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Abstract

While the conditional mean is known to provide the minimum mean square error (MSE)

forecast – and hence is optimal under a squared-error loss function – it must often in practice be

replaced by a noisy estimate when model parameters are estimated over a small sample.  Here

two results are obtained, both of which motivate the use of forecasts biased toward zero

(shrinkage forecasts) in such settings.  First, the noisy forecast with minimum MSE is shown to

be a shrinkage forecast.  Second, a condition is derived under which a shrinkage forecast

stochastically dominates the unbiased forecast over the class of loss functions monotonic in the

forecast error magnitude.  The appropriate amount of shrinkage from either perspective depends

on a noisiness parameter which must be estimated, however, so the actual reduction in expected

losses from shrinkage forecasting is an empirical issue. Simulation results over forecasts from a

large variety of multiple regression models indicate that feasible shrinkage forecasts typically do

provide modest improvements in forecast MSE when the noise in the estimate of the conditional

mean is substantial.
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Nowadays data sets are sometimes quite large, but the sample period over which the model specification

can be taken to be stable is usually much smaller.  Errors in estimating/forecasting input values of conditioning

variables contribute to this noise in addition.  These errors can be substantial also.  Indeed, Ashley (1983) provides

examples using actual macroeconomic forecasts where these errors overwhelm the model’s forecasting ab ility

altogether.
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1. Introduction

It has long been known that unbiased forecasts are optimal on a squared error criterion –

for example, see Granger and Newbold (1977).  In other words, the conditional mean of a time

series yt provides the best forecast of yt, in this limited sense of minimizing the mean square

error, or MSE.  Except for concerns about the adequacy of the squared error criterion itself, that

is a very useful result.  However, the conditional mean of yt is almost never known: in practice it

must be replaced with a more or less noisy estimate.  This noise arises from the sampling errors

inherent in estimating model parameters using finite (and often quite limited) data sets.2 

It is shown in Section 2 below that the unbiased forecast is no longer squared-error

optimal in this setting.  Instead, the minimum-MSE forecast is shown to be a shrinkage of the

unbiased forecast toward zero – a “mitigated” forecast, in the terminology of Armstrong (1978).  

The optimal degree of shrinkage depends on the noisiness of the unbiased forecast – i.e.,

on the sampling variance in the estimate of the conditional mean.  In particular, the amount of

shrinkage which is optimal to apply to  an unbiased forecast of yt, turns out to depend simply

on the square of what one might call ’s “sampling coefficient of variation”  –  the ratio of its

error variance (as an estimator of the conditional mean) to the square of the conditional mean

itself.

Since this coefficient of variation must itself be estimated, the practical significance of

these results hinges on whether shrinkage forecasts based on estimated values of it provide
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systematic improvements over the original unbiased forecast.  Simulation results in Section 3

using a variety of multiple regression models indicate that modest improvements in the forecast

mean square error (MSE) can be obtained in this way.

The forgoing results go beyond the usual optimal forecast – i.e., the conditional mean –

yet still focus on optimizing expected loss for a particular loss function, the squared error loss

function in this case.  In contrast, the results developed in Section 4 transcend the framework of

optimal forecasting altogether.  In these results a standard stochastic dominance theorem from the

microeconomics literature is exploited to yield a verifiable necessary and sufficient condition

under which a particular shrinkage forecast stochastically dominates the unbiased forecast. 

Satisfaction of this condition implies that the expected loss from the shrinkage forecast is no

larger than that of the unbiased forecast over the entire class of loss functions which are

nondecreasing functions of the forecast error magnitude and further implies that its expected loss

is strictly less than that of the unbiased forecast for at least one loss function in the class. 

Calculations using this condition and based on an assumption of normally distributed errors show

that shrinkage forecasts in general dominate the unbiased forecast over this class of loss

functions.  Thus, it can be asserted that shrinkage forecasts are in principle an improvement over

the conditional mean in a sense that goes beyond the concept of optimality.

Since the degree of shrinkage for which the shrinkage forecast dominates the unbiased

forecast again depends on the square of ’s  sampling coefficient of variation, the practical

significance of these results again hinges on whether shrinkage forecasts based on estimated

values of this coefficient of variation still provide systematic improvements over the unbiased

forecast.  Simulations in Section 4 which (similar to those of Section 3) examine forecasts from a
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variety of multiple regression models, again indicate that modest improvements in the forecast

mean square error (MSE) can be obtained in this way.

