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Abstract 
In this paper we try to develop a theoretical framework for fund rating under the 
assumption that superior funds could have a higher expected return than that of inferior 
funds, which could arise from the segmented market information or the differentiated 
ability of mangers to acquire and analyze the information. Under this setting, the funds 
are rated based on the cross-sectional distribution of all the funds instead of the preset-
percentiles as Morningstar. We use the finite normal mixture for rating fund performance 
with the number of performance groups determined by likelihood ratio test using 
parametric bootstrap procedures, and we estimate the model with EM algorithm by 
treating the group information of funds as missing information. 
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A New Direction of Fund Rating  

Based on the Finite Normal Mixture Model 
 

 
 
1. Introduction 
Numerous literatures have been devoted to fund performance study, such as Jensen 
(1968), Cai, Chan and Yamada (1997), Christopherson, Ferson and Glassman (1998, 
Grinblatt and Titman (1989), Ippolito (1989) among others.  However, there is little study 
on fund rating till now. There are possibly two reasons. One is that the number of funds is 
too small before 1990 to have a meaningful rating. Even though the fund history is long 
enough for fund performance study, where people usually use three-year time series data 
such as Carhart (1997), Connor and Korajczyk (1991), and Elton, Gruber and Blake 
(1996), the number of funds at each point of time is small to do a cross-sectional fund 
rating study from the perspective of its distribution. Second, there is a lack of statistical 
methodology to specify and estimate the density model. However, since the introduction 
of the Expectation and Maximization (EM) algorithm into the maximum likelihood 
estimation with missing data by Dempster, Laird and Rubin (1977), the finite mixture 
model becomes popular, e.g. in medical and biological study, in 1980s and 1990s. 
Furthermore, the parametric bootstrap procedure by McLachlan and Basford (1988) 
overcomes the model specification difficulty to some extent.  
 
With the proliferation of funds in 1990s and well-developed statistical methodology over 
the last decade, we intend to propose a new direction of fund rating that is based on the 
finite normal mixture distribution model. This model is more flexible and provides more 
sensible rating results than current fund rating method by Morningstar, which is 
commercial fund rating method based on the fixed number of performance groups and 
preset percentiles. 
   
There are several questions regarding Morningstar’s method. First, it is not appropriate to 
fix the number of performance groups before we investigate the distributions of alphas. It 
is very possible that we only have one performance group if we find later that the 
difference of alphas may be just a random effect, caused by the “Luck” of managers. 
Second, the number of funds in each group shouldn’t be fixed before rating. We provide 
a simple example to illustrate its limitations. Suppose we have 100 funds. 50 funds have 
alphas around 10% and another 50 funds have alphas around 5%. In this situation, it is 
obviously not appropriate to say we have five fund performance groups and the top 15 
funds are rated as superior funds as implied by Morningstar’s method. Instead, it is better 
to say we only have 2 performance groups and the top 50 funds are superior fund group 
based on the actual distribution of alphas. 
 
Under the rationale of the example, we propose a method, which is based on the cross-
sectional distribution of all of the funds’ performances, measured by alphas (Alpha is the 
measure of fund performance during a period). The method uses a finite normal mixture 
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model to describe the distribution of funds performances. Doing so, this method partly 
overcomes the shortcomings of Morningstar’s method. First, the number of performance 
groups is not fixed, but determined by the spectrum of the alphas of all the funds. For 
example, if the alphas closely cluster around only one value, we may conclude there is 
only one performance group from estimation; if alphas cluster around three values, then 
we may conclude there are three performance groups. We exploit the parametric 
bootstrap procedure to determine the number of groups at that point of time. Second, we 
can obtain the posterior probability of individual funds after we have specified and 
estimated the model, so we know the performance group that the fund belongs to by 
comparing posterior probabilities. Third, after knowing the group of each fund, it is 
straightforward to know the number of funds in each group. Therefore, the number of 
performance groups, the number of funds in each performance group, and the 
performance group that the fund belongs to, are determined by the cross-sectional 
distribution of alphas, which are not fixed before rating like Morningstar’s method. 
 
This paper is arranged this way. In section 2, we present the motivation and justification 
of the finite normal mixture model. In section 3, we formulate the fund rating issue under 
the framework of the finite normal mixture model. In section 4, we treat the group 
information of the fund as missing data, so we can estimate the model under EM 
framework which is more straightforward and intuitive. In section 5, we show how to 
determine the number of performance groups by parametric bootstrap procedures. Finally 
we summarize our fund rating procedures. 
 
