [0.24,0.31]% of the total sys-
tem cost) under case 3, this implies that aggressive environmental
management policies would lead to reduced operating costs for
air-pollution control techniques. Therefore, decisions with stricter
environmental constraints would lead to a higher system cost but a
cleaner environment; conversely, a desire for reducing the system
cost would result in increased risk of violating the environmental
criteria.

4.6. Discussion

Solutions of the IFS-EM provide an effective linkage between
the pre-regulated energy and environmental policies and the
associated economic implications (e.g., losses and penalties
caused by improper policies) within a multistage context. The
solutions contain a combination of deterministic, interval and
distributional information, and can thus facilitate the reflection
for different forms of uncertainties. The interval solutions can
help decision makers obtain multiple decision alternatives, as
well as provide bases for further analyses of tradeoffs between
system cost and decision makers’ satisfaction degree; the bin-
ary-variable solutions represent the decisions of facility expan-
sion, where several alternatives are generated; the continuous-
variable solutions are related to decisions of energy supply
schemes and air-pollution control plans. In general, the results
obtained could help support (a) adjustment or justification of
allocation patterns of regional energy resources and services,
(b) formulation of local policies regarding energy consumption,
economic development and energy structure, and (c) analysis
of interactions among economic cost, environmental require-
ment, and energy-supply security.

Besides, techniques of post-optimality analysis (e.g., multicri-
teria decision analysis, analytical hierarchy process technique,
dual programming, and parametric programming) could be used
for further supporting fine adjustments of the modeling results
and thus for enhancing their applicability to practical situations.
Furthermore, intelligent decision support system (IDSS) could be
developed based on an integration of optimization modeling, sce-
nario development, user interaction, policy analysis and visual
display into a general framework. Uncertainties in energy and
environmental systems could be effectively reflected and ad-
dressed through the inexact fuzzy-stochastic programming ap-
proach, improving the robustness of the IDSS for real-world
applications. Thus, it can be used as an efficient tool for analyz-
ing and visualizing impacts of energy and environmental policies,
regional sustainable development strategies, and emission reduc-
tion measures in an interactive, flexible and dynamic context
[57].

The study problem can also be tackled through the multistage
interval-stochastic integer linear programming (MISIP) approach
by simply expressing uncertainties in the model’s left- and
right-hand side into interval values [39,58]. The expected system
costs from MISIP are $[26.32,44.58] � 109 under case 1,
$[18.57,40.25] � 109 under case 2 and $[33.91,54.28] � 109 under
case 3; they have larger width for interval values than that of the
IFS-EM. Compared with IFS-EM, the main limitation of the MISIP
is its over-simplification of the fuzzy membership information
into interval values. This leads to a lack of system satisfaction
information as defined by k� in the obtained solutions. Besides,
the IFS-EM can directly incorporate uncertainties expressed
as discrete intervals, fuzzy sets and random variables within its
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optimization framework, and thus has advantages over the IMSIP
in reflecting the uncertainties and tackling the tradeoffs among
system reliability and objective. Moreover, the IFS-EM improves
upon the conventional two-stage stochastic programming method
[20]. In IFS-EM, since uncertainties are tackled through a multi-
layer scenario tree, such dynamic and uncertain information can
be incorporated within the modeling framework. The IFS-EM
can thus permit revised decisions in each time stage based on
the sequentially realized uncertain events. For the energy system
planning problem, dynamics of electricity demand, deficit, and
capacity expansion could be taken into account, such that re-
course actions (i.e. economic penalties) that hedge against the
multilayer scenario tree can be dynamically undertaken.

However, as far as the modeling approach is concerned, there
is much space to investigate and improve it. Firstly, only one k�

is used for all constraints of the modeling formation, based on
an assumption that the uncertain features of all constraints are
dependent upon each other. Using one k� may make some con-
straints not well satisfied while the others over-satisfied. Sec-
ondly, merely the randomness of electricity demand is
reflected in the developed model. As a long-term optimization
model for EES management, the randomness of other parame-
ters, such as stochastic interest and inflation rates [59], should
be considered in the modeling formulation and thus joint prob-
abilistic programming approach could be adopted to solve this
problem. Thirdly, the developed IFS-EM is just a single-objective
model, where finite constraints (for resources, capacities, and
policies) are considered in the modeling formulation. Although
the resulting solutions can be interpreted to clarify the interac-
tions among system components and the associated trade-offs,
they have limitations in adequately reflecting the multiple and
interactive characteristics of EES. In comparison, multiobjective
programming method [60] is useful for multi-criterion decision
analysis under multiple objectives subjected to a set of con-
straints. Therefore, development of multiobjective IFS-EM is de-
sired for more robustly reflecting the complexities of EES
planning problems.
5. Conclusions

