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Mis-specification in Phillips Curve regressions

Abstract
The Phillips curve has long been a focus of empirical macroeconomic research. Here we

provide compelling evidence that previous models quantifying the dynamic relationship between
inflation and unemployment rates have been mis-specified in their assumption that the coefficient
on unemployment is a constant. Instead, we find that this coefficient is frequency-dependent:
the inflation impact of a fluctuation in the unemployment rate differs for a fluctuation which
is part of a smooth pattern of changes versus a fluctuation which is an isolated event, just as
Friedman’s “natural rate” hypothesis suggests.

In particular, we analyze a standard Phillips Curve regression specification using a newly
developed econometric technique capable of consistently estimating the frequency dependence
in a feedback relationship. Explicitly allowing for feedback in such a relationship is essential
because the two-sided nature of the Fourier transformations used in previous frequency domain
studies otherwise confounds the analysis, leading to inconsistent parameter estimates. Using one-
sided filtering to allow for observed feedback in the relationship, we find statistically significant
frequency dependence. In particular, using monthly data from 1984:1-2003:12, we find an eco-
nomically and statistically significant inverse relationship between inflation and unemployment
for high-frequency unemployment rate fluctuations — with periods less than about one year —
but no evidence for an effect of lower frequency unemployment rate fluctuations. In contrast, a
model ignoring frequency dependence finds no statistically significant relationship at all between
inflation and unemployment rates during this sample period.
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Mis-specification in Phillips Curve regressions

1 Introduction

Few macroeconomic relationships have received as much attention as the Phillips curve, which

postulates an inverse relationship between inflation and the unemployment rate.1 This relationship

is central to contemporary monetary policy: one cannot hope to appropriately conduct such policy

without an adequate understanding of short-run inflation dynamics. This relationship is also central

to “New Keynesian” macroeconomic modeling: a Phillips curve relation forms one of the three key

equations in most New Keynesian macro models. Yet despite its importance to macroeconomics,

the nature of the Phillips curve relationship remains strongly contested.

For the first several decades since its introduction, the Phillips curve (augmented with a shifting

intercept, and some additional explanatory variables such as oil prices) appeared to be a reasonable

approach to understanding inflation dynamics.2 Even as late as the mid-1990s, some observers

(Fuhrer 1995, Gordon 1997) suggested that such models had been quite successful in “explaining”

or tracking inflation, both within and outside of the sample. However, the inflation experience of

the 1990s proved more difficult to reconcile with standard Phillips curve models (see, e.g., Beaudry

and Doyle, 2000); in post-1980 data, it is difficult to detect a link between the unemployment rate

and inflation. This prompted many (e.g., Eisner, 1998) to argue that the Philips curve relationship

was “dead,” while others (e.g., Brayton, Roberts and Williams, 1999; Staiger, Stock and Watson,

2001) attempted to “resurrect” the Phillips curve.

One of the problematic issues involved in Phillips curve estimation involves the natural rate of

unemployment, often referred to as the “NAIRU”, or non-accelerating inflation rate of unemploy-

ment. In 1968, Milton Friedman postulated the existence of a “natural rate” of unemployment,

a notion which challenged the entire concept of the Phillips curve. Friedman suggested that the

normal dynamic processes of job destruction, search, and job creation would lead to a non-zero

equilibrium unemployment rate, and that, in response to macroeconomic conditions, the actual

1Although credit for the discovery of this relationship generally goes to Phillips (1958), one could argue
that the original discovery was due to Fisher (1926).

2The distinctly positive correlation between the inflation rate and the unemployment rate in the 1970s
led many researchers (e.g., Lucas and Sargent, 1978) to cast grave doubt on the existence of a Phillips
curve. Indeed, in monthly data, a regression of the inflation rate on twelve lags of the inflation rate and
on the unemployment rate — a reasonable-looking specification — yields a statistically insignificant coefficient
estimate on the unemployment rate. Our results below provide an explanation for this phenomenon.
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unemployment rate would fluctuate around this natural rate. For example, surprise increases in

the money supply would temporarily increase output and reduce the unemployment rate. Over

longer horizons, however, Friedman argued that the inflation rate could have no impact on the

unemployment rate, since the public would over time adjust its inflation expectations to the new

steady-state level of inflation; thus, the unemployment rate would return to this natural rate ir-

respective of the new steady-state inflation rate. In particular, summarizing Friedman (1968) and

Phelps (1967, 1968), the Phillips curve must be reformulated to include the impact of the public’s

inflationary expectations, and to take into account the natural rate of unemployment. A Phillips

curve thus reformulated is often referred to as an “expectations-augmented” Phillips curve. The

events of the 1970s largely bore out the predictions of Friedman and Phelps. The existence of a

natural rate, and the importance of inflationary expectations, are consequently no longer seriously

contested.

Empirical implementations of Phillips curve must thus come to terms with a natural rate3 —

indeed, changes in the natural rate are often blamed when a particular Phillips Curve specification

appears to be breaking down. Although there is no reason to expect that this natural rate is a

fixed constant, much previous research has made this assumption. In contrast, a number of recent

studies have implicitly assumed that the natural rate is an I(1) process, estimating the relationship

in differences. Recent studies attempt to model the time evolution of an I(1) natural rate using a

Kalman filter approach (e.g., King, Stock and Watson, 1995; Debelle and Vickery, 1997; Gordon,

1997, 1998; Gruen, Pagan and Thompson, 1999; Brayton, Roberts and Williams, 1999; Staiger,

Stock and Watson, 2001), or extract an estimate of the time evolution of the natural rate using

splines or low-frequency bandpass filters, as in Staiger, Stock and Watson (1997) and Ball and

Mankiw (2001).

These approaches are likely to distort the estimation of the relationship between inflation and

unemployment, since they impose arbitrary assumptions as to which frequencies are important.

Futhermore — as discussed more explicitly below — the Kalman filter makes specific, most likely

3Not all “Phillips curve” specifications relate inflation to the unemployment rate; others relate inflation to
“output gaps” (where, however, the identical issue arises) or — particularly in the New Keynesian tradition
— to marginal costs. In this paper, we don’t address these other specifications directly; however, in a
companion paper (Ashley and Verbrugge 2005b) we explore New Keynesian Phillips curve formulations. We
find significant frequency dependence in those formulations as well.
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counterfactual, assumptions about the manner in which the natural rate evolves over time. Al-

though pre-filtering approaches don’t suffer from this particular criticism, they are ad hoc; and

furthermore there is still no guarantee that splines or low-pass filtering accurately recover the time

variation in the natural rate either. Finally, we demonstrate below that any two-sided filtering of

a Phillips curve relationship will induce parameter estimation inconsistency in this context if there

is feedback from inflation to the unemployment rate.

Nevertheless, decomposing inflation and the unemployment rate by frequency is theoretically

appealing. In particular, the Friedman-Phelps hypothesis strongly suggests that the relationship

between the inflation rate and the unemployment rate is actually frequency-dependent ; that is, the

relationship between low-frequency movements in the inflation rate (corresponding to the prevailing

steady-state inflation rate) and low frequency movements in the unemployment rate (correspond-

ing to changes in the natural rate4) will likely be quite different from the relationship of higher-

frequency movements in the inflation rate to higher-frequency movements in the unemployment

rate. In essence, the Friedman-Phelps formulation suggests that the high frequency movements

in these two time series may well have the inverse relationship suggested by Phillips, while the

low frequency movements will be unrelated. Clearly, if such frequency-dependence is empirically

significant, then a standard Phillips curve model which assumes that the same relationship obtains

at all frequencies will yield coefficient estimates that consistently characterize neither of these two

distinct relationships, and researchers may well draw erroneous conclusions.

Below we present a new approach for detecting and modeling frequency dependence in an

estimated regression model coefficient, and apply this approach to the Phillips curve relationship.

Our approach is formulated in the time domain, so it is easy to implement using ordinary regression

software. Moreover, our approach does not require any a priori imposition of assumptions regarding

the relevant frequency ranges. And because the new procedure does not require any specification of

the dynamics of the natural rate of unemployment, its validity does not hinge on the correctness of

such a specification. Note that we need not take a stand concerning the various theories underlying

the Phillips curve’s dynamics — worker misperceptions, cost-push inflation, Lucas supply curve

stories, and so on. Rather, the question we pose is: does frequency dependence exist in the typical

4Hall (1999) and Cogley and Sargent (2001) argue that the low frequency trend component of the unem-
ployment rate is an estimate of the natural rate; Staiger, Stock and Watson (2001) adopt this argument.
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empirical Phillips curve specification?

We show below that all presently-available methods for detecting and modeling frequency depen-

dence fail when feedback is present in the relationship, as is the case in the inflation-unemployment

relationship. This failure is due to the two-sided nature of the filtering — Hodrick-Prescott, Baxter-

King, or even ordinary X-11 seasonal adjustment — used in these approaches to isolate a specific

range of frequencies for analysis. Fundamentally, as detailed in Section 3.6 below, the two-sided

filtering interacts with the feedback in the relationship to induce correlations between the filtered

series and the relevant regression error terms, thus producing inconsistent parameter estimates.

This suggests caution in interpreting the coefficients from any dynamic regression which involves

two-sided filtered data.

In this paper we describe an extension to the Tan and Ashley (1999) frequency-dependence

modeling framework which overcomes this problem. Simulations using artificially generated data

demonstrate that the new technique is able to correctly detect frequency dependence in the presence

of feedback, and illustrates the distortions created when feedback is not properly handled.

Applying this new technique to allow for both frequency dependence and feedback in a stan-

dard Phillips curve formulation, we find statistically significant frequency dependence in the Phillips

curve relationship, of a sort that is consistent with the Friedman-Phelps theory. In particular, the

data indicate that there is a statistically significant inverse relationship betwen inflation and un-

employment — but this significant relationship is restricted to rather high-frequency unemployment

rate fluctuations, i.e. fluctuations with periods less than a year. The implied natural rate is far from

smooth, calling into question the “smoothness” criterion that has often been imposed in empirical

work (e.g., Eller and Gordon, 2002).