 
2. Motivation of Finite Normal Mixture Model 
Utilization of the finite normal mixture model is motivated due to the multimodal shape 
of the distribution of alphas and formal normality tests. The multimodal shape is a strong 
indication of finite mixture distribution model. In addition, the results from normality 
tests contradict what we generally believe on the distribution of alphas. The alpha is the 
management effect, always interpreted as the manager’s ability to deliver abnormal return 
over passive portfolios. It is affected by many factors, like stock selection, the 
idiosyncratic news shocks to stocks, asset allocation and rotation, and irregular 
liquidation caused by redemption from investors, so based on the Linderberg-Levy 
central limit theorem (CLT) it is generally assumed that the fund performance follows a 
normal distribution. And the statistical inference of alphas in all the traditional measures 
relies on the assumption that the alpha is normally distributed.  
 
However, if fund managers’ decisions are based on different information sets, we have a 
group structure in the distribution. Therefore, we can not assume the distribution of 
alphas as a univariate normal distribution, because the expected performance and 
investment risk will be different for managers who have different information sources. 
The more information the managers have, the better investment decision they will make. 
The managers who can make better decisions are expected to deliver higher performance. 
In this case, the distribution of alphas of all the fund mangers, which are from different 
information sets, will be a finite normal mixture distribution, i.e. an addition of several 
normal distributions. This model is a convenient way to model the group structure of the 
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distribution, as shown by McLachlan and Basford (1988), and it is now widely applied in 
medicine study, for example, Tao, et al. (2004). In the model each component is a normal 
distribution which is derived from the corresponding information set.  The number of 
components in the finite normal mixture model is actually interpreted as the number of 
information sets in the fund market. For example, if managers have private information 
about firms, they are from superior information set which has higher expected 
performance, so are expected to deliver higher alphas compared to mangers that don’t 
have the private information.  
 
There are several sources that may result in different information sets of fund managers. 
First, there is managers’ ability at acquiring private information. The managers who have 
private information from insiders are in the private information set, while other managers 
are in the public information set. The managers from the private information set are 
expected to have higher performance. Second, there is managers’ information collection 
ability. There is huge amount of information today. Colleting all the information is both 
time-consuming and expensive. The mangers that can efficiently collect the relevant 
information are expected to deliver higher abnormal returns (alphas), since they possess 
more useful information for investment decision than other managers. Third, there is 
managers’ ability to analyze the information on hand.  Only well analyzed and interpreted 
information can produce higher abnormal returns. Those who correctly analyze the 
information are actually in a superior information set. Therefore, depending on the 
information they have and the ability to collect and analyze the information, we may have 
several information sets, for example, badly-analyzed public information set, well-
analyzed public information set, and private information set. The differentiated ability to 
acquire private information and analyze public information may lead to more information 
sets in an inefficient market, where information is not well transmitted and absorbed.  
 
Based on the information set the managers are from, the expected performance and the 
investment risk in that information set will be different. Assuming that alphas from the 
same information set follow a normal distribution, alphas of all the managers will thus 
form a finite normal mixture distribution. This is the possible reason that we observe 
multimodal shape and non-normal characteristics of the distribution of all the alphas 
when the alpha is theoretically expected to be normally distributed.   
 
In our model, we still assume that the alphas are normally distributed but arise from 
different normal distributions that are corresponding to different information sets. Under 
this assumption we may observe both a multimodal shape and fat tail in the distribution 
of alphas. As long as we can identify the number of information sets in the distribution, 
we know the number of performance groups. That is the way that we determine the 
number of performance groups.  
 
There are some advantages of the funds rating method that we propose. First, the number 
of performance groups is not arbitrarily fixed. It is estimated from the empirical cross-
sectional distribution of alphas. The number of performance groups is interpreted as the 
number of information sets in the fund market. Second, the performance group of the 
fund is determined by the posterior probability of the fund in the estimated distribution. 
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So it is not fixed by the preset cut-off percentiles. Third, the number of funds in each 
performance group is not fixed, which may change from period to period, depending on 
the distribution of all the alphas in the study. 
 
 
3. Parametric Formulation of Finite Normal Mixture Distribution Model 
We assume that the non-normal features are caused by the group-structure of the data. In 
our fund performance study, we suspect that there are more than one performance group 
arising from the distinct information sets. In section 2 we have justified that when market 
information is segmented or exploited at different levels, there are possibly more than one 
performance group. Thus there exists a group structure in the distribution of alphas. 
When there is a group structure in the data, finite normal mixture model is a natural way 
to model the unknown distribution. In this model, it is expected that the more information 
that the manager has, the higher the alpha. 
 
In this section, we will formulate the finite mixture distribution model based on 
McLachlan and Basford (1988). Let 1,..., nY Y  denote a random sample of size n. 