An inexact fuzzy-stochastic energy model (IFS-EM) is developed
for supporting effective regional-scale EES planning under uncer-
tainty. The proposed IFS-EM can tackle uncertainties presented in
terms of interval values, fuzzy sets and probability distributions
within a multi-facility, multi-period, multi-demand-level, and
multi-option context. It can be used for analyzing various policy
scenarios associated with different levels of economic penalties
when the promised policy targets are violated, through incorporat-
ing pre-regulated energy and environmental policies directly into
its optimization process. Moreover, it can obtain optimal decisions
of electricity-generation plans, air pollution mitigation schemes
and capacity expansion projects within a multistage context. It
can also help quantify the satisfaction degree of the system objec-
tive and constraints under uncertainty, as defined by k�opt in the ob-
tained solutions.

The developed IFS-EM has been applied to a case of regional-
scale energy and environmental system planning, where differ-
ent cases are considered based on varied energy and environ-
mental management policies. The solutions contain a
combination of deterministic, interval and distributional infor-
mation, and can thus facilitate the reflection for different forms
of uncertainties. The binary-variable solutions represent the
decisions of facility expansion, where several alternatives are
generated; the continuous-variable solutions are related to deci-
sions of energy supply schemes and pollution control plans. Be-
sides, it can also promote in-depth analysis of tradeoffs between
system cost and decision maker’s satisfaction degree. The results
also indicate that the study system would attain a relatively low
cost if no environmental constraints are added over the whole
planning horizon. However, a comparatively high system cost
would be achieved if gross control of air-pollutants emissions
is considered. In summary, the results obtained are valuable
for supporting (a) adjustment or justification of allocation pat-
terns of regional energy resources and services, (b) formulation
of local policies regarding energy consumption, economic devel-
opment and environmental protection, and (c) analysis of inter-
actions among energy-supply security, economic cost and
environmental requirement as well as tradeoffs between system
cost and decision maker’s satisfaction degree.

Since electricity is considered as the most important energy in
our daily life, it is desired to tackle the EES management problem
from a comprehensive view, including not only the electricity gen-
eration sector but also the non-electricity ones. Moreover, besides
the advanced air pollution mitigation techniques to be adopted,
emissions trading may also be an advisable alternative to control
air-pollutant emissions. Emission trading (also known as cap and
trade) is an administrative approach used to control pollution by
providing economic incentives for achieving reductions in the
emissions of pollutants (source: http://en.wikipedia.org/wiki/
Emissions_trading). For example, for SO2 emission trading, the
most cost-effective way to use available resources to comply with
the criterion of allowable levels of SO2 emissions could be identi-
fied, through the market-based allowance trading system, utilities
(i.e. power plants in EES) regulated under the program, rather than
a governing agency, Utilities can reduce SO2 emissions through
various ways, including employing energy conservation measures,
increasing reliance on renewable energy, reducing usage, employ-
ing SO2 emissions control technologies, switching to lower sulfur
fuel, or developing other alternate strategies. Utilities that reduce
their emissions below the number of allowances that they hold
may trade allowances with other utilities in their system, sell
them to other utilities on the open market, or bank them to cover
emissions in future years (source: http://www.epa.gov/airmarkets/
trading/factsheet.html). Therefore, through trading scheme, each
utility is no longer constrained by its own emission permit but
theoretically by the aggregate number of SO2 emission limit from
their system, which can minimize the system cost at a certain le-
vel of SO2 emission permit. Allowance trading provides incentives
for energy conservation and technology innovation that can both
lower the cost of compliance and yield pollution prevention
benefits.
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Appendix A. Solution method