The outline of the remainder of the paper is as follows. Section 2 presents the underlying macro-

economic theory and briefly discusses prior empirical work. Section 3 describes the econometric

methodology proposed here, and in particular includes a critique of two-sided filtering in the pres-

ence of feedback. Section 4 presents simulation evidence which indicates that the new methodology

of Section 3 is both necessary and effective. Section 5 presents the empirical results on the Phillips

curve. Section 6 concludes the paper.
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2 Theory and Prior Empirical Work

As noted above, the Phillips Curve has long been the focus of empirical work. The prototypical

expectations-augmented Phillips curve is the specification

πt = πet + β
¡
unt − unNt

¢
+ εt (1)

where πt is actual inflation (in wages, or in an appropriate price index) during period t, πet is the

level of inflation that is expected to occur during period t, unt is the unemployment rate at time t,

and unNt is the natural rate of unemployment at t.

Two difficulties arise, each relating to one of the two unobserved components in each the above

relationships: πet and unNt .

First consider the treatment of expected inflation. The random-walk model of expectations,

which specifies that πet = πt−1, has been used extensively in the literature (e.g., Gordon 1990, 1998,

Fuhrer 1995, Staiger, Stock and Watson 2002). This assumption is reasonably consistent with the

data but, because inflation is observed to have considerable inertia, a number of lags of inflation

are required in the specification to ensure that the resulting regression model errors are serially

uncorrelated. This has generally led to regression models of the following form:

πt = β
¡
unt − unNt

¢
+

mX
j=1

δjπt−j + θZt + εt (2)

where the condition
Pm

j=1 δj = 1 is often imposed.5 Since deterministic seasonal components

have frequently been observed in seasonally-unadjusted inflation data, monthly dummies are often

included as well. Finally, since the 1970s it has become common practice to also include in this

specification price control dummy variables and measures of “supply shocks,” such as the relative

price of energy and the relative price of imports. Shocks to such variables arguably create positive

5This condition is related to a unit root in inflation; some authors (e.g., Gordon, 1997) assert that this
restriction is necessary for a “meaningful” natural rate that is consistent with a constant rate of inflation.
However, the existence of a unit root in inflation partly depends upon Fed policy: if the Fed stabilizes inflation
around a target, there will be no unit root in inflation, and forward-looking models will not generate a unit-
sum restriction.
Some authors (e.g., Stock and Watson, 1999) impose the restriction that inflation is I(1) by specifiying

the Phillips curve relation using first-differences of inflation. Since, as emphasized by Baxter (1995), first-
differencing removes most of the low- and medium-frequency components of the series, this will substantially
distort least-squares estimates of the coefficient β if the relationship is frequency-dependent.
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correlation between inflation and unemployment, and would thus bias the estimate of β if omitted.

All such control variables are here collected in the vector Zt.

The second difficulty, the unobserved natural rate, has been handled in a variety of ways;

but each of these has severe shortcomings. Most Phillips curve regression specifications implicitly

assume that the natural rate is a constant, in which case a regression of the following form is

appropriate:

πt = eα+ βunt +
mX
j=1

δjπt−j + θZt + εt (3)

where the natural rate can be recovered from estimates of the coefficients eα and β. Occasional shifts
in an otherwise constant natural rate have been handled by allowing for shifts in the intercept. Of

course, it is unlikely that the natural rate is constant for extended periods of time; and below, we

present evidence suggesting that this is far from true. (Two other simple approaches which allow

unNt to vary slowly over time are to estimate un
N
t using weighted sample means, or to estimate (3)

repeatedly over rolling sample ranges; see Williams 2004.)

Recently, several authors have explored more sophisticated methods to allow for a potentially

time-varying natural rate. For example, Staiger, Stock and Watson (1997) model the natural rate as

a flexible polynomial, estimating a time-varying constant in (3), from which a time-varying natural

rate estimate can be recovered. A variant of this method (e.g., Beaudry and Doyle 2000, Ball and

Mankiw, 2002, Rudd and Whelan, 2005) involves identifying a filtered version of the unemployment

rate with the natural rate for use in equation (2). We argue in Section 3.6 below that, in addition

to being subject to considerable measurement error, such two-sided pre-filtering approaches must

in this context lead to inconsistent parameter estimates.

An alternative method uses the Kalman filter to estimate the natural rate as an unobserved

component; see, e.g., Staiger, Stock and Watson (1997, 2002), Gordon (1998), Gruen, Pagan and

Thompson (1999), and Williams (2004). Typically, the natural rate is modeled as a unit root

process in this framework, yielding the two-equation system:

πt = α+ β
¡
unt − unNt

¢
+

mX
j=1

δjπt−j + θZt + εt (4)

unNt = unNt−1 + υt
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where unNt is a latent or unobserved variable, and (εt, υt) are assumed to be jointly NIID. The

variance of υt is either imposed a priori, or estimated ... very imprecisely (see Laubach and

Williams, 2003).

In practice, these methodologies have tended to estimate a natural rate which closely tracks

the univariate trend in the unemployment rate — e.g., see Brayton, Roberts and Williams (1999),

Staiger, Stock and Watson (2002), or Williams (2004). But this does not necessarily imply accurate

tracking of the natural rate dynamics. Furthermore — as noted above — we demonstrate below that

if the relationship between inflation and
¡
unt − unNt

¢
is itself frequency dependent, any estimate

of unNt deriving from a two-sided filter will lead to inconsistent OLS estimates of β, even if the

identifying assumptions on the dynamics are correct.6

This paper presents a new approach to the specification of the Phillips curve relationship. We

begin with a standard Phillips curve relationship specification as embodied in equation (3), which

includes exogenous variables Zt. We account for variation in the natural rate by allowing the

coefficient β to vary across frequencies. This approach frees us from making strong assumptions

regarding the natural rate data generating process. Since feedback from inflation to unemployment

rates is an important element of the Phillips curve relationship, we develop new econometric tools

for quantifying frequency dependence in feedback relationships.

6Orphanides and Williams (2002) argue that it is highly unrealistic to assume knowledge of the true
natural rate data generating process. Making strong assumptions on this DGP is concomitantly undesirable.
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3 Methodology

3.1 Characterizing frequency dependence

In Sections 3.1—3.3 we explain what frequency dependence is, what it is not, and why it makes a

difference. Sections 3.4 and 3.5 discuss the Tan-Ashley approach to the detection and modeling

of frequency dependence in the absence of feedback and its straightforward implementation in the

time domain. Section 3.6 discusses the problematic nature of two-sided filtering in the context of

feedback relationships and describes how we modify the Tan-Ashley methodology appropriately

to deal with this problem. Section 3.7 addresses the issue of frequency band specification: how

to select the number of frequency bands to consider, and the particular set of frequencies to be

included in each band.

It is best to be clear at the outset as to the meaning of the term “frequency dependence” in the

context of a regression coefficient. Consider the following aggregate consumption function:

ct = γ0 + γ1yt−1 + γ2yt−2 + γ3ct−1 + εt (5)

where ct and yt are the deviations from trend of the log of aggregate consumption spending and

disposable income in period t, and εt is a covariance-stationary error term. In this model γ1 is

the “short-run marginal propensity to consume,” characterizing how consumption spending (on

average) responds to fluctuations in yt−1. In contrast,
(γ1+γ2)
(1−γ3) is the “long-run marginal propensity

to consume,” the change in steady-state consumption from a one unit change in steady-state income;

it answers the question, “How does average steady-state consumption spending vary across different

steady-state after-tax income levels?” The distinction between γ1 and
(γ1+γ2)
(1−γ3) is not what we mean

by frequency-dependence.

What we do mean by frequency-dependence is that, according to the permanent-income hy-

pothesis, the value of γ1 itself depends upon frequency. In particular, this hypothesis asserts that

consumption should not change appreciably if the previous period’s fluctuation in income is highly

transitory (high-frequency), whereas consumption should change significantly if the previous pe-

riod’s fluctuation in income is part of a persistent (low-frequency) movement in income. γ1, then,
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should be approximately equal to zero for high frequencies, and close to one for very low frequencies.

Equation (5), in contrast, incorrectly restricts γ1 to be the same across all frequencies.

This frequency dependence in γ1 implied by the permanent income hypothesis concomitantly

implies that γ1 varies over time. For example, with adaptive expectations, the implication is that

the coefficient γ1 will be larger if the deviation yt−1 has the same sign as the deviation yt−2, so

that the deviation yt−1 is part of a smooth pattern. Note that this dependence of γ1 on the recent

history of yt−1 (and the resulting frequency dependence in γ1) can thus be viewed as a symptom

of unmodeled nonlinearity in the relationship between ct and yt−1. (This aspect of frequency

dependence is discussed at some length in Tan and Ashley (1999a) and in Ashley and Verbrugge

(2005a).) In principle one could thus eliminate the frequency dependence in γ1 by modeling this

nonlinearity in the relationship; and, indeed, one constructive aspect of the detection of frequency

dependence in a relationship using the method proposed here would be to motivate and inform

such an effort. The detection and modeling of frequency dependence is of interest in its own right,

however, because such frequency dependence often “matches up” so nicely with economic theory,

such as the permanent income hypothesis in the present example. In any case, in terms of the topic

of this section, the essential point is that frequency dependence in γ1 further implies that the value

of γ1 is not a fixed constant; rather, it varies over time, due to its dependence on yt−1, yt−2, yt−3,

etc.