1( ,..., )T
nY Y Y= is a column vector representing the entire random sample. jY  is the 

random variable corresponding to the alpha of fund j. And its probability density function 
is ( )jf y (j=1,…,n). A realization of the random sample is denoted by 1( ,..., )T

ny y y= . jy  
is the alpha of fund j that we observed, which is estimated by the RBSA measure. 
 
In finite mixture model, the density function ( )jf y  is a summation of finite component 
densities, ( )i jf y . It is written in the form, 

1
( ) ( )

g

j i i j
i

f y f yπ
=

=∑          (1) 

where iπ ( 1,...,i g= ) is the mixing proportion or can be called component weight. They 
are nonnegative and sum to one, i.e. 

 

1

0 1, ( 1,..., )

1.

i
g

i
i

i gπ

π
=

≤ ≤ =

=∑
 (2) 

 
Here g is the number of components, and ( )i jf y  is the component density. ( )jf y  is a g-
component mixture density, and the corresponding distribution function is denoted by 

( )iF y . 
 
There is also a component label variable jZ , which is a vector with g elements. The ith  
element of jZ  is ( 1,..., ; 1,..., )ijZ i g j n= = , which is an indicator variable being one or 
zero. In our fund performance study, we assume that there are g performance groups. If 
the fund j is from performance group i, then ijZ is one, otherwise ijZ is zero. In the model, 

iπ  is interpreted as the proportion of funds that belong to performance group i 
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( 1,...,i g= ).  It is straightforward that iπ  is also the probability that fund j is generated 
from performance group i if we don’t know the group information. Therefore,  jZ  
follows a multinomial distribution, 
 

1 2
1 2{ } ...j j gjz z z

j j gpr Z z π π π= =           (3) 
 
where zj is a realization of Zj. We look at ( )jf y  and ( )i jf y  again with the component 
label variable jZ . Given the group information that fund j is from group i, so 1ijZ = , 

( )i jf y  can be viewed as the conditional probability density of jY .  And ( )jf y  can be 
viewed as the unconditional density without  group information. 
 
The finite mixture model in (1) can be viewed as a semi-parametric model between the 
fully parametric model as represented by a single parametric family (g=1) and a 
nonparametric kernel model (g=n). But the single parametric model is usually inadequate 
to describe the actual distribution. In the finite mixture model, ( )i jf y  is from a 
parametric family and specified by ( ; )i j if y θ , where iθ  is a set of unknown parameters in 
the component density. The finite mixture model thus can be written as, 

    
1

( ; ) ( ; )
g

j i i j i
i

f y f yπ θ
=

Ψ =∑          (4) 

 
where 1 1( ,..., , )T T

gπ π ξ−Ψ = contains all the unknown parameters in the model, and ξ  is a 
vector containing all the parameters in component densities, from  1θ  to gθ . Since the 
summation of iπ ( 1,...,i g= ) is one, we only need to estimate g-1 mixing proportions. We 
arbitrarily leave out the gth mixing proportion, gπ . The parameter space of Ψ is denoted 
by Ω , the parameter space of iθ is denoted by Θ . 
 
In our study we assume that there are g information sets in the market, arising from the 
differentiated ability of acquiring and analyzing both public and private information. The 
different information sets lead to heterogeneous performance groups. We further assume 
that the alphas of each group follow a normal distribution, denoted as 2( , )i iN μ σ . The 
finite mixture model views the alphas of funds as having been generated from one of the  
g performance groups with mean and variance as,  
 

2, ( ) , ( 1,... ; 1,... )j i ij ij iVar i g j nα μ ε ε σ= + = = =  
 
where jα ( 1,..., )j n=  is the performance of fund j. iμ ( 1,...,i g= ) is interpreted as the 

expected performance in this performance group. 2
iσ ( 1,...,i g= ) is interpreted as the 

investment risk of a fund in performance group i. The higher the 2
iσ , the higher the risk to 
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invest in this kind of funds. ijε ( 1,..., ; 1,..., )i g j n= =  follows a normal distribution with 

mean zero and variance 2
iσ . 

 
With the above assumption, the finite mixture model can be written as, 
 

1
( ; ) ( ; )

g

j i i j i
i

f y f yπ θ
=

Ψ =∑  

where 
1

2 2 2 22 1( ; ) ( ; , ) (2 ) exp{ ( ) / }
2i j i j i i i j i if y y yθ φ μ σ πσ μ σ

−
= = − −  .      (5) 

 
The vector Ψ is 2 2

1 1 1 1( ,..., , ,... , ,... )T
g g gπ π μ μ σ σ− , ( 1,..., ; 1,..., )i g j n= = , containing 3g-1 

parameters. 
 