Section 5 concludes the paper with a discussion of how these results can be implemented

in practice.
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This comment assumes that the observations in the X matrix are taken to be fixed; where they are

stochastic, their own sampling variation contributes to the variation in <T+1 also.
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(1)

(2)

2. Squared-Error Optimal Shrinkage Forecasts

In this section it is shown that the mean square error of an unbiased, but noisy, forecast is

always improved by shrinking it to some degree toward zero.  

In particular, suppose that yt is to be forecast for period T+1 and that the expected value

of yT+1 can be modeled using a finite data set of consisting of T observations on k explanatory

variables and contained in the T × k matrix X.  Let  be an unbiased estimate of  

provided by this model.  {For example, using the notation of the multiple regression model

example developed in Section 3,  is just  where is a row vector containing the

observations on the k explanatory variables for period T+1.}  Then

defines :y and also defines LT+1, the error the model makes in estimating the conditional mean of

yT+1.  Clearly,   equals zero since  is assumed to be an unbiased estimate of

  This error LT+1 might reasonably be called the “sampling error” in  since – as

the multiple regression model example used in Section 3 makes abundantly clear – it is due to the

sampling errors made in estimating the model parameters.3  The forecast  is here called

“noisy” insofar as , the variance of this sampling error, is positive.

Next, note that yT+1 itself is decomposable into its conditional mean plus an error:
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where   equals zero by construction.  One might sensibly call ,T+1 the “instrinsic

forecast error” since this is the forecast error that would remain if  could be obtained

without error.

It is assumed here that ,T+1 and LT+1 are uncorrelated.  Since the model for 

could be easily improved by adding additional linear terms if this were not so, this is a reasonable

assumption to make.  In the context of the multiple regression model example used in Section 3,

,T+1 and LT+1 are uncorrelated so long as the model error term is serially uncorrelated.

Combining equations (2) and (3), the forecast error,  can be written:

yielding

Now consider instead the “shrinkage forecast” , where 8 is a parameter to be

chosen.  It is not necessary to restrict the values of 8 to the interval [0,1) but the term “shrinkage”

might be inapposite otherwise.  The errors made by this forecast are:
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Note that  is a biased forecast if 8 is unequal to one, since <T+1 and ,T+1 have mean zero. 

But if 8 is in the interval [0,1), then its error variance is smaller than that of the unbiased

forecast,  Since the mean square error of a forecast can be decomposed into the sum of its

error variance and the square of its bias, this variance reduction raises the possibility that 

might have smaller MSE than the unbiased forecast,   And it turns out that  that  does

have smaller MSE than the unbiased forecast so long as 8 is not too small.  In fact, Theorem 1

below shows that the minimum-MSE forecast is always a shrinkage forecast whenever  is

strictly positive:

Theorem 1 

Given :y, <T+1, and ,T+1 as defined above in equations 1 and 2, the shrinkage forecast

which minimizes the mean square forecasting error is  where 8* is

 

and  is what might sensibly be called ’s coefficient of variation due to its

sampling error <T+1.   

Proof:   See Appendix 1.

Note that 8* is clearly less than one so long as  is strictly positive.  In other words, the

minimum-MSE forecast of yT+1 is shrunk toward zero so long as , the conditional

mean of yT+1, is estimated with error.  

In fact, since  is positive for all values of 8 > 8*, the value of 
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 is strictly less than  for all values of 8 in the interval [8*, 1).  Evidently,

the drop in the error variance as one shrinks down from  has a greater impact on the forecast

MSE, at least at first, than does the increase in the shrinkage-induced bias.