Similarly, viewing equation (5) as part of a bivariate VAR model, the impulse response function

for ct will be a function of past innovations in both equations, and ct will depend differently on

different lags in the yt innovations. Frequency dependence alters the nature of the impulse response

functions. In particular, if there is no frequency dependence in the ct − yt relationship, then the

moving average representation of the ct process will be a linear function of serially independent

innovations; this leads to a set of conventional linear impulse response functions in which the change

in the expected value of ct+n induced by an innovation in the yt process of size δ is unrelated to the

values of previous innovations. Conversely, frequency dependence in the ct−yt relationship implies
that the full moving average representation of the ct − yt relationship (and hence, the impulse

response functions also) consist of nonlinear functions of serially independent innovations. Thus,

in that case, the change in the expected value of ct+n induced by an innovation in the yt process
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of size δ does depend on the values of previous innovations. (Of course, the Wold Theorem still

guarantees the existence of a linear MA(∞) representation for ct and yt — and hence of a set of

linear impulse response functions for these variables — but the innovations in this linear MA(∞)
representation are not serially independent.)

The following explicit example clarifies this point.7 Consider the particular case in which the

linear moving average (Wold) representation for a series ct can be approximated by the MA(1)

process:

ct = vt + γ1vt−1

in which the vt innovation series is generated by the bilinear process:

vt = 0.7vt−2ut−1 + ut

where ut is serially independent. It is easy to verify that the vt generated by this bilinear process

are serially uncorrelated, so this MA(1) process could in principle be the Wold representation for

ct. Now rewrite the moving average representation of ct as a function of the current and past values

of the serially independent innovations — ut, ut−1, ... — by repeatedly substituting the bilinear model

in to eliminate vt, vt−1, etc. from the model for ct. In this way one obtains:

ct = ut + (γ1 + 0.7ut−2 + higher order terms)ut−1 + (0.7γ1ut−3 + higher order terms)ut−2 + ...

where the higher order terms involve (0.7)2 vt−4ut−3, (0.7)2 vt−5ut−4, and so forth. Continued

substitution would further elaborate these terms, but the point is clear: the coefficient on the

serially independent innovation ut−1 is no longer a constant. Instead, it is (γ1 + 0.7ut−2) plus

higher order terms. Consequently, the impulse response function at lag one is frequency dependent

in the sense discussed here: the coefficient on ut−1 will be different when the previous innovation

(ut−2) is of the same sign as ut−1. Thus, estimating a linear moving average model for ct yields

an impulse response coefficient estimate at lag one which cannot be stable over time or across

frequencies, since ct responds differently to a lag-one shock which is part of a smooth pattern than

to a lag-one shock which has just changed sign from the previous period.

7See Potter (2000) for a formal treatment of nonlinear impulse response functions.
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Finally, we conclude this section with a warning from McCallum (1984): “...the association of

low-frequency time series statistics with ‘long-run’ economic propositions is not generally warranted.

Instead, many so-called long-run relationships involve expectational relationships which have little

or nothing to do with frequencies per se.” Thus, any conclusion about the low frequency behavior

of a model parameter, such as γ1 in equation (5) is best viewed as an assertion as to how ct responds

to smooth fluctuations in yt−1, not as a statement with regard to the long run relationship between

ct and yt.

3.2 Consequences of frequency dependence

Now consider a simple bivariate time series model:

yt = βxt + εt εt ∼ NIID
£
0, σ2

¤
for t ∈ {1, ...T}. The parameter β can be interpreted as dE[yt|xt]/dxt. However, if β actually takes
on two values — β0 in the first half of the sample and β1 in the second half of the sample, for example

— then this regression is clearly mis-specified. In that case, the usual statistical machinery for testing

hypotheses about β is invalid — indeed, the hypotheses themselves are essentially meaningless, since

β does not have a single well-defined value to test. Similarly, the least-squares estimate of β is in

that case clearly neither a consistent estimator for β0, nor for β1. In particular, if the sign of the

relationship is positive in the first part of the sample and negative later on, then the least squares

estimate of β might well be close to zero, leading to the erroneous conclusion that yt and xt are

unrelated.

One of the key implications of the spectral regression model of Engle (1974, 1978) — summarized

in section 3.3 below — is that β is stable across time if and only if it is stable across frequencies;

this was also discussed in the context of the simple consumption function example in the previous

section. Thus, if the value of β is different at low frequencies than at high frequencies, then β varies

over time also, albeit in a manner which might be difficult to detect with time domain parameter

stability tests. Still, this result implies that frequency variation in β yields all of the same unhappy

properties as does time variation. In particular, the least squares estimator of β is an inconsistent

estimator of dE[yt|xt] with respect to x, and — since β does not have a unique value — hypothesis
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tests about β are of doubtful value.

Frequency dependence in the unemployment rate coefficient of equation (3) might arise from mis-

specified dynamics for the natural rate; or it could occur for other reasons. We take such frequency

dependence to be an empirical issue — one which is consequential for the foregoing reasons — and

below develop methods for detecting and correcting for it.

3.3 Pseudo frequency dependence

It is important to distinguish ‘true’ frequency dependence in a relationship from a superficially

similar concept in which the coefficients of the model quantifying the relationship are constant, but

the coherence (closely related to the magnitude of the cross-spectrum of the variates) is frequency-

dependent. This latter notion is used in Geweke (1982), Diebold, Ohanian and Berkowitz (1998),

and a host of other studies. These decompositions are mathematically sound, but we call what

they measure ‘pseudo frequency dependence’ because — since the underlying model coefficients are

assumed constant — such measures do not actually quantify frequency variation in the relationship

itself.

A simple example clarifies this distinction. Consider the following consumption relation,

ct = βyt−1 + ut + φut−1⎛⎝ ut

yt

⎞⎠ ∼ NIID

⎡⎣⎛⎝ 0

0

⎞⎠ ,

⎛⎝ σ2u 0

0 σ2y

⎞⎠⎤⎦
The marginal propensity to consume in this relationship is clearly a constant (β) and Fourier trans-

forming both sides of this equation will do nothing to change that — it merely yields a relationship

between the Fourier transform of ct and the Fourier transform of yt−1, still with a constant coef-

ficient β. (E.g., see Section 3.4 below.) But the cross-spectrum and coherence functions relating

ct and yt are not constants: by construction, they depend explicitly upon the frequency parameter

ω. In particular, Geweke (1982)’s measure of the strength of the linear dependence of ct on yt−1 (a

generalization of the coherence function) for this model is:

fy→c (ω) =
1

2
ln

(
σ2u
¡
1 + φ2 − 2φ cos (ω)¢+ β2σ2y£
σ2u
¡
1 + φ2 − 2φ cos (ω)¢¤2

)
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which clearly does depend upon frequency so long as the moving average parameter φ is not zero.

Evidently, this frequency dependence in Geweke’s measure (and in the other ‘strength of as-

sociation’ measures based upon the cross-spectrum and the coherence function) is not quantifying

the frequency variation in the c-y relationship itself, since there is none to quantify. So what is

it doing? These kinds of measures are usually interpreted as quantifying the degree to which the

overall R2 for the equation is due to sample variation at low frequencies versus high frequencies.

Suppose that φ is positive, in which case Geweke’s measure indicates that low frequencies are

important to the R2 of the relationship. This says nothing about whether consumption and income

are differently related at low versus high frequencies — that depends upon the marginal propensity

to consume (β), which is constant. Rather, it says that this dynamic relationship transforms serially

uncorrelated fluctuations in yt−1 and ut into positively correlated fluctuations in ct. Alternatively,

one could observe that ct in that case has substantial spectral power at low frequencies, and interpret

this result, to paraphrase Geweke (1982, p. 312), as indicating that the white noise innovations in

yt−1 explain most of this low frequency portion of the variance in ct.8

3.4 Regression in the frequency domain in the absence of feedback

The most elegant way to assess the actual frequency dependence of a regression coefficient is to

estimate the regression equation in the frequency domain. Such spectral regression was originally

proposed by Hannan (1963) and most clearly exposited in Engle (1974, 1978). Following Engle,

spectral regression is based on the simple notion that a multiple regression model in the time

domain, such as

Y = Xβ + ε ε ∼ N
£
0, σ2I

¤
(6)

8Note also that both the coherence and gain functions are, by construction, non-negative at all frequencies.
Thus, neither of these concepts can possibly capture frequency dependence as discussed here, which can
readily involve a regression coefficient having one sign at low frequencies and the opposite sign at high
frequencies.
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can be Fourier-transformed on both sides of the equation via multiplication by a complex-valued

matrix W , yielding

WY = WXβ +Wε (7)

eY = eXβ + eε eε ∼ N
£
0, σ2I

¤
(8)

where eY =WY , etc., and where the (j, k)th element of W is given by wjk =
1√
T
exp

³
2πijk
T

´
, with

T equal to the sample length. The variance of eε is still σ2I because W is an orthogonal matrix.

Note that the coefficient vector β is identical in both equation (6) and equation (8). What has

changed, however, is that the T sample observations in Y and in each of the K columns of X are

replaced by T observations on each eY and each column of eX, each of which now corresponds to a
frequency in the interval [0, 2π (T − 1) /T ]. In particular, one can identify the jth ‘observation’ in
this transformed regression model as corresponding to frequency 2π (j − 1) /T .

Note, however, that consistent least squares estimation of β in equation (8) requires that

corr (exk,j ,eεj) is zero for all values of j and k, where exk,j is used to denote the jth observation

on exk. Since W embodies a two-sided transformation — i.e., exk,j depends upon all of xk,1, ..., xk,T
and eεj depends upon all of ε1, ..., εT — this condition requires that xt,k is strictly exogenous — i.e.,
uncorrelated with both past and future values of εt. This issue is taken up more explicitly in Sec-

tion 3.6 below; it is side-stepped here by temporarily restricting attention to relationships in which

xk,1, ..., xk,T are strictly exogenous.

Spectral regression has unique advantages over regression in the time domain. For example,

missing observations and distributed lag expressions involving non-integer lags can be dealt with

fairly readily in the frequency domain. And — central to the present context — detecting and

modeling frequency variation in a component of β corresponds precisely to testing for instability in

this component across the sample observations in equation (8).