A two-step method is proposed for solving the IFMP model. The
submodel for kþ corresponding to f� can be formulated in the first
step when the system objective is to be minimized; the other sub-
model (corresponding to fþÞ can then be formulated based on the
solution of the first submodel. Thus, the first submodel is formu-
lated (assume that B� > 0 and f� > 0Þ as follows [39]:

http://en.wikipedia.org/wiki/Emissions_trading
http://en.wikipedia.org/wiki/Emissions_trading
http://www.epa.gov/airmarkets/trading/factsheet.html
http://www.epa.gov/airmarkets/trading/factsheet.html
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where x�jt (j ¼ 1;2; . . . ; j1Þ are the first-stage decision variables with
positive coefficients in the objective function, and x�jt
ðj ¼ j1 þ 1; j1 þ 2; . . . ;n1Þ with negative coefficients; y�jtk
(j ¼ 1;2; . . . ; j2 and k ¼ 1;2; . . . ;KtÞ are the second-stage decision
variables with positive coefficients in the objective function, and
y�jtk ðj ¼ j2 þ 1; j2 þ 2; . . . ; n2 and k ¼ 1;2; . . . ;KtÞ with negative coef-
ficients. Solutions of x�jtopt ðj ¼ 1;2; . . . ; j1Þ; xþjtopt (j ¼ j1 þ 1; j1 þ 2; . . . ;

n1Þ; y�jtkopt (j ¼ 1; 2; . . . ; j2 and k ¼ 1;2; . . . ;KtÞ, yþjtkopt (j ¼ j2 þ 1; j2þ
2; . . . ;n2 and k ¼ 1;2; . . . ;KtÞ and kþopt can be obtained from submod-
el (9). Based on the above solutions, the second submodel for k�

(corresponding to fþÞ can be formulated as follows [35]:
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Solutions of xþjtopt ðj ¼ 1;2; . . . ; j1Þ; x�jtopt ðj ¼ j1 þ 1; j1 þ 2; . . . ;n1Þ;
yþjtkopt ðj ¼ 1;2; . . . ; j2 and k ¼ 1;2; . . . ;KtÞ; y�jtkopt ðj ¼ j2 þ 1; j2þ
2; . . . ;n2 and k ¼ 1;2; . . . ;KtÞ and k�opt can be obtained through solv-
ing submodel (10). Therefore, combining solutions of submodels
(9) and (10), solution for the IFMP model can be obtained as
follows:

x�jtopt ¼ x�jtopt; xþjtopt

h i
; 8j; t

y�jtkopt ¼ y�jtkopt; yþjtkopt

h i
; 8j; t; k ¼ 1;2; . . . ;Kt

k�opt ¼ k�opt; kþopt

h i
f�opt ¼ f�opt; fþopt

h i
Appendix B. Nomenclatures for parameters and variables

f� expected system cost for EES management over the

planning horizon ($109)
i
 type of power conversion technology, i ¼ 1;2; . . . ; I; i ¼ 1
for coal-fired power conversion technology, i ¼ 2 for
natural gas-fired power conversion technology, i ¼ 3 for
hydropower, i ¼ 4 for wind power; i ¼ 5 for solar power,
i ¼ 6 for nuclear power
js
 type of SO2 control measure, js ¼ 1;2; . . . ;ns; js ¼ 1 for
soda ash scrubber (SAS); js ¼ 2 for wet limestone scrubber
(WLS); js ¼ 3 for lime spray dryer (LSD)
jn
 type of NOx control measure, jn ¼ 1;2; . . . ;nn; jn ¼ 1 for
selective catalytic reduction (SCR); jn ¼ 2 for selective
non-catalytic reduction (SNCR)
jp
 type of particulate matter (PM) control measure,
jp ¼ 1;2; . . . ; np; jp ¼ 1 for fabric filiter/baghouse (BH);
jp ¼ 2 for electrostatic precipitator (ESP); jp ¼ 3 for wet
collector (WC)
t
 time period, t ¼ 1;2; . . . ; T

h
 electricity demand-level, h ¼ 1;2; . . . ;Ht
Parameters:

� 3

PECt
cost for coal supply in period t ($10 /TJ)
PEN�t
 cost for natural gas supply in period t ($103/TJ)
PIE�t
 cost for imported electricity supply in period t ($103/
GW h)
UPH�t
 upper bound of the availability of hydropower in period t
(103 TJ)
UPW�
t

upper bound of the availability of wind power in period t
(103 TJ)
UPS�t
 upper bound of the availability of solar power in period t
(103 TJ)
UPU�t
 upper bound of the availability of nuclear power in period
t (103 TJ)
PV�it
 operating cost of power conversion technology i for pre-
regulated electricity generation in period t ($103/GW h);
PP�it
 penalty cost of power conversion technology i for excess
electricity generation in period t ($103/GW h);
CS�jst

operating cost of control measure js for pre-regulated SO2

emissions during period t ($/tonne)

CN�jnt
operating cost of control measure jn for pre-regulated NOx

emissions during period t ($/tonne)

CP�jpt
operating cost of control measure jp for pre-regulated PM
emissions during period t ($/tonne)
DS�jst

operating and penalty cost of control measure js for excess
SO2 emissions during period t ($/tonne)
DN�jnt

operating and penalty cost of control measure jn for excess
NOx emissions during period t ($/tonne)
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DP�jpt

operating and penalty cost of control measure jp for excess
PM emissions during period t ($/tonne)
STit
 average service time of power conversion technology i in
period t (h)
Vt
 peak load demand in period t (GW)

pth
 probability of demand-level h occurrence in period t (%)
d�th
 random variable of total electricity demand during period
t (GW h)
A�it
 fixed-charge cost for capacity expansion of power
conversion technology i in period t ($106)
B�it
 variable cost for capacity expansion of power conversion
technology i in period t ($106/GW)
RCi
 residual capacity of conversion technology i (GW)

FE�it
 units of energy carrier per units of electricity production

for power conversion technology i in period t (TJ/GW h)

Mit
 variable upper bounds for capacity expansion of power

conversion technology i in period t (GW)

Nit
 variable lower bounds for capacity expansion of power

conversion technology i in period t, and Nit P 0 (GW)

INS�it
 units of SO2 emission per unit of electricity production for

power conversion technology i in period t (tonne/GW h)

INN�it
 units of NOx emission per unit of electricity production for

power conversion technology i in period t (tonne/GW h)

INP�it
 units of PM emission per unit of electricity production for

power conversion technology i in period t (tonne/GW h)

g�js
average efficiency of SO2 control measure js (%)
g�jn

average efficiency of NOx control measure jn (%)
g�jp

average efficiency of PM control measure jp (%)
ES�t
 SO2 emission allowance in period t (tonne)
EN�t
 NOx emission allowance in period t (tonne)
EP�t
 PM emission allowance in period t (tonne)

Decision variables:

�
Z1t

coal supply in period t (TJ)
Z2�t
 natural gas supply in period t (TJ)
Z3�th
 imported electricity supply when electricity demand-level
is h in period t (103 GW h)
W�
it
pre-regulated electricity generation target of power
conversion technology i which is promised to end-users
during period t (103 GW h)
Q�ith
 excess electricity generation of power conversion
technology i by which electricity generation target (WktÞ is
exceeded when electricity demand-level is h in period t
(103 GW h)
X�ith
 continuous variables about the amount of capacity
expansion of power conversion technology i when
electricity demand-level is h in period t (GW)
Y�ith
 binary variables for identifying whether or not a capacity
expansion action of power conversion technology i needs
to be undertaken when electricity demand-level is h in
period t
XS�ijst

pre-regulated amount of SO2 generated from power
conversion technology i to be mitigated by control
measure js in period t (tonne)
YS�ijsth

excess amount of SO2 generated from power conversion
technology i to be mitigated by control measure js when
electricity demand-level is h in period t (tonne)
XN�ijnt

pre-regulated amount of NOx generated from power
conversion technology i to be mitigated by control
measure jn in period t (tonne)
YN�ijnth

excess amount of NOx generated from power conversion
technology i to be mitigated by control measure jn when
electricity demand-level is h in period t (tonne)
XP�ijpt

pre-regulated amount of PM generated from power
conversion technology i to be mitigated by control
measure jp in period t (tonne)
YP�ijpth

excess amount of PM generated from power conversion
technology i to be mitigated by control measure jp when
electricity demand-level is h in period t (tonne)
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