It is interesting to note that the optimal shrinkage factor (8*) depends only on the

“noisiness” of  as an estimator of the conditional mean , as quantified by : it

does not depend on , the variance of the intrinsic forecast error,  

Of course,  is not known in practice, so it must be estimated.  As the multiple

regression example in the next section demonstrates, it is not particularly difficult to estimate

  In fact, one can easily obtain such an estimate using the usual estimated standard error for

the unbiased forecast.  But if  is too severely under-estimated, then will not have

smaller MSE than .  Moreover, where 8* is replaced in this way by a sample estimate 

the variance of  will exceed the variance of because of the sampling variance in

  The practical question thus becomes: can  be estimated sufficiently well that  is

an improvement on ?  This question is addressed in the next section.
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3. A Simulation Study of the Performance of the Estimated MSE-minimizing
Shrinkage Forecast in Multiple Regression Models

This section examines the performance of the minimum-MSE shrinkage forecast, 

 derived above, where yT+1 is forecast using a multiple regression model based on k

observed explanatory variables and estimated over T sample observations.  In this case, as will

become evident below, the usual estimate of the standard error of the unbiased forecast can be

used to construct a straightforward consistent estimator of the forecast coefficient of variation

 needed to obtain using Theorem 1.  The simulation results quoted here quantify the

circumstances and degree to which this estimate of  is sufficiently accurate so that the

shrinkage forecast  has lower MSE than the unbiased forecast,   Obviously, many

real-world forecasts are not obtained from multiple regression models.  But many are and, in any

case, the results obtained for this type of forecasting model shed light on the applicability and

(modest) effectiveness of the shrinkage techniques proposed here.

It is assumed, then, that the column vector of dependent variable observations,

Y = (y1 ... yT)t,  is generated by the usual multiple regression model:

where X is a given T×k matrix of full column rank with typical element xtj, containing the sample

data on the k explanatory variables, and IT is a T×T identity matrix.  It is assumed that this same

model also holds for the forecast period, where t equals T+1.  

The 1×k vector of explanatory variable values for period T+1  –  i.e.,  =  (xT+1,1 ...
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Note that the superscript “t” denotes the transpose here and throughout the rest of this paper – it is not

indexing time period t.

9

xT+1,k)  –  is assumed to be known but, of course, yT+1 is not.4  Since the forecasts are conditional

on X, it and  are treated as fixed.  

In the context of this model it is well known that least squares estimation yields the

estimator 

which is unbiased and efficient for $ and that the estimator 

is unbiased and consistent for 

Recalling that  denotes the given and fixed k-dimensional row vector (xT+1,1 ... xT+1,k),

this model implies that the conditional mean of yT+1 is just

and the unbiased forecast of yT+1 from this model is 
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Recall that the derivations of the expressions for the  and   in Section 2 require

that  <T+1 and ,T+1 are uncorrelated.
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Since <T+1 is  it follows that 

 

which shows explicitly that <T+1 in this model arises entirely from the sampling errors in and

in fact is just a weighted sum of ,1 ... ,T, the model errors during the sample.  The assumption

that var(,) =   implies that ,1 ... ,T are uncorrelated with each other; since the model is

assumed to also hold for period (T+1), this implies that ,T+1 is uncorrelated with all previous

errors and hence with <T+1.
5

From expressions in Section 2,  can thus be consistently estimated

by

and the optimal shrinkage factor  obtained from 

By construction,  is strictly less than   However, due to the

sampling errors contaminating  it is not so clear that  is strictly less than

  To examine this issue, the multiple regression model described above was

simulated Nrep = 10,000 times for each of a variety of values of T, k, and   The model
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Except for  the first column of X and the first component of xT+1; these were set to one so that $1 provided

an intercept for the regression model.  Note that X and xT+1 were nevertheless treated as fixed in the estimation and

forecasting – there is no contradiction here.  To clarify this point, however, it is worth noting that one should expect

that the sample variance of observed across the N rep simulations will exceed due to the fact that

variation in  arises both from variation in the model errors and from the fact that each of the Nrep models is

different because it has a different set of explanatory variables.

7
Generally speaking, shrinkage is less effective with values of k smaller than those reported here and more

effective with values of k larger than those reported here.