Prior to Tan and Ashley (1999), however, this framework also had some fairly intense drawbacks,

which severely limited its usefulness and acceptance. For one thing, eY and eX are complex-valued,

precluding the use of ordinary regression software to estimate β. An estimator for β can be expressed

in terms of the cross-periodograms of Y and the columns of X — e.g., equation 10 of Engle (1974) —

but the calculations still require specialized software. Consequently, Engle’s approach is really only
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convenient for considering parameter variation over at most two frequency bands: in that special

case it is possible to finesse the problem so that ordinary regression software suffices.9

Another problem with Engle’s framework is really just cosmetic, but nevertheless effectively

limits the credibility of the results: one cannot drop a group of, say, the five lowest-frequency

observations without also dropping the five observations at the highest five frequencies — otherwise,

the least squares estimate of β is no longer real-valued. These latter five observations, at what

appear to be the five highest frequencies, in fact actually do correspond to low frequencies because

of symmetries in the W matrix, but one is apt to lose one’s audience in trying to explain it.

Finally, Engle’s formulation does not deal with econometric complications such as simultaneity,

cointegration, or feedback. Phillips (1991) provides a framework for estimating cointegrated systems

in the frequency domain based directly on Hannan’s formulation in terms of the spectra and cross-

spectra of the data. But this approach again requires specialized software, and is still applicable

only to non-feedback relationships.

The net result is that spectral regression methods have been applied to the frequency dependence

problem for only a handful of macroeconomic relationships.

The approach developed in Tan and Ashley (1999) effectively eliminates the objections noted

above, at least for non-feedback relationships. This formulation is similar in spirit to Engle’s,

except that the complex-valued transformation matrix (W ) is replaced by an equivalent real -valued

transformation matrix (A) with (j, t)th element:

aj,t =

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

1√
T

j = 1q
2
T cos

h
πj(t−1)

T

i
j = 2, 4, ..., (T − 2) or (T − 1)q

2
T sin

h
π(j−1)(t−1)

T

i
j = 2, 4, ..., (T − 1) or T

1√
T
(−1)t+1 j = T and T is even, t = 1, ..., T

(9)

This transformation, which first appears in Harvey (1978), yields a real-valued frequency domain

regression equation

AY = AXβ +Aε Aε ∼ N
£
0, σ2I

¤
9Later work by Thoma (1992, 1994) pushes this idea a bit further by observing how the parameter estimate

varies as more frequencies are added to the low frequency band.
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or

Y ∗ = X∗β + ε∗ ε∗ ∼ N
£
0, σ2I

¤
(10)

with Y ∗ = AY , etc. In fact, each row of A is just a linear combination of two rows in theW matrix,

based on the usual exponential expressions of the sine and cosine — e.g., cos (x) = 1
2e

ix + 1
2e
−ix.

Again, V ar (ε∗) = V ar (ε) because A is an orthogonal matrix.

Since the elements of the A matrix are all real-valued, equation (10) can be estimated using

ordinary regression software. Moreover, the effect of the transformation on a column vector (e.g.,

Y ) is now plain to see. The second and third rows of the A matrix (j = 2 and 3) correspond to the

two observations at the lowest non-zero frequency. The weights in these rows make one complete

oscillation over the T periods in the actual sample, so any fluctuation in yt that is sufficiently brief

as to average out to essentially zero over a period of length T/2 will have little impact on either y∗2

or y∗3. In contrast, suppose that T is even and consider the highest frequency row of A. This row

simply averages T/2 changes in the data; clearly, it is ignoring any slowly-varying components of

the data vector and extracting the most quickly-varying component.

The observations in this regression model thus do correspond to frequencies. Consequently,

frequency variation in, say, βk — the kth component of β — can be assessed by applying any of

the variety of procedures in the literature for examining the variation in an estimated regression

coefficient across the sample observations: e.g., Chow (1960), Brown, Durbin and Evans (1975),

Farley, Hinich and McGuire (1975), Ashley (1984), Bai (1997), or Bai and Perron (1998, 2003). We

will return to this issue in Section 3.5; for now, we observe that Tan and Ashley (1999) use the

procedure given in Ashley (1984) and simply partition the T observations in equation (10) into m

equal frequency bands and estimate how βk varies by replacing X
∗
k , the k

th column of X∗, with m

appropriately constructed dummy variables:10

Y ∗ = X∗
{k}β{k} +D∗γ∗ + υ∗ (11)

where X∗
{k} is X∗ omitting the kth column, and β{k} is β omitting the kth component. The

columns
£
D∗1...D∗m

¤
comprising the D∗ matrix consist of m new explanatory variables, one for

each frequency band: D∗sj , the j
th component of the new explanatory variable for frequency band s,

10Simulations in Ashley (1984) indicate that this modest generalization of the Chow test performs at least
as well as more sophisticated alternatives with samples of moderate length.
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is zero for each component outside the frequency band, and equal to the corresponding component

of X∗
k (the k

th column of X∗) for each component inside the frequency band.11

3.5 The Tan-Ashley approach in the time domain

It is both helpful and instructive to re-cast the Tan-Ashley formulation in the time domain. Since

A is an orthogonal matrix, A−1 is just its transpose, AT . Multiplying the regression model of (11)

through by AT yields

ATY ∗ = ATX∗
{k}β{k} +ATD∗γ +ATυ∗ (12)

and hence

Y = X{k}β{k} +Dγ + υ (13)

Here Y is the original dependent variable data vector and X{k} is the original data matrix, omitting

the kth column.

The matrix D =
£
D1...Dm

¤
thus has as its columns the back-transforms of the frequency-

domain explanatory variables
£
D∗1...D∗m

¤
corresponding to each of the m frequency bands being

considered. Note that, since the columns
£
D∗1...D∗m

¤
are orthogonal and add up to X∗

k = AXk,

the column vectors comprising
£
D1...Dm

¤
are orthogonal also and add up to Xk, the original data

vector for the kth explanatory variable.12 Consequently, the error vector υ is identical to the original

error term in (6) if the m components of γ are all equal to βk.

The column vectors
£
D1...Dm

¤
are in essence bandpass filtered versions of Xk which partition

this variable into m orthogonal components, one for each frequency band. For example, suppose

that one were to partition the monthly US unemployment rate into three frequency components:

D1
t , comprising the fluctuations corresponding to low frequencies (periods greather than 60 months);

11We note that the foregoing analysis could all be applied substituting any orthogonal matrix for A, so
long as its rows pick out components of increasing smoothness. The finite Fourier transforms used here are
both familiar and compellingly unique, so long as one assigns the same coefficient value to both the sine
and cosine rows corresponding to a particular frequency. But this is not to say that a useful transformation
matrix could not be formulated in other ways — e.g. using wavelets, as defined defined by Ramsey and
Lampert (1998a,b).
12Tan and Ashley (1999) give an explicit example of this with m = 3 frequency bands. Given their

particular partitioning , they show howD∗1 is zero except for the first third of the observations (corresponding
to the lowest frequencies) — yielding a smooth D1 time domain series — whereas D∗3 is zero except for the last
third of the observations (corresponding to the highest frequencies), and yields a rapidly varying D3 time
domain series. They do not, however, point out that the m filtered components

£
D1...Dm

¤
are orthogonal.
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D2
t , a medium-frequency (“business cycle”) component, corresponding to periods between 18 and

60 months; and D3
t , a high-frequency component, corresponding to periods less than 18 months.

Figure 1 plots the monthly US unemployment rate, along with D1
t and D2

t — the first and second

of these components — using data from 1981 through 2003.

Figure 1: Time Plot of the US Unemployment Rate and its Low- and Medium-Frequency

Components (D1
t and D2

t )
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No one of thesem implied bandpass filters is an optimal bandpass filter. One might choose a Baxter-

King (1999) or Christiano-Fitzgerald (2003b) bandpass filter for that purpose. But
£
D1...Dm

¤
have the desirable property of partitioning Xk in an intuitively appealing way into m orthogonal

frequency components that add up exactly to Xk. Consequently, replacing βkXk by Dγ in the

regression equation allows one to conveniently test for, and model, frequency dependence in βk,

with frequency stability corresponding to the null hypothesis that all m components of γ are equal.

In contrast, note that failing to replace Xkβk by Dγ when the m components of γ are not equal
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yields a mis-specified regression model for Y : bβOLSk cannot possibly be consistent for βk in this

model since βk does not in that case have a unique value to estimate.

Note also that, since Xk equals D1+...+Dm, replacing Xkβk by Dγ in a regression model leaves

the properties of the error term unaffected under the null hypothesis of no frequency dependence.

No sample information is lost; the only statistical cost is a loss ofm−1 degrees of freedom, since more
coefficients are being estimated. In contrast, a typical bandpass filtering analysis — e.g., Christiano

and Fitzgerald (2003a), Comin and Gertler (2003), or Den Haan and Sumner (2004) — applies a

bandpass filter to both Y and to some of the columns of X. Thus, one ends up in such analyses

quantifying the relationship between these filtered time series, rather than the relationship between

the actually observed variables. Such analyses also require an a priori selection of the frequency

band to consider, which (as is described below) our approach does not.

Finally, note that there is nothing essential about the simple form of the original model (Y =

Xβ+ε) in the analysis above. One could just as easily use this approach to investigate the frequency

dependence of the coefficient on Xk in more complex settings by replacing Xkβk with the weighted

sum Dγ regardless of how Xk enters the analysis - linearly or nonlinearly, instrumented or not,

etc. — using essentially the same econometric techniques and software one was already employing.

3.6 The Problem with Feedback — and a Solution using One-Sided Filtering

Note that bγOLS will be a consistent estimate of γ in equation (13) if and only if the error term
in this equation is uncorrelated with each of the regressors D1...Dm. Since the tth observation

on each of these regressors is the result of what amounts to a two-sided nonlinear bandpass filter

applied to the column vector Xk, this will be the case only if Xk is strictly exogenous — that is,

only if every observation on Xk is uncorrelated with every observation on the error term in the

original regression model. (This is, of course, equally the case for any methodology which applies

a two-sided bandpass filter to the kth regressor.) Unfortunately, feedback in the relation between

the components of Y and Xk induces exactly this kind of correlation.