 
4. EM Algorithm for Finite Normal Mixture Model 
To obtain parameter estimates in the finite normal mixture model, Redner and Walker 
(1984) recommended the application of the expectation-maximization (EM) algorithm, 
synthesized in the celebrated paper by Dempster et al (1977). As pointed out by 
Woodward and Sain, (2003), the EM algorithm is an effective tool to deal with various 
missing data problems. In the fund performance study, there exists missing information, 
i.e. the component label vector Zi, so we can formulate the maximum likelihood 
estimation problem under EM framework. 
 
To estimate the maximum likelihood estimator (MLE) of Ψ with observed data, the 
likelihood function is written as, 
 

2

11

( ) ( ; , )
gn

i i j i i
ij

L yπ φ μ σ
==

Ψ = ∑∏         (6) 

and its log likelihood is given by, 
 

2

1 1
( ) log{ ( ; , )}

gn

i i j i i
j i

logL yπ φ μ σ
= =

Ψ =∑ ∑          (7) 

 
To find MLE, we take first-order derivatives of the log likelihood function, 
 

( ) 0logL∂ Ψ
=

∂Ψ
          (8)  

 
Since it is in a summation form of the component density function, it poses a 
computational difficulty. However, it is straightforward to find MLE, under EM 
framework. 
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We introduce the component label vector 1,..., nz z to the observed data. Formulating the 
finite normal mixture model under the EM framework, the observed data vector 

1( ,..., )ny y y=  is viewed as incomplete data because the component label vectors, 
1( ,..., )nz z z= , are not available. In our study, each jy of fund j is regarded as being from 

one of the performance groups, corresponding to one of components in the finite normal 
mixture model. jz  is a g dimensional indicator vector for fund j. 1ijz =  means that the 
fund j is from performance group i. Zero means that the fund is not from this group. 
Therefore the complete data vector is   
 

( , )cy y z=                (9) 

 
where the component vector 1( ,..., )nz z z=  is the realization of the random 
vector 1,..., nZ Z . As reported in (3) the vector jZ follows a multinomial distribution.  
 
Therefore, viewing the component label vector as part of completer data, we can rewrite 
the likelihood function as, 
 

2

1 1

( ) { ( ; , )} ij
gn

z
c i i j i i

j i

L yπ φ μ σ
= =

Ψ =∏∏ .      (10) 

 
The log likelihood is written as, 
 

2

1 1
( ) {log log{ ( ; , )}}

gn

c ij i i j i i
j i

logL z yπ φ μ σ
= =

Ψ = +∑∑       (11) 

 
where ijz  is linear in the log likelihood function. Now it is much easier to calculate it 
iteratively in (11). ijz  is treated as missing data when we apply the EM algorithm to the 
problem. There are two steps: E for expectation step, and M for maximization step. We 
use E step to deal with the additional missing data ijz . Given the observed data y, we take 

conditional expectation of the complete data log likelihood ( )clogL Ψ  using ( )kΨ , which is 
MLE of Ψ in the kth iteration. (0)Ψ  is the initial value that we specified in the initial step.  
 
On the first iteration we need to calculate the expectation of complete data log likelihood 
given y and (0)Ψ . It is expressed as, 
 

(0)
(0)( ; ) {log ( ) }cQ E L y

Ψ
Ψ Ψ = Ψ .       (12) 

 
The subscript under the expectation operator E means that the expectation is also 
depending on (0)Ψ , which changes over time in iterations. After kth iteration, it is written 
as, 



 9

 
( )

( )( ; ) {log ( ) }k
k

cQ E L y
Ψ

Ψ Ψ = Ψ        (13) 
 
To calculate the conditional expectation of the complete data log likelihood, we only 
need to calculate the conditional expectation of ijZ  given the observed data y, because 

ijZ is linear in the log like likelihood function (13). Here, ijZ is the random variable 
corresponding to the realized value ijz . 
 

( ) ( )
( )( ) { 1 } ( ; )k k
k

ij ij i jE Z y pr Z y yτ
Ψ Ψ

= = = Ψ       (14) 
 
where ( )( ; )k

i jyτ Ψ  is the posterior probability that fund j belongs to group i given 
observed data y. Because the expected probability of 1ijZ =  is just iπ , according to the 

Bayesian theorem, it is straightforward to find ( )( ; )k
i jyτ Ψ , which is given by 

 
( )

( ) ( )

( ) ( ) ( ) 2 ( )

( ) ( ) 2 ( ) ( ) 2

1

( ; ) ( ; , ) / ( ; )

( ; , ) / ( ; , ).

k

k k

k k k k
i j i i j i i j

g
k k k k

i i j i i c c j c c
c

y y f y

y y

τ π φ μ σ

π φ μ σ π φ μ σ
=

Ψ = Ψ

= ∑
         (15) 