8
The MSE ratio figures for an evenly-spaced grid of  values were obtained by interpolation using a

regression equation in which the ratio observations over a grid of twenty  values (from 0.5 to 10.0) were fit to a

cubic polynomial in the corresponding average  values.
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coefficients were held fixed ($j = 1 for j = 1 ... k), but on each repetition a new set of explanatory

variables (X and xT+1) were used.  So as to generate a wide variety of different multiple

regression models, the components of X and xT+1 used on each repetition were generated as

independent draws from the unit normal distribution.6  

Each repetition yielded an observed forecast error from the shrinkage forecast

 and from the unbiased forecast  from which the MSE  was

calculated for each forecast by averaging appropriately over the Nrep simulations.  The resulting

MSE ratios are tabulated in Table 1; Table 2 displays analogous results where only half as much

shrinkage was done – e.g., if was .70 for a particular simulation, then a value of .85 was

actually used.  This option was explored so as to reduce the risk of shrinking too much due to

errors in estimating cv<.  The ratios are tabulated only for selected combinations of T and k; more

extensive tabulations are available in an unpublished appendix.7  Also, the reader will note that

these tables display the MSE ratios as a function of the model’s fit to the sample data, measured

by the average observed value of R2 adjusted for degrees of freedom   rather than as a

function of  this is more easily interpretable.8 
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The results in Table 1 indicate that the minimum-MSE shrinkage forecast 

obtained using the estimated value of cv< provides notably more accurate forecasts where  the

variance in the errors in estimating the conditional mean of yT+1 is substantial – i.e. for ill-fitting

models and small samples.  For models with larger values of T and   however, using the full

amount of shrinkage indicated by the estimated value of cv< may not always improve on the MSE

of the unbiased forecast.  This is because the available MSE reduction is smaller in such cases

and hence more easily overwhelmed by over-shrinkage due to an overestimate of cv<. 

Consequently, the empirical performance of a less ambitious shrinkage forecast, which shrinks

the unbiased estimator by only half as much as would be optimal if the estimate of cv< were

error-free, is examined in Table 2.  This shrinkage forecast is less effective for very weak models,

but more effective – and not very risky –  for stronger models.

Overall, the forecast efficiency gains from shrinkage are – as indicated at the outset –

modest, except in instances where the conditional mean is quite noisy due to poor fit and/or small

estimation samples.  On the other hand, the shrinkage estimator is very easy to implement and

these simulations indicate that there are gains to be had from this source.
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Table 1

MSE Reduction Using Full Shrinkage Based on Estimated cv<

T = 10 T = 20 T = 40 T = 60 T = 80

k = 3 k = 5 k = 8 k = 10 k = 10

0.05 0.803 0.856 0.897 0.921 0.947

0.10 0.819 0.870 0.910 0.933 0.956

0.15 0.835 0.885 0.923 0.943 0.964

0.20 0.850 0.898 0.934 0.953 0.972

0.25 0.864 0.911 0.944 0.961 0.978

0.30 0.878 0.924 0.954 0.969 0.984

0.35 0.892 0.935 0.962 0.975 0.988

0.40 0.905 0.946 0.970 0.981 0.992

0.45 0.917 0.956 0.977 0.986 0.995

0.50 0.930 0.966 0.983 0.991 0.998

0.55 0.941 0.975 0.988 0.994 1.000

0.60 0.953 0.983 0.992 0.998 1.001

0.65 0.964 0.990 0.996 1.000 1.003

0.70 0.975 0.996 1.000 1.002 1.003

0.75 0.986 1.002 1.002 1.004 1.004

0.80 0.996 1.007 1.005 1.005 1.004

0.85 1.006 1.011 1.007 1.006 1.004

0.90 1.017 1.014 1.008 1.006 1.004

0.95 1.027 1.016 1.010 1.006 1.004
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Table 2

MSE Reduction Using Half Shrinkage Based on Estimated cv<

T = 10 T = 20 T = 40 T = 60 T = 80

k = 3 k = 5 k = 8 k = 10 k = 10

0.05 0.885 0.916 0.939 0.953 0.968

0.10 0.893 0.923 0.946 0.959 0.973

0.15 0.901 0.930 0.952 0.964 0.977

0.20 0.908 0.937 0.958 0.969 0.981

0.25 0.916 0.943 0.963 0.973 0.984

0.30 0.922 0.950 0.968 0.977 0.987

0.35 0.929 0.955 0.972 0.981 0.989

0.40 0.936 0.961 0.976 0.984 0.991

0.45 0.942 0.966 0.980 0.987 0.993

0.50 0.949 0.971 0.983 0.989 0.994

0.55 0.955 0.976 0.986 0.991 0.996

0.60 0.961 0.980 0.988 0.993 0.997

0.65 0.967 0.984 0.991 0.995 0.997

0.70 0.973 0.988 0.993 0.996 0.998

0.75 0.979 0.991 0.995 0.997 0.999

0.80 0.985 0.994 0.997 0.998 0.999

0.85 0.991 0.997 0.998 0.999 0.999

0.90 0.998 1.000 1.000 1.000 1.000

0.95 1.004 1.002 1.001 1.001 1.000
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It should be noted that – largely to accommodate the standard notation used in multiple regression