For example, consider the analysis of possible frequency dependence in the parameter λ2 of the
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following bivariate equation system:

yt = λ1yt−1 + λ2xt−1 + εt (14)

xt = α1xt−1 + α2yt−1 + ηt

Clearly, this is a feedback relationship only if α2 is nonzero. But note that the xt equation implies

that

xt = α1xt−1 + α2yt−1 + ηt

= α1xt−1 + α2 (λ1yt−2 + λ2xt−2 + εt−1) + ηt

= α1xt−1 + α2λ1yt−2 + α2λ2xt−2 + α2εt−1 + ηt

so that xt is correlated with εt−1 if there is feedback from past yt to xt. But, two-sided fil-

tering implies that x∗t−1 depends upon xt, xt+1, xt+2, etc., so that x∗t−1 is thus correlated with

εt−1, εt, εt+1, εt+1, ..., which (under two-sided filtering) are correlated with ε∗t . Thus, in the presence

of feedback, a two-sided transformation of xt−1 will in general produce a transformed explanatory

variable, x∗t−1, which is correlated with the tranformed error term, ε∗t , yielding inconsistent least-

squares parameter estimates. (Examples of such two-sided filters include a filter based on the A

matrix as discussed above, or the Hodrick-Prescott (1987) filter, or bandpass filters such as those

given by Baxter and King (1999) and Christiano and Fitzgerald (2003).)

To eliminate this problem, we exploit the fact that the Tan-Ashley formulation is easily adapted

to use only one-sided filtering.13 The modified calculation steps through the sample using a moving

window of length τ . In the first step, observations one through τ on Xk (i.e, Xk,1, ...,Xk,τ ) are used

to compute the τ -dimensional column vectors D1...Dm, one for each of the m frequency bands.

The last (period τ) element in each of these vectors becomes the period τ observation on D1...Dm

for use in estimating equation (13). Next one uses the τ sample observations Xk,2, ...,Xk,τ+1 to re-

compute the τ -dimensional column vectors D1...Dm. Again the last (τ th) element in each of these

column vectors becomes the period τ+1 observation on D1...Dm for use in estimating equation

(13). And so forth.14 Thus, one could characterize D1...Dm as being the result of a set of m

13Christiano and Fitzgerald (2003b) also provide a one-sided version of their filter, but they do not propose
stepping this filter through the sample data, as is discussed below. Also, as noted above, their filter does not
have the desirable property of being able to partition Xk into m components that add up exactly to Xk.
14Windows-based, and RATS, software implementing this partitioning of a given input column vector is

available from the authors.
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one-sided bandpass filters obtained using a moving block of τ observations.

The resulting D1...Dm columns still add up precisely to the original explanatory variable (Xk)

over its last T − τ elements. These m columns are no longer orthogonal, but in practice they are

not highly correlated with one another. In any case, the orthogonality is of modest importance:

what is essential is that D1...Dm still precisely partition (sum up to) Xk and that they are now the

product of a one-sided filter.

One must lose the use of τ−1 start-up observations in estimating equation (13) in this way, but
this is necessary in order to avoid spurious results when feedback is present. This loss in degrees

of freedom is manageable in the Phillips curve application given in Section 5 below: 60 monthly

observations out of 288 at the beginning of the sample are sacrificed so as to be able to consider

frequencies corresponding to periods as large as sixty months. (Twelve of these were “lost” due to

lagged dependent variables in any case.)

Lastly, it must be mentioned that bandpass filters like the ones used here generically have

problems near the endpoints of the sample. The standard method for addressing this shortcoming

— e.g., Dagum (1978) and Stock and Watson (1999) — is to augment the sample using projected

values obtained from univariate autoregressive models. Here, we adopt a suggestion from Christiano

(2005) and form projections using a multivariate model (which includes four autoregressive lags,

seasonal dummies, and other significant predictors such as lags of the index of help wanted ads).

This model is estimated using observations from the beginning of the sample through the last of the

τ observations in the window, and used to forecast the series for an additional twelve months. The

resulting τ + 12 observations are then decomposed into the m frequency components, and the τ th

observation on each component is used to produce the values of D1...Dm from this window. The

D1...Dm column vectors produced in this way still (by construction) add up precisely to Xk; they

are still each the product of an entirely one-sided bandpass filter; and (since their values are now

no longer close to the endpoint of each window) they produce quite satisfactory decompositions.15

15 It would seem advisable to detrend the Xk data in each window, since a somewhat persistent time series
can appear quite trended in each of the sequence of windows, even though it is not trended overall. Thus, a
linear trend is estimated over the τ + 12 observations in each window, and subtracted from the Xk values
prior to decomposing it into them frequency components. After the decomposition is performed, observation
τ ’s estimated trend value is then used to form a separate series D0, or added back into observation τ of the
lowest frequency band, D1. In either case,

P
Di still sums to Xk. We note, however, that our empirical

results (in Sections 5.2 and 5.3) were not sensitive to whether this detrending was done or not, or to whether
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3.7 Frequency Band Specification

Selecting the number of frequency bands, and the particular set of frequencies to be included in

each band, is an important issue in implementing the analysis described above.

One approach is to specify m bands on a priori grounds; this is analogous to common practice

in empirical macroeconomics, where attention is often restricted to “business cycle” frequencies. In

the present context, this “calendar-based” approach might suggest a three-band formulation — one

band containing all frequencies corresponding to periods of less than, say, 18 months, a second band

containing frequencies corresponding to periods between 112 and 5 years, and a third containing

all frequencies corresponding to longer periods. This choice seems reasonable, but it is quite ad

hoc: one might equally well choose one of many other calendar-based frequency band structures.

Furthermore, one risks faulty inference. If the chosen calendar-based bands are consistent with

the actual pattern of frequency dependence present in the data, then this procedure will have high

power to detect that pattern. But if not, then the calendar-based test could have relatively low

power: One might unnecessarily fail to uncover an existing pattern of frequency dependence in a

particular regression coefficient through a maladroit selection of a calendar-based frequency band

structure. Moreover, even if one does still detect frequency dependence in spite of such a maladroit

choice, the pattern of frequency dependence thus observed will surely be distorted to some degree.

An alternative approach is to choose the number and composition of the frequency bands so as

to minimize an adjusted goodness-of-fit criterion, such as the Bayes-Schwarz Information Criterion

(BSIC). However, in that case the sampling distribution of the F statistic for testing the null

hypothesis of equal coefficients on all bands must be obtained by simulation so as to properly

account for the extensive specification search undertaken; unfortunately, this leads to a test of very

low power.

The approach adopted here is to simply allow the regression equation to estimate a distinct co-

efficient for every possible frequency allowed by the limited length of the window used to implement

the one-sided filtering. For example, with the 72-month windows used in the Phillips Curve model

estimated in Section 5 below, only 36 distinct frequencies — listed in Appendix 1 — are possible.16

D0 was used as a separate regressor.
16There are half as many frequencies as months in the window because there is both a sine and a cosine
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With, in this case, 288 sample observations, the degrees-of-freedom cost of estimating 36 frequency

band coefficients is not prohibitive.17

4 Detecting andmodeling frequency dependence in simulated data

In Section 3 above, existing approaches for detecting and modeling frequency-dependence were

reviewed, and it was shown that the usual (two-sided) pre-filtering approaches to the detection

of frequency dependence will yield misleading results in the presence of feedback. Finally, in

Section 3.6 we proposed a one-sided extension to the Tan-Ashley approach for analyzing frequency

dependence in the presence of feedback. In this section, we summarize the results from a small

simulation study which provides evidence for the efficacy of this proposed methodology. This

simulation study is intended to be suggestive rather than exhaustive. Consideration is limited to

two rather simple data generating processes; these are intended primarily to demonstrate that the

procedure can in fact correctly detect the presence and form of frequency dependence even when

feedback is present, and only partially to illustrate possible sources for the frequency dependence

observed below in the relationship between inflation and unemployment in U.S. data.

The simulation results reported below address three questions relating to data-generating processes

which feature feedback. First, in the presence of such feedback, does two-sided filtering actually lead

to a spurious finding of frequency-dependence when none actually exists? Second, does the one-

sided procedure proposed in Section 3.6 avoid such spurious findings? Finally, does the one-sided

procedure correctly detect, and appropriately model, frequency-dependence when such dependence

is present?

row in the A matrix of Section 3.4 for each distinct frequency.
17 It does seem a bit wasteful, however, in view of the fact that one expects the frequency variation across

frequencies to be fairly smooth. Consequently, we also investigated a more parsimonious approach in which
the variation of the 36 coefficients is modeled by means of a low-order polynomial, as in the distributed lag
literature. For the particular data used here, however, this approach — using both ordinary and Chebyshev
polynomials — yielded less sharp results. In this case the benefit of estimating and testing fewer coefficients
was outweighed by the cost (in terms of goodness of fit) imposed by the polynomial constraints.
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4.1 Spurious frequency dependence detection using two-sided filtering in the

presence of feedback

The data-generating process considered here is a particular bivariate VAR, given by:

yt = λ1xt−1 + λ2yt−1 + εy,t (15)

xt = α1xt−1 + α2yt−1 + εx,t

where λ1 = 0.25, λ2 = 0.55, α1 = 0.65, and α2 = 0.3, and where εy,t and εx,t are niid(0,1);

qualitatively similar results were obtained using numerous bivariate VAR specifications, however.