Since
1

2 2 2 22 1( ; , ) (2 ) exp{ ( ) / }
2j i i i j i iy yφ μ σ πσ μ σ

−
= − − , after substituting it into the 

posterior probability in (15), we obtain, 
 

( ) ( )

( ) ( )

( ) 1 ( ) 2 2
( )

( ) 1 ( ) 2 2

1

exp{( ) / }
( ; ) , ( 0,1,....; 1,..., ; 1,..., ).

exp{( ) / }

k k

i

k k

c

k k
i i j ik

i j g
k k

c c j c
c

y
y k i g j n

y

π σ μ σ
τ

π σ μ σ

−

−

=

−
Ψ = = = =

−∑   (16) 

Therefore, the conditional expectation of complete data log likelihood is given by 
( ) ( ) 2

1 1
( ; ) ( ; ){log log{ ( ; , )}}

gn
k k

i j i i j i i
j i

Q y yτ π φ μ σ
= =

Ψ Ψ = Ψ +∑∑  .      (17) 

 
With the observed data y and parameters, which are estimated from kth maximization 

( )kΨ , we take conditional expectation of complete data log likelihood. This is E step. 
Then in the M step, we maximize ( )( ; )kQ Ψ Ψ  with respect to Ψ  over the parameter 
space Ω  to get the updated ( 1)k+Ψ . The calculation of updated mixing proportions, ( 1)k

iπ
+ , 

of iπ are independent of the calculation of updated parameter , ( 1)kξ + , of ξ , containing 
the parameters in component densities. If the missing information, ijz  is known, the 
complete data MLE of iπ  is simply, 
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1

ˆ / , ( 1,..., )
n

i ij
j

z n i gπ
=

= =∑ .        (18) 

 
Since ijz  is not known, we use, ( )( ; )k

i jyτ Ψ  to replace ijz  in the above estimation, which 
is the conditional expectation of ijz  in complete data log likelihood. The updated mixing 
proportion is, 
 

   ( 1) ( )

1
( ; ) / , ( 1,..., )

n
k k

i i j
j

y n i gπ τ+

=

= Ψ =∑ .     (19) 

When updating mixing proportions iπ on the (k+1)th iteration, we sum up all the posterior 
probabilities that the fund belongs to performance group i. Each yj contributes to the 
update. 
 
Regarding the update of ξ on the M step in (k+1)th iteration, we take the first order 
derivative of the conditional expectation log likelihood with respect to parameters, and 
then solve the equations to find out MLE of ( 1)kξ +  in the (k+1)th iteration: 

( )( ; ) 0
kQ

ξ
∂ Ψ Ψ

=
∂

,        (20) 

gives, 
 

2( )
( )

1 1

log{ ( ; , )}( ; ) ( ; ) 0
k gn

i j i ik
i j

j i

yQ y
φ μ σ

τ
ξ ξ= =

∂∂ Ψ Ψ
= Ψ =

∂ ∂∑∑ .
    (21)

 

 
ξ contains the parameters 2( , ), ( 1,..., )i i i gμ σ = . 
 

Since 
1

2 2 2 22 1( ; , ) (2 ) exp{ ( ) / }
2j i i i j i iy yφ μ σ πσ μ σ

−
= − − , we have, 

( )
( )

1

( ; ) ( ; )( ) 0, ( 1,..., )
k n

k
i j j i

ji

Q y y i gτ μ
μ =

∂ Ψ Ψ
= Ψ − = =

∂ ∑ ,
    (22)

 

2( )
( )

2 2 4
1

( )( ; ) 1( ; )( ) 0, ( 1,..., )
k n

j ik
i j

ji i i

yQ y i g
μ

τ
σ σ σ=

−∂ Ψ Ψ
= Ψ − = =

∂ ∑ . 

 
Then, MLE of 2( , )i iμ σ , ( 1,..., )i g=  are obtained as, 
 

( )

1

( )

1

( ; )
,

( ; )

n
k

i j j
j

i n
k

i j
j

y y

y

τ
μ

τ

=

=

Ψ
=

Ψ

∑

∑
( 1,..., )i g= ,

      (23)
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( ) 2

12

( )

1

( ; )( )
,

( ; )

n
k

i j j i
j

i n
k

i j
j

y y

y

τ μ
σ

τ

=

=

Ψ −
=

Ψ

∑

∑
( 1,..., )i g= . 

 

Since we know that ( 1) ( )

1
( ; ) / ,

n
k k

i i j
j

y nπ τ+

=

= Ψ∑ ( 1,..., )i g= in (19), we can simplify the 

above two equations as, 
 

( )

1( 1)
( 1)

( ; )
,

n
k

i j j
jk

i k
i

y y

n

τ
μ

π
=+

+

Ψ
=
∑

( 1,..., )i g= ,
    (24)

 

( 1)

( ) 2

12
( 1)

( ; )( )
,

k

n
k

i j j i
j

i k
i

y y

n

τ μ
σ

π
+ =

+

Ψ −
=
∑

( 1,..., )i g= . 