modeling – there are several notational differences between the present paper and Ashley (1990).  In particular, the

variables here called Tasy, <, 8, and cv< are there called 8, ,, k, and t-1.
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4. The Shrinkage Forecast Which Stochastically Dominates the Unbiased Forecast

Ashley (1990) uses a standard result from stochastic dominance theory to obtain an

explicit condition under which  the shrinkage of an unbiased estimator of a parameter

$, stochastically dominates  itself.  If this necessary and sufficient condition is satisfied

for a particular value of the shrinkage parameter (8), then the expected loss from  is no

larger than that of   for any loss function in the class of all loss functions which are

continuous nondecreasing functions of M(<; Tasy), the generalized magnitude of <, the estimation

error; and this expected loss is strictly less than that of   for at least one loss function in

the class.9  The generalized error magnitude is defined as:

so that Tasy quantifies the degree of asymmetry in the loss function.

Theorem 2, derived in Appendix 2 below, provides an analogous necessary and sufficient

condition under which  the shrinkage of an unbiased forecast of yT+1, stochastically

dominates  itself.  If this condition is satisfied for a particular value of the shrinkage

parameter (8), then the expected loss from  is no larger than that of  for any loss

function in the class of all loss functions which are continuous nondecreasing functions of

M[ Tasy], the generalized magnitude of the forecast error; and this expected loss is

strictly less than that of   for at least one loss function in the class.  In Section 2 this forecast
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error was shown to be 

where :y is the conditional mean of yT+1, <T+1 is what was called the “sampling error” in 

(i.e., ), and ,T+1 is what was called the “intrinsic forecast error” in  (i.e., ).

Theorem 2 is a non-trivial extension of the derivation in Ashley (1990) due the presence here of a

second random term (,T+1) in the expression for the forecast error.

Theorem 2:  

Given :y, <T+1, and ,T+1 as defined in equations 1 and 2 of Section 2, the shrinkage

forecast  stochastically dominates the unbiased forecast  over the class of loss

functions which are nondecreasing functions of the generalized forecast error magnitude

M[ Tasy] if and only if 

is greater than or equal to

for all non-negative J, with strict inequality holding for at least one value of J and where

(1)   is the standardized cumulative distribution function of <T+1 conditional

on the value of ,T+1,
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Similar  calculations could be done for o ther values of Tasy.
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(2)   is the standardized density function for ,T+1,

(3)    or “ ’s coefficient of variation due to the sampling error <T+1,”

and

(4)    or “ ’s coefficient of variation due to the intrinsic forecast error

,T+1.”

Proof:   See Appendix 2.

This condition for stochastic dominance is readily checked for the special case where <T+1

and ,T+1 are uncorrelated gaussian variates: good numerical approximations are available for the

cumulative distribution function of a unit normal variate (the function ) and the remaining

integration over z = ,T+1/F, is not troublesome.  Results of such calculations are given in Table 3

for the symmetric case, where Tasy is set to one.  What is displayed there is 8sdom ,  the lower limit

of an “unbiasedness dominating interval” – an interval containing all of the values of 8 for which

the shrinkage forecast  stochastically dominates the unbiased forecast .  These results

were obtained by decrementing the value of 8 from 1.00 in steps of .01 until the condition of

Theorem 2 is no longer satisfied.10

Note that Table 3 tabulates 8sdom for different values of  as well as for

different values of cv<.  In contrast, recall that the minimum-MSE shrinkage forecast does not

depend on  the variance of the intrinsic forecast error.  It is also worth noting that the

shrinkage factor which is optimal for the squared error loss function is generally similar to 8sdom 

when  is relatively small.  
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The minimum-MSE shrinkage factor can be either above or below the lower limit of the

unbiasedness dominating interval.  This is not an error in the calculations.  It is possible for the

minimum-MSE shrinkage factor to lie outside the unbiasedness dominating interval since what is

optimal for the squared error loss function could, for some other loss function, yield a forecast

with higher expected loss than the unbiased forecast.  And the minimum-MSE shrinkage ratio

can lie well inside the unbiasedness dominating interval since shrinkage factors well below the

optimal value can still have MSE less than that of the unbiased forecast.