Since α2 6= 0, this bivariate system exhibits feedback; since both equations are linear, there is

no actual frequency dependence in these coefficients. For each of 1000 simulations, both the one-

sided and two-sided approaches were used to test for the presence of frequency dependence across

three frequency bands. The frequency bands used were set such that the lowest frequency band

coresponded to fluctuations with period greater than 6, the medium frequency band corresponded

to fluctuations with periods between 4.5 and 6, and the highest frequency band corresponded to

fluctuations with period less than 4.5.18

In each simulation run, the series xt was decomposed by frequency using both the one-sided and

two-sided procedures, yielding
n
D1,1−sided
t ,D2,1−sided

t ,D3,1−sided
t

o
and

n
D1,2−sided
t ,D2,2−sided

t ,D3,2−sided
t

o
,

with t = 1, ..., 300. In both cases, D1
t +D2

t +D3
t exactly equals xt.

Following this, yt was regressed on yt−1 and D1,k
t−1,D

2,k
t−1, and D3,k

t−1 first for k = 1-sided, and

then for k = 2-sided. In each case, an F -test testing equality of the coefficients on the three Dt−1

variables was performed. The resultant p-value was then recorded for each simulation. Since there

is in fact no frequency dependence in this linear model, the null hypothesis of equal coefficients on

the three components D1
t−1,D2

t−1, and D3
t−1 should be rejected (at the 5% level) in only about 5%

of the cases.

Although the procedures differed only in the method of decomposition, the results were starkly

different. When filtered using the two-sided methodology, the null of frequency dependence was

rejected at the 5% level in nearly 40% of the cases; this rejection rate was even higher in a number of
18Since Section 4 features artificial examples, this band structure (used throughout the section) was chosen

arbitrarily. See the Appendix for an example of the relationship between frequencies and periods.
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alternative specifications investigated. Evidently, two-sided filtering can readily lead to a spurious

detection of frequency dependence in the presence of feedback: the issues we raise in Section 3.6

are not merely a theoretical detail. Conversely, when filtered using the one-sided methodology (and

regarded as a test of frequency-dependence), the size of the one-sided procedure was correct: the

null was rejected at the 5% level of significance in ca. 5% of the cases.

4.2 Detection andmodeling of frequency dependence due to unmodeledMarkov-

switching

We now turn to our final question: does the one-sided procedure correctly detect, and appro-

priately model, frequency-dependence when such dependence is actually present? Two distinct

data-generating processes are considered, each of which generates frequency dependence in the co-

efficients of a (mis-specified) linear model one might actually estimate. The generating mechanism

examined in this section is a Markov-switching process; in this case, the frequency dependence

in the coefficients of the approximating linear model arises because of unmodeled nonlinearity in

the relationship. A second generating mechanism is considered in Section 4.3 below; there the

frequency dependence in the coefficients of the approximating linear model arises from unmodeled

heterogeneity due to aggregation.

In this section we examine a Markov-switching process which is a bivariate VAR alternating

between two regimes:

yt = Bxt−1 + λyt−1 + σεy,t εy,t ˜ niid (0, 1) (16)

xt = Axt−1 + γyt−1 + Sεx,t εx,t ˜ niid (0, 1)

whereA,B, and S are random variables whose values are regime-dependent: in regime 1, (A,B, S) =

(a1, b1, s1), while in regime 2, (A,B,S) = (a2, b2, s2). The process switches between regime 1 and

regime 2 according to a Markov process with switching probability q. If γ > 0, this system exhibits

positive feedback.

By construction, within each regime the parameter B is a fixed constant. However, if the

Markov-switching is unmodeled — i.e. if one estimates a (mis-specified) regression equation which

fails to account for regime switching — then the coefficient on xt−1 in a model for yt is frequency
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(and time) dependent unless a1 = a2 and b1 = b2. For example, suppose that a1 = 0.8, b1 = 0.5,

and s1 = 0.5, whilst a2 = 0.0, b2 = −0.5, and s2 = 1.0. In this case, when the process is in regime

1, xt is highly persistent and yt is positively related to past xt; in contrast, when the economy is in

regime 2, xt is not persistent and yt is inversely related to xt. This cross-regime coefficient disparity

can generate substantial frequency dependence in the relationship between yt and xt−1. To see why,

note that yt will be positively related to xt−1 when xt is in the “low-frequency” (persistent) regime,

whereas yt will be inversely related to xt−1 when xt is in the “high-frequency” (non-persistent)

regime. Over the course of the sample, the low-frequency variation in xt will be dominated by

periods during which xt was in phase 1, and the high-frequency variation in xt will be dominated

by periods during which xt was in phase 2. Note that if the values of A, B and S were the same

in both regimes, then the system would be an ordinary bivariate VAR whose coefficients do not

exhibit frequency dependence.

T = 300 observations on this process were generated using the following parameter values:

Parameter Regime 1 Regime 2
A 0.8 0.0
B 0.5 −0.5
λ 0.2 0.2
γ 0.3 0.3
S 0.5 1.0
σ 0.6 0.6
q 0.02 0.02

The series xt was decomposed by frequency using the one-sided procedure, yielding
©
D1
t ,D

2
t ,D

3
t

ª
.

As in Section 4.2, the three frequency bands chosen were set such that the lowest frequency band

coresponded to fluctuations with period greater than 6, the medium frequency band corresponded

to fluctuations with periods between 4.5 and 6, and the highest frequency band corresponded to

fluctuations with period less than 4.5. The dependent variable yt was then regressed on a constant,

yt−1, and D1
t−1,D2

t−1, and D3
t−1.

Regression results, with and without an allowance for frequency dependence, were as follows

(coefficient estimates appear below the coefficients, with t-statistics in parentheses):

yt = bα−0.17
(3.41)

+ bb
0.04
(0.96)

xt−1 + bλ
0.51
(9.51)

yt−1 + ut

yt = bα−0.09
(−1.97)

+ bb1
0.16
(3.82)

D1
t−1 + bb2−0.16

(−0.81)

D2
t−1 + bb3−0.55

(−6.15)

D3
t−1 + bλ

0.52
(10.94)

yt−1 + ut
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The F-test of no frequency dependence (i.e., H0 : b1 = b2 = b3) = 24.8, with p-value = 0.000000.

The pattern of frequency-dependence in the data is clearly captured by our procedure.

4.3 Detection and modeling of frequency dependence due to aggregation

The second data-generating process considered is a trivariate VAR:

yt = λ1z1,t−1 + λ2z2,t−1 + λ3yt−1 + σεy,t (17)

z1,t = ρ1z1,t−1 + γyt−1 + sεx1,t

z2,t = ρ2z2,t−1 + γyt−1 + εx2,t

where εy,t, εx1,t, and εx2,t are niid(0,1). If γ > 0, this system exhibits positive feedback. Suppose

that the analyst is unable to observe z1,t and z2,t, but can only observe their sum zt, defined as

(z1,t + z2,t). Unless λ1 = λ2 or ρ1 = ρ2, such aggregation will induce frequency-dependence in the

resultant bivariate VAR: the coefficient on zt−1 in a model for the {yt, zt} process will be frequency-
dependent. For example, suppose that ρ1 = 0.8 and λ1 = 0.5, whilst ρ2 = −0.1 and λ2 = −0.5.
In this case, yt is positively related to the persistent variable z1,t, and inversely related to the

non-persistent variable z2,t. This implies that the relationship between yt and zt−1 is frequency-

dependent: yt is positively related to low-frequency variations in zt−1 (which are dominated by

z1,t−1), and inversely related to high-frequency variations in zt−1 (which are dominated by z2,t−1).

T = 300 observations on this process were generated using the following parameter values:

Parameter Value
λ1 0.5
λ2 −0.5
λ3 0.2
σ 0.6
α1 0.8
α2 −0.1
s 0.5
γ 0.3

The series xt was decomposed by frequency using the one-sided procedure, yielding
©
D1
t ,D

2
t ,D

3
t

ª
.

As in the previous sections, the three frequency bands chosen were set such that the lowest fre-

quency band coresponded to fluctuations with period greater than 6, the medium frequency band
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corresponded to fluctuations with periods between 4.5 and 6, and the highest frequency band cor-

responded to fluctuations with period less than 4.5. Then yt was regressed on a constant, yt−1, and

D1
t−1,D2

t−1, and D3
t−1.

Regression results, with and without an allowance for frequency dependence, were as follows

(coefficient estimates appear below the coefficients, with t-statistics in parentheses):

yt = bα−0.21
(−4.06)

+ bb−0.02
(−0.53)

xt−1 + bλ
0.46
(8.48)

yt−1 + ut

yt = bα−0.11
(−2.18)

+ bb1
0.14
(4.02)

D1
t−1 + bb2

0.23
(1.51)

D2
t−1 + bb3−0.41

(−6.19)

D3
t−1 + bλ

0.42
(8.42)

yt−1 + ut

The F-test of no frequency dependence (i.e., H0 : b1 = b2 = b3) = 24.7, with p-value = 0.000000.

Again, the pattern of frequency-dependence in the data is clearly captured by our procedure.

One final remark on the simulation results for both this process and the Markov-switching

process considered in Section 4.2: we find that the presence of unmodeled frequency-dependence

in the relationship frequently leads to an initial linear model for yt which includes multiple lags

of xt, even though only xt−1 is actually influencing yt; furthermore the estimate of the coefficient

on xt−1 is frequently statistically insignificant. This latter observation is not surprising, since the

OLS coefficient estimate on xt−1 is in both cases an admixture of two different relationships, a

positive one at low frequencies, and a negative one at high frequencies. This finding suggests that

analysts may be missing some significant empirical relationships because of unmodeled frquency

dependence.

We conclude that the procedure described in Section 3.6 and 3.7 is both necessary and effective

in the presence of feedback.
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5 Phillips Curve Estimation Results

5.1 Regression model specification

From (3), a standard Phillips curve specification is of the form

πt = α+ βunt +
12X
j=1

δjπt−j + θZt + εt (18)

where unt is the non-seasonally-adjusted total civilian unemployment rate, and where Zt includes

seasonal dummies, a measure of the change in the relative price of energy (Oilt), and a measure

of the change in relative import prices.19 We consider monthly data over the period 1984-2003.20

The measure of inflation used in constructing πt is the growth rate of non-seasonally-adjusted CPI-

U-RS.21 As robustness checks, we also used the personal-consumption-expenditure (PCE) deflator,

and (in a parallel quarterly model) the quarterly gdp deflator, as the dependent variable in the

regression model. Results were qualitatively unchanged. Our extensive set of robustness checks are

summarized in Appendix B.