Note that k+1 denotes the updated parameters for the k+1th iteration. We repeat the E step 
and M step alternatively until the estimates of parameters in Ω  converge. A desirable 
feature of the EM algorithm is that the solutions are in closed form for the finite normal 
mixture model. 
 
Procedural steps of EM algorithm are summarized below: 

1. Choose initial values of 
(0)(0) (0) 2( , , ), ( 1,..., )i i i i gπ μ σ = , given the g-component  finite 

normal mixture model. 
2. Estimate posterior probability that fund j ( 1,..., )j n= belongs to performance group i 

( 1,..., )i g= given the observed data y and ( )kΨ that are estimated parameters in kth 
iteration. 

( ) ( )

( ) ( )

( ) 1 ( ) 2 2
( )

( ) 1 ( ) 2 2

1

exp{( ) / }
( ; ) ,

exp{( ) / }

( 0,1,....; 1,..., ; 1,..., ).

k k

i

k k

c

k k
i i j ik

i j g
k k

c c j c
c

y
y

y

k i g j n

π σ μ σ
τ

π σ μ σ

−

−

=

−
Ψ =

−

= = =

∑  

3.  Update ( ) ( ) ( )( , , ), ( 1,..., )k k k
i i i i gπ μ σ =  by the following equations in sequence, 

( 1) ( )

1
( ; ) / , ( 1,..., )

n
k k

i i j
j

y n i gπ τ+

=

= Ψ =∑ , 

( )

1( 1)
( 1)

( ; )
, (1,..., )

n
k

i j j
jk

i k
i

y y
i g

n

τ
μ

π
=+

+

Ψ
= =
∑

, 
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( 1)

( ) 2

12
( 1)

( ; )( )
, (1,..., )

k

n
k

i j j i
j

i k
i

y y
i g

n

τ μ
σ

π
+ =

+

Ψ −
= =
∑

. 

4. Repeat step 3 and step 4 until the difference between ( 1) ( 1) ( 1)( , , ), ( 1,..., )k k k
i i i i gπ μ σ+ + + =  

and ( ) ( ) ( )( , , ), ( 1,..., )k k k
i i i i gπ μ σ =  is smaller than the preset tolerance level. 

 
 

5. Determination of the Number of Components  
      by Parametric Bootstrap Procedures 
In the procedures outlined in the previous section, we have to specify the number of 
components in the first step to initiate the iteration. This is a model specification problem. 
In some situations, the number of components is given as a priori information. However, 
in other situations, the number of components has to be inferred from observed data 
along with other estimates of density function. In the fund performance study, the group 
information is not known and is of particular interest for us to rate funds. The number of 
components in the finite normal mixture model indicates the number of performance 
groups that exist among all the funds. In addition, the number of components directly 
affects the classification of funds. In an extreme example, suppose that our test shows 
there is only one performance group, and then it is not necessary to group funds. The 
abnormally high or low alphas are just the results of “Luck”. 

 
There are three approaches to estimate the number of components in the finite normal 
mixture model. The first method is nonparametric by investigating the number of modes 
in an estimated kernel density. We know that multimodal shape is a strong implication of 
mixture model. Roeder (1994) argued that if there is no priori information about the 
number of components and component densities, it is appropriate to assess the number of 
modes. Inferential procedures to asses the number of modes include Titterington et al. 
(1985) and Silverman (1981, 1986), in which Silverman used a kernel method to estimate 
the density function and develop a technique to assess the number of modes. Other 
studies using the number of modes include Hartingan and Mohanty (1992), Wong (1985), 
and Fisher, et al. (1994). But there is an obvious drawback of this approach. If the means 
of component densities are not sufficiently separate enough, the number of modes are less 
than the number of components. Therefore it is difficult to identify the right number of 
components. 
 
The second stream is based on penalized log likelihood, such as AIC and BIC. As the log 
likelihood increases with the addition of a component to the finite normal fixture model, 
the log likelihood is penalized by the subtraction of a term that penalizes the model for 
the number of parameters in it. Using this method, the results are acceptable as discussed 
in Solka et al. (1998). But the main purpose of this approach is for density estimation, not 
the identification of the number of terms. In addition, it produces no confidence of results, 
so we have no idea of Type I error if we reject the null hypothesis. 
 
In our study, we assess the number of components by hypothesis test, using likelihood 
ratio as the test statistic. The approach focuses on group finding, and most importantly it 
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provides a p value to assess the confidence about the number of components. In the finite 
normal mixture model, the likelihood ratio test statistic is, 
 

1 0
ˆ ˆ2 log( ) 2{log ( ) log ( )}L Lλ− = Ψ − Ψ ,       (25) 

 
where 0Ψ̂  and 1Ψ̂  are MLE of Ψ under 0 0:H g g= and 1 1:H g g= respectively Usually 
we increase the number of components 0g  one by one in sequence to see if the increase 
in log likelihood starts to fade away after some threshold value 0g . After adding a new 
component into finite normal mixture model, if the increase of log likelihood is not 
significant, then we can conclude that there is no sufficient evidence to reject the 
hypothesis that there are 0g  components in the model. From the above analysis, we know 
that as long as we know the sampling distribution of the likelihood ratio test 
statistic, 2 log( )λ− , we can proceed to hypothesis test, and finally identify the number of 
components. 
 
Unfortunately, in the finite normal mixture model, regularity conditions (Cramer, 1946) 
do not hold for 2 log( )λ−  to have its usual asymptotic null distribution of Chi-square, 
where the degrees of freedom are equal to the difference of the number of parameters 
under null hypothesis and the number of parameters under alternative hypothesis. In the 
work by Titterington, et al. (1985) and McLachlan and Basford (1988), it is well 
discussed that conventional asymptotic results for the null distribution of the likelihood 
ratio test statistic do not hold because the null hypothesis lies on the boundary of the 
alternative hypothesis (in null hypothesis one mixing proportion is specified as zero). 
 
To rescue it, parametric bootstrap procedures proposed by McLachlan (1992) are used to 
assess the p value of likelihood ratio test statistic, 2 log( )λ− . Simulation is needed in this 
occasion. Feng and McColloch (1996) pointed out that this approach leads to valid 
statistical inference. Wolfe (1971) proposed a modified likelihood ratio test statistic by 
the rule of thumb, but McLachlan (1987) showed the results may not be applicable in 
heteroscedastic case where component variances are unequal. 
 
In finite normal mixture model, we test, 
 

0 0:H g g=  versus 1 1:H g g= . 
 
We let 1 1 1g g= +  in order to find the smallest g that is consistent with the data. Since the 
null distribution is unknown, we use parametric bootstrap procedures to asses the p value 
of likelihood ratio test statistic, 2 log( )λ− . Bootstrap samples are generated from the 
finite normal mixture model with Ψ replace by the MLE, 0Ψ

)
, which is estimated under 

null hypothesis by EM algorithm with the observed data. Then we fit the bootstrap 
sample under null hypothesis and alternative hypothesis respectively by EM, to obtain the 
bootstrapped likelihood ratio value, ( )2 log( ) bλ− , where b means the bth likelihood ratio 
value from the bth bootstrapped sample. We repeat the sampling for a number of times B, 
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so we have a sequence of likelihood ratios ( ){ 2 log( ) }bλ− . The sequence of values 
provides an approximation of the unknown null hypothesis distribution. Then we refer 
the original likelihood ratio, computed from the observed data, to the 
sequence ( ){ 2 log( ) }bλ− . We find the p value of 2 log( )λ−  as, 

1
1

jp
B

= −
+

          (26) 

 
where j is the number of replicated likelihood ratio values that are smaller than the 
original likelihood ratio. If we reject null hypothesis under 0g g= , then we can increase 
the number of components under null hypothesis by one, and move forward to 

0 0: 1H g g= +  versus 1 0: 2H g g= +  until we don’t have sufficient evidence to reject 
null hypothesis. The threshold g is the number of performance groups in our study. 
 
To facilitate programming, we outlined the parametric bootstrap procedures as follows: 

1. Given the observed data y, fit the original data under 0 0:H g g=  and 

1 0: 1H g g= + respectively by the EM algorithm to get estimates 0Ψ
)

and 1Ψ
)

. 
2. Substitute Ψ in finite normal mixture model with the estimated 0Ψ

)
 and 1Ψ

)
 to 

get probability density function under null hypothesis and alternative hypothesis 
respectively. 

3. From the density functions we compute the original likelihood ratio value, 

1 0
ˆ ˆ2 log( ) 2{log ( ) log ( )}L Lλ− = Ψ − Ψ . 

4. Take a bootstrap sample from the finite normal mixture model with parameters, 
Ψ , replaced by 0Ψ

)
 that we estimate in step 1. 

5. Fit bootstrap sample we obtained in step 4 under 0 0:H g g=  and 

1 0: 1H g g= + respectively by EM algorithm to get estimate of ( )
0
bΨ

)
and ( )

1
bΨ

)
. The 

superscript b represents the estimate from bth bootstrap sample. 
6. Substitute Ψ in finite normal mixture model with the estimated ( )

0
bΨ

)
 and ( )

1
bΨ

)
 to 

get probability density function under null hypothesis and alternative hypothesis 
respectively. 

7. From the density functions we compute the likelihood ratio value, 
( ) ( ) ( )

1 02 log( ) 2{log ( ) log ( )}b b bL Lλ− = Ψ − Ψ
) )

. 
8. Repeat step 4 through step 7 for B times to get a sequence ( ){ 2 log( ) }bλ− for 

1,...,b B= . 
9. Order the sequence of likelihood ratios, and then count the number of values that 

are smaller than 2log( )λ− , which is the original likelihood ratio, in step 3. 

10. Find p value of 2 log( )λ−  as1
1

j
B

−
+

, where j is the number of counts in step 9. 

Usually large B is required to get a precise p value. However, the amount of computation 
involved is considerable. We choose B as 200 as the number of the bootstrapped samples. 
The B is sufficient, because our main concern is to see whether we can reject the null 
hypothesis not to get the precise p values.  
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6. Fund Rating Procedures 
We use finite normal mixture model to study the distribution of alphas attempting to find 
the number of performance groups and assign a rating to each fund. In our research, we 
provide a new direction of fund rating method that is more flexible and theoretically solid 
than current fund rating method, like Morningstar’s method. The model is implemented 
in the following steps. 
 
Step One: Normality Check 
We will check the normality of the distributions first. If they are normal then no further 
steps are necessary.  It implies that there are no superior or inferior funds in the market. 
The abnormal negative or positive alphas we observed in the last period are just the 
consequence of “Luck”. In other words, the managers happened to have picked the right 
stocks and correctly timed the market. If the distributions show non-normal features, such 
as multimodal shape in kernel density, then it is a good indication of group structure in 
the data. This may be caused by the different information sets that managers are from. 
We can also test the normality by formal tests, such as the Jarque-Bera test and Lilliefors 
test. When we find that the distributions can not be described by a univariate normal 
distribution, the natural way to model it is a finite normal mixture model. The model 
provides an intuitively appealing interpretation about the number of components and the 
expected values and the variances of component densities. They are interpreted as the 
number of performance groups, the expected performance of the fund, and the expected 
investment risk of the fund respectively. Note that the expected performance here is not 
expected alpha of all the funds, instead it is the expected alpha of the funds in the 
performance group that the fund is from. In addition, the model provides the posterior 
probability that the fund belongs to each group. With this information we can group and 
rate the funds. 
 
Step Two: Specification of the Finite Normal Mixture Model 
Before estimating the model parameters, we have to specify the number of components. 
This is theoretically difficult. A number of approaches are proposed. We use the 
parametric bootstrap procedures outlined in section 5.5 to identify the number of 
components. We assess the p value based on the empirical distribution of likelihood ratio. 
In searching the appropriate number of components we increase g in the null hypothesis 
gradually one by one until we find the smallest threshold g that is consistent with data. 
 
Step Three: Estimation of the Finite Normal Mixture Model 
After having fixed the number of components in the model, then we proceed to estimate 
the model. We use EM algorithm outline in section 4 to solve out the likelihood function. 
This is not only for straightforward computation of MLE ofΨ , but also for the intuitive 
interpretation of group information. We introduced a component label vector jZ  with 
value of one or zero, indicating whether the fund was generated for the performance 
group or not.  There are two steps in EM algorithm. In the E step we take the conditional 
expectation of jZ , given y and current ( )kΨ  in finite normal mixture model, to obtain the 
posterior probability. Then we proceed to the M step to update 
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2 2
1 1 1( ,..., ; ,..., ; ,..., )g g gπ π μ μ σ σ  sequentially with posterior probabilities of all the funds. 

We repeat the E step and the M step until estimates converge. 
 
The results have an intuitively appealing interpretation. iπ  is interpreted as the proportion 
of funds in performance group , 1,...i i g= . iμ  is interpreted as the expected alpha for 
performance group , 1,...i i g= . 2

iσ is interpreted as the investment risk of funds in 
performance group , 1,...i i g= . The higher the 2

iσ , the higher the risk. The high 2
iσ  

implies that the performance is volatile in this group. We also have the posterior 
probability that each fund belong to each group, which provides us with a basis for 
grouping and rating. 
 
Step Four: Fund Rating 
We rank ( 1,..., )i i gμ = , which is the expected alpha of performance group i. The funds in 
the group that has the highest ranking are viewed as superior funds, whereas the funds in 
the group that has the lowest ranking are viewed as inferior funds. The differences of 
alphas in the performance group are regarded as random effects. Thus we consider the 
funds in the same performance group have the same expected performance. 
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