It is also noteworthy that the value of 8sdom fairly suddenly approaches one (the unbiased

forecast) when cv, exceeds a threshold value.  Still, the main thing to be learned from these

results is that fairly substantial amounts of shrinkage stochastically dominate the unbiased

forecast when the unbiased forecast is itself noisy (so that cv< is substantial) and the intrinsic

forecast error  is not too large, so that cv, is small.
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The "min MSE" column gives the optimal shrinkage ratio for a squared error loss function, [1 + (cv<)

2 ]-1.
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Table 3

8sdom ,  the Lower Limit of the Unbiasedness Dominating Interval for Gaussian Errors and Symmetric Loss Functions11

cv< min MSE  cv, =0.00 cv,= 0.25 cv,= 0.50 cv, =0.75 cv, =1.00 cv, =1.25 cv, =1.50 cv, =1.75 cv, =2.00

 0.25     0.94     0.90     0.89     1.00     1.00     1.00     1.00     1.00     1.00     1.00 

 0.50     0.80     0.71     0.69     0.67     1.00     1.00     1.00     1.00     1.00     1.00 

 0.75     0.64     0.55     0.52     0.44     0.49     1.00     1.00     1.00     1.00     1.00 

 1.00     0.50     0.44     0.41     0.30     0.32     0.38     0.88     1.00     1.00     1.00 

 1.25     0.39     0.36     0.33     0.24     0.19     0.26     0.30     0.81     1.00     1.00 

 1.50     0.31     0.31     0.28     0.20     0.13     0.17     0.22     0.25     0.77     1.00 

 1.75     0.25     0.26     0.23     0.17     0.11     0.09     0.16     0.18     0.20     0.74 

 2.00     0.20     0.23     0.20     0.15     0.10     0.05     0.11     0.13     0.15     0.54 
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The effectiveness of choosing a forecast shrinkage factor either at the lower limit of the

unbiasedness dominating interval or in the middle of this interval is investigated here using the

same simulated multiple regression forecasts as in Section 3.  

In these simulations cv< is estimated in the same way as before.  The stochastic

dominance condition provided by Theorem 2 also requires a value for cv,, however.  But note

that there is no need to estimate cv, since it enters the stochastic dominance condition only as the

ratio cv,/cv<, which is completely determined by the observed data on the explanatory variables:

Again, as in the Table 3, the results are presented for the special case of symmetric loss

functions (Tasy equal to one) and for both the fully shrunken value of  –  i.e., the smallest

estimate of  8sdom for which  dominates  –  and for a less ambitious shrinkage

forecast which is shrunk only half as much away from the unbiased forecast.  These results are

displayed in Tables 4 and 5.

Comparing the results in Tables 4 and 5 to the analogous results in Tables 1 and 2, where

the minimum-MSE shrinkage factor was used, it is immediately evident that shrinkage forecasts

based on  are less effective in terms of MSE reduction.  This is as one might expect since

the minimum-MSE shrinkage factors are obviously optimized for this particular criterion.  This

effect is minor for small samples (T = 10 and T = 20), but quite marked for sample sizes much

larger than this.  What is going on is that the average amount of shrinkage being applied is

declining quickly to zero (i.e.,   is quickly increasing toward one) as T increases because
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this increase in sample length increases the precision with which the model parameters are

estimated, decreasing cv<.  This causes the ratio cv,/cv< to often lie beyond the threshold value

observed in Table 3, where 8sdom suddenly increases to one.  