The series unt was decomposed into frequency bands un1...unk using the one-sided filtering

methodology described in Section 3.6 above, with k chosen as discussed below. Setting the window

length τ to a number larger than 60 months (or 20 quarters) — corresponding to using more than

19As in, for example, Staiger, Stock and Watson (2001), and Eller and Gordon (2002). The energy series
used was “energy commodities,” which is then divided by the CPI-U-RS (lagged one month). The import
price series used was the BLS Import Price Index (all commodities except petroleum), divided by the CPI-
U-RS (lagged one month). Inflation in the trade-weighted real exchange rate is another proxy which is often
used (e.g., Ball and Moffitt (200x) and Staiger, Stock and Watson (2001)), but we do not observe evidence
in favor of its inclusion.
20We choose to start our sample in 1984:1, following convention in the literature (e.g., Stock and Watson

(2005), who assert that “a large body of evidence ... informed our choice of a 1984 break,” and who obtain
statistical evidence for this break date.). This sample period focuses attention on the “Greenspan-era”
inflation dynamics. (However, beginning the sample in 1980 does not alter our results, as noted in Appendix
B.) Simultaneity bias is less likely to be problematic in monthly data. Here and following, heteroskedasticity-
consistent standard error estimates are quoted.
21The Bureau of Labor Statistics (BLS) has made numerous improvements to the CPI over the past

quarter-century. For example, in 1983 the BLS adopted a rental-equivalence approach to the measurement
of homeownership costs in the CPI-U; other methodological improvements have subsequently occurred.
While these improvements make the present and future CPI more accurate, historical price index series have
not been adjusted to consistently reflect all of these improvements. The CPI-U-RS (or CPI-U “Research
Series,” described in Stewart and Reed 1999) comes closest to this ideal; it consistently corrects the CPI-U
for all changes in methodology from 1978 onwards. Researchers seeking a (mostly) consistent series from
1967 onwards can append the CPI-U-RS to the CPI-U-X1 series, a series which at least incorporates rental-
equivalence homeownership costs. Note that other researchers, notably Crone, Nakamura and Voith (2001)
suggest that additional adjustments may be worthwhile.
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five years of data at the start of the sample in constructing the first window — seemed unreasonable,

given the length of our sample period. Consequently, τ was set to five years, implying that each unjt

observation is based on five-years’ worth of prior data. Furthermore, since (as discussed in Section

3.7) the sixty months of actual data (unt−59...unt) are augmented by twelve months of projected

data, the filtering window is 72 months long.

Equation (18) was then re-estimated using OLS in the form22

πt = α+
kX

j=1

βjun
j
t +

12X
i=1

δiπt−i + θZt + εt (19)

Here, unt was fully partitioned into 37 components — one for each distinct frequency allowed

using a 72 month rolling window, as discussed in Section 3.7.23 It is necessary to use the one-sided

filtering methodology discussed in Section 3.6, since we find evidence for significant feedback in

the πt − unt relationship; in particular, the null hypothesis that the lagged inflation rate πt−1 is

unrelated to movements in unt is rejected at the 2% level. Frequency-independence is rejected if the

null hypothesis H0 : βi = βj ,∀i 6= j is rejected. The existence of a Phillips curve is contraindicated

if H0 : β = 0 cannot be rejected.

22Additional lags of the unemployment rate were not significant.
23Appendix A lists the frequencies and periods associated with a 72-observation rolling window.

32



Mis-specification in Phillips Curve regressions

5.2 Empirical results

Estimating the standard Phillips curve specification of equation (18) over the sample period 1984:1-

2003:12 yields the OLS estimates:

πt = α−0.83
(−1.53)

+ β
0.01
(0.15)

unt +
12X
j=1

δjπt−j

F−test: p=0.000

+ θ1
0.04
(18.24)

Oilt + θ2−0.01
(−3.33)

Oilt−1

+ θ3
0.04
(2.56)

IPEt +
11X
i=1

θi+4monthit

F−test: p=0.000

+ εt (20)

Coefficient estimates, with their estimated t-statistics (based on robust standard error estimates)

in parentheses, are given above for some coefficients; for others, we simply present the p-value for

the F -test of the null hypothesis that all the coefficients in the distributed lag structure are zero.

The variables Oilt, IPEt, and month1t ...month11t are the relative price of energy, the relative price

of imports less petroleum, and seasonal dummy variables, respectively. Unlike many researchers

(e.g., Gordon 1997; Brayton, Roberts and Williams 1999), we find that lags in πt in excess of 12

months are not necessary to account for serial correlation in the model errors. This is likely due

to our estimation period, in that we avoid the problematic 1970s. Furthermore, we find that the

hypothesis
P12

j=1 δj = 1 is rejected by the data with a p-value of 0.002.

Note that the coefficient bβOLS is not statistically significant. Thus, assuming no frequency
dependence implies that the hypothesis H0 : β = 0 cannot be rejected over this sample period. In

other words, the estimation of a standard linear formulation of the Phillips curve over this time

period suggests that, in fact, there is no Phillips curve. As the simulation results in Sections 4.2

and 4.3 suggest, however, a statistically insignificant β estimate does not necessarily imply the

lack of a statistically significant Phillips curve relationship, since any frequency dependence in this

relationship renders bβOLSan inconsistent estimate.
Re-estimating the Phillips curve in the form (19) over the same sample period — i.e., replacing
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unt with the 37 frequency components un1t ...un
37
t — yields the OLS estimates:

πt = α−3.53
(−2.26)

+
37X
j=1

βjun
j
t

F−test: p=0.009

+
12X
j=1

δjπt−j

F−test: p=0.000

+ θ1
0.04
(15.86)

Oilt + θ2−0.01
(−2.45)

Oilt−1

+ θ3
0.05
(2.41)

IPEt +
11X
i=1

θi+4monthit

F−test: p=0.001

+ εt (21)

Relaxing the assumption of no frequency dependence reverses the conclusion regarding the existence

of a Phillips curve; that is, H0 : β1 = ... = β37 = 0 is rejected at p = 0.009. Thus, fluctuations in

the unemployment rate do have a statistically-significant relationship to fluctuations in the inflation

rate once we allow for frequency dependence in the relationship. Furthermore, we can clearly reject

the null hypothesis of no frequency dependence. In particular, the p-value for testing the null

hypothesis that β1 = β2 = ... = β37 is only 0.007. (This qualitative result — significant frequency

dependence at the 4% level or better — was robust across the entire set of model specification

variations listed in Appendix B.)

Since the coefficient of variation for each bβj is rather large — as with raw sample periodogram
estimates — some kind of smoothing must be imposed upon bβ1...bβ37 in order to learn anything about
the form of the frequency dependence; here, it is of particular interest to determine whether this

form is consistent with Friedman-Phelps theory. We discuss three smoothing approaches below,

each of which corresponds to an alternative way of smoothing of the bβj estimates across frequencies
(i.e., across values of j): averaging, imposing an a priori band structure, and parameterizing the

βj as a low-order polynomial in j.

34



Mis-specification in Phillips Curve regressions

• Averaging
One approach is to smooth the bβj across the 37 values of j by averaging over adjacent
coefficient estimates, using what amounts to a moving average. This averaging has no effect

on the p-value at which either null hypothesis (all the βj = 0, or all the βj equal to each

other) can be rejected. But it does impact the estimated standard deviation for each smoothed

estimate. Using an equally-weighted moving average of width 7 yields the following Figure:

Figure 2: MA(7) Smoothed Coefficient Estimates
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The coefficient estimates corresponding to unemployment rate fluctuations with periods less

than 3 months are not plotted because they were still too noisy to interpret even at this level

of smoothing. Note that the smoothed value of βj is negligible for unemployment fluctuations

with periods larger than about a year, and essentially negative for unemployment fluctuations with

shorter periods.
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• Imposing an a priori band structure
This approach, common in the real business cycle literature, imposes on the regression equa-

tion an a priori band structure that is suggested by economic theory. In particular, here we

identify periods ranging from 18-72 months as a “business-cycle” band, and thus impose the

restrictions β2 = β3 = β4 (the business-cycle band) and β5 = ... = β37 (a “high-frequency”

band, corresponding to fluctuations whose periods are less than 18 months). Our “business-

cycle” band does not quite match the definition typically used in the literature — i.e., those

fluctuations with periods between 18 and 60 months — since a filtering window of length 72

does not allow fluctuations with periods between 36 and 72 months in length to be distin-

guished (see Appendix A).24 The lowest frequency band — comprising the single explanatory

variable, un1t — corresponds to unemployment rate fluctuations with periods greater than 72

months.

Imposing these two restrictions, we find that one can still reject the hypothesis that βj are all

zero at p = 0.04, and that one can still reject the hypothesis that βj are all equal at p = 0.02.

A plot of the resulting bβj across periods looks like:

24As noted in Appendix B, we also used a seven-year window, which allowed a “business-cycle” band
of 19-48 months, closer to the standard partition used in the literature. These results still supported the
existence of a Phillips curve and the rejection of frequency-independence, but were less supportive of the
form of frequency-dependence imposed by the a priori band structure.
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Figure 3: A-priori Band Structure Coefficient Estimates
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Note that this approach leads to a similar conclusion regarding the general form of the fre-

quency dependence in the relationship; no doubt the p-values are larger because this arbitrary

band structure fits the data less well.
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• Parameterizing the bβj as a low-order polynomial in j

A final alternative imposes smoothness on the bβj by parameterizing bβj as a low-order polyno-
mial in j. This is the same device used in the distributed lag literature. Here the polynomial

order is chosen by optimizing a goodness-of-fit measure, such as FPE or BSIC. Doing so

with these data yields a second-order polynomial. This smoothing restriction is evidently too

restrictive, as one can now reject the hypothesis that βj are all zero only at the 7% level.