It seems reasonable to conclude that   provides reasonably useful shrinkage

forecasts, which are almost as effective in MSE terms as the minimum-MSE shrinkage forecasts,

for T = 10 or T = 20, but that the price exacted for the additional generality (in terms of lower

expected loss over the entire class of loss functions which are nondecreasing functions of the

error magnitude) is too high for sample sizes much larger than this.
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Table 4

MSE Reduction Using Full Stochastic Dominance Shrinkage Based on Estimated cv<

T = 10 T = 20 T = 40 T = 60

k = 3 k = 5 k = 8 k = 10

0.05 0.816 0.921 0.988 0.998

0.1 0.827 0.926 0.987 0.998

0.15 0.838 0.931 0.987 0.999

0.2 0.850 0.937 0.987 0.999

0.25 0.862 0.942 0.988 0.999

0.3 0.874 0.948 0.989 0.999

0.35 0.887 0.955 0.990 0.999

0.4 0.899 0.961 0.991 0.999

0.45 0.912 0.967 0.993 0.999

0.5 0.925 0.973 0.994 0.999

0.55 0.939 0.980 0.996 0.999

0.6 0.952 0.986 0.997 0.999

0.65 0.966 0.991 0.999 0.999

0.7 0.980 0.997 1.001 0.999

0.75 0.993 1.002 1.002 1.000

0.8 1.007 1.006 1.003 1.000

0.85 1.021 1.010 1.004 1.000

0.9 1.035 1.014 1.004 1.000

0.95 1.049 1.016 1.005 1.001
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Table 5

MSE Reduction Using Half Stochastic Dominance Shrinkage Based on Estimated cv<

T = 10 T = 20 T = 40 T = 60

k = 3 k = 5 k = 8 k = 10

0.05 0.890 0.953 0.993 0.999

0.1 0.895 0.956 0.993 0.999

0.15 0.900 0.958 0.992 0.999

0.2 0.906 0.961 0.992 0.999

0.25 0.911 0.963 0.993 0.999

0.3 0.917 0.966 0.993 0.999

0.35 0.922 0.969 0.993 0.999

0.4 0.928 0.971 0.994 0.999

0.45 0.934 0.974 0.995 0.999

0.5 0.940 0.977 0.995 0.999

0.55 0.946 0.980 0.996 1.000

0.6 0.953 0.983 0.997 1.000

0.65 0.960 0.986 0.998 1.000

0.7 0.967 0.989 0.999 1.000

0.75 0.974 0.992 0.999 1.000

0.8 0.982 0.994 1.000 1.000

0.85 0.990 0.997 1.001 1.000

0.9 0.998 1.000 1.001 1.000

0.95 1.007 1.002 1.002 1.000
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5. Conclusions

From a conceptual point of view, this paper makes two contributions:

1. Where only a noisy estimate of the conditional mean is available – due, for example, to

errors in estimating model parameters or to errors in measuring/forecasting explanatory variables

needed for the forecast – it is shown that the optimal forecast on a squared-error criterion is

always a shrinkage of the estimated conditional mean (the unbiased forecast) toward zero.  The

optimal degree of shrinkage depends in a simple way on the amount of noise in the conditional

mean estimate, but not at all on the dispersion of the value to be forecast around its conditional

mean.

And:

2. In an analysis transcending the concept of optimality altogether, a fairly simple

condition is derived under which a given shrinkage of the conditional mean estimate provides a

forecast which stochastically dominates the unbiased forecast.  When this condition is satisfied,

this shrinkage forecast has expected loss no larger than that of the estimated conditional mean for

all loss functions in the class of loss functions which are nondecreasing functions of the

generalized magnitude of the forecast error, and it yields expected loss strictly less than that of

the estimated conditional mean for at least one loss function in this class.  This stochastic

dominance condition again depends on the amount of noise in the conditional mean estimate, but

it also depends on the dispersion of the value to be forecast around its conditional mean. 

Calculations based on a restriction to gaussian errors and symmetric loss functions indicate that

the maximum amount of shrinkage for which the forecast still dominates the unbiased forecast is

similar to that which minimizes the MSE so long as the dispersion of the value to be forecast
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around the unbiased forecast is substantially smaller than the sampling variance of the

conditional mean estimator.

These results are consistent with recent work in the empirical macroeconomics literature,

such as Dave (2004), which finds pervasive evidence for biased expectations in the investment

spending behavior of individual Canadian manufacturing firms.

From an applications point of view, the extensive simulations obtained here using a

variety of multiple regression forecasting models indicate that useful empirical approximations to

the minimum-MSE shrinkage forecast can be readily obtained, but that the estimates of the

forecast stochastically dominating the unbiased forecast are of practical use only for very small

samples.  In particular, the results reported in Tables 