One can still reject the hypothesis that βj are all equal at p = 0.03, however. A plot of the

resulting bβj across periods looks like:

Figure 4: 2nd-Order Polynomial Coefficient Estimates
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We reiterate some salient points. Improperly imposing frequency-independence yields the con-

clusion that there is no Phillips curve. But once this assumption is relaxed, we can reject this

null hypothesis at p = 0.009, and can reject the assumption of frequency-independence, i.e.

H0 : β1 = β2 = ... = β37, at p = 0.007. Upon inspection of Figures 2-4, it appears that the

form of frequency-dependence is consistent with the Friedman-Phelps hypothesis if one associates

fluctuations in the unemployment rate with periods greater than about 12 months with movements

in the natural rate.

We find that only rather high-frequency fluctuations in the unemployment rate — that is, fluc-

tuations with periods less than a year or so — have an impact on inflation. Thus, the Phillips curve

relationship is indeed inverse, but it is restricted to relatively high frequencies; we do not observe

evidence for a relationship between inflation and the unemployment rate at low frequencies.

Finally, we find that the inflation impact of higher-frequency fluctuations in the unemployment

rate is economically, as well as statistically, significant. To quantify and display the magnitude of

this impact, we constructed the time series impactt:

impactt :=

¯̄̄̄
¯̄
⎛⎝ 37X

j=1

bβjunjt
⎞⎠− bβOLSunt

¯̄̄̄
¯̄

This series quantifies the magnitude of the estimated impact of fluctuations in unt on the inflation

rate from allowing for frequency dependence in the relationship. Because the frequency depen-

dence in the πt − unt relationship is almost entirely at high frequencies, impactt is quite noisy;

consequently, it is smoothed by fitting to a fourth order polynomial. Figure 5 plots this smoothed

series:
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Figure 5: Smoothed magnitude of the inflation rate impact of modeling the frequency

dependence in the relationship
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Figure 5 indicates that high-frequency fluctuations in the unemployment rate altered the inflation

rate to an economically significant extent over this time period: a model ignoring the frequency de-

pendence in the relationship would have understated the impact of unemployment rate fluctuations

on the inflation rate by over one percentage point.

The existence of frequency dependence in the πt − unt relationship indicates that much of the

Phillips curve literature suffers from a serious mis-specification problem: since the coefficient on unt

in a standard Phillips curve model is frequency dependent, estimates of this coefficient previously

reported in the literature are actually an admixture of several different coefficients. In particular,

the results obtained here indicate that fluctuations in unemployment that persist less than about

a year are significantly associated with a contemporaneous fluctuation (of opposite sign) in infla-

tion. In contrast, fluctuations in unemployment which persist longer than about a year are not

significantly associated with contemporaneous fluctuations in inflation. These findings are consis-
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tent with the Friedman-Phelps formulation: one might interpret transitory unt fluctuations, i.e.

those with periods less than about one year, as deviations from the natural rate (and thus nega-

tively associated with contemporaneous inflation); whereas more persistent unt fluctuations (with

periods larger than about one year) might be interpreted as movements in the natural rate, with

the implication that such persistent unemployment fluctuations are not associated with significant

inflation co-movements. Note that, as in King and Morley (2006) for example, the implicit natural

rate is significantly more volatile than conventional estimates would suggest (see Williams 2004);

concomitantly, under this interpretation of our results, a unit root process would be a rather poor

approximation to the natural rate dynamics.

In summary, then, there is a Phillips curve relation — but it applies only to unemployment

fluctuations with periods less than about one year. Consequently, econometric formulations of

this relationship which fail to distinguish unemployment fluctuations within this range from those

outside it are mis-specified. This result helps explain the apparent instability of estimated Phillips

curve models across disparate time periods: for example, the Phillips curve will appear to be absent

during periods in which unt fluctuations are quite persistent.

6 Conclusion

This paper makes two contributions. First, we present new econometric methodology which allows

one to consistently decompose a regression parameter across frequency bands, even when this

regressor is in a feedback relationship with the dependent variable in the model. This technique

is easy to apply and is applicable to a wide range of macroeconomic relationships.25 We also

demonstrate that two-sided filtering leads to inconsistent parameter estimates and yields unreliable

inferences about the existence of frequency-dependence when feedback is present in the relationship.

The second contribution of this paper is the application of this new technique to a standard

Phillips curve model using monthly US data from 1984-2003. Assuming that the relationship is not

25 Implementing RATS and FORTRAN code are available from the authors. Both of these programs use
1-sided filtering to decompose a given time series into components consisting of variation corresponding to
each distinct frequency allowed for a given window length. These components are only moderately correlated,
and sum precisely to the input time series.
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frequency dependent yields an estimate of the coefficient characterizing this Phillips curve relation-

ship which is essentially zero. In contrast, allowing for the possibility of frequency dependence in

this relationship, we find a significant Phillips curve relationship. In particular, our results show

that there is a significant inverse relationship for high-frequency fluctuations in the unemployment

rate — roughly speaking, for fluctuations whose period is less than about one year — and an in-

significant relationship for more persistent unemployment fluctuations. A standard hypothesis test

confirms that this pattern is statistically significant, at the 0.7% level. Our results in Figure 3, dis-

playing the economic impact of these high-frequency fluctuations in the unemployment rate upon

inflation, show that this impact is far from trivial.

What do these results mean? We draw two conclusions. First, our finding of statistically signif-

icant frequency dependence in this relationship implies that nearly all previously estimated Phillips

curve coefficients are an admixture of several different frequency-specific coefficients, some negative

and others negligible. In particular, one implication of our results is that the apparent Phillips

curve relationship can be expected to weaken or disappear in time periods when the unemployment

rate fluctuates very smoothly.

Second, our results are supportive of the Friedman-Phelps theory. Fluctuations in the unem-

ployment rate whose periods is less than about one year have an inverse relationship with inflation.

In contrast, fluctuations in the unemployment rate which persist for more than about one year

appear to have no relationship with inflation; the Friedman-Phelps theory would identify these

more persistent fluctuations with variation in the natural rate.
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7 Appendix A: Frequencies and periods associated with a 72-

month rolling filtering window

The Table below indicates explicitly which frequencies (and periods, in months) will correspond to

rows 2 and greater of the A matrix discussed in Section 3 with a rolling filtering window 72 months

in length. Row 1 corresponds to a within-window mean, through which the moving window will

capture fluctuations with periods greater than 72 months. A sinusoidal fluctuation in xt with

period equal to one of those listed here will appear entirely in the filtered series (Dj
t ) containing

that period; all other fluctuations will, to some degree, “leak” into the filtered series corresponding

to adjacent frequency bands. Passband filters with a smaller degree of leakage can be formulated

(e.g., Baxter and King, 1999), but do not yield filtered components which add up to the unfiltered

series value.

allowed frequency allowed period allowed frequency allowed period
0.014 72.00 0.264 3.79
0.028 36.00 0.278 3.60
0.042 24.00 0.292 3.43
0.056 18.00 0.306 3.27
0.069 14.40 0.319 3.13
0.083 12.00 0.333 3.00
0.097 10.29 0.347 2.88
0.111 9.00 0.361 2.77
0.125 8.00 0.375 2.67
0.139 7.20 0.389 2.57
0.153 6.55 0.403 2.48
0.167 6.00 0.417 2.40
0.181 5.54 0.431 2.32
0.194 5.14 0.444 2.25
0.208 4.80 0.458 2.18
0.222 4.50 0.472 2.12
0.236 4.24 0.486 2.06
0.250 4.00 0.500 2.00
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8 Appendix B: Robustness checks

We obtained similar results:

• Imposing the restriction P12
j=1 δj = 1 (Note, however, that the hypothesis H0 :

P12
j=1 δj = 1

was rejected with a p-value of 0.002).

• Specifying equation (20) using ∆π in the place of π, as in Stock and Watson (2005).
• Including the change in the trade-weighted nominal, or real, exchange rate in equation (20).
• Using the Personal Consumption Expenditures (PCE) price index as the measure of inflation
(broadly similar results were also obtained using the quarterly GDP deflator).

• Aggregating all fluctuations with period of one quarter or less into one band.
• Splitting the series Oilt into two series, 1984:1-1986:01 and 1986:02-2001:12. (The motivation
for this change is that the variance of this series appears to change markedly at the beginning
of 1986.)

• Allowing the US CPI inflation process to have one structural break (in mean) in 1990:4. (The
motivation for this change is that Benati and Kapetanios (2003) find compelling evidence for
its existence.)

• Constructing the forecasts of the unemployment rate using only lags of the unemployment
rate (and seasonal dummies), rather than on the basis of a richer multivariate specification.

• Applying the Tan/Ashley filter to a non-detrended unemployment rate, i.e., not detrending
within each window.

• Using six, rather than twelve, lags of π in in equation (20).
• Removing IPEt from equation (20).

• Running the regression over the period 1980:1-2003:12, rather than over 1984:1-2003:12, with
and without the Benati/Kapetanios regime dummy.

• Using a seven-year window rather than a five-year window.
• Using a four-year window rather than a five-year window.

• Including the estimated trend into the lowest frequency band and using 36 bands ¡D1...D36
¢

as regressors in (20), rather than 37
¡
D0...D36

¢
(See Section 3.6).
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None of the above specifications overturned the basic results in this paper, as can be seen
in Figures 4a and 4b, which plot the distribution of p-values for the two key hypothesis tests:
H0 : β1 = β2 = ... = βk and H0 : β1 = ... = βk = 0. The suggested pattern of frequency
dependence was also very similar across specifications.

Figure 4a: Distribution of p-values for H0 : β1 = β2 = ... = βk
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Figure 4b: Distribution of p-values for H0 : β1 = ... = βk = 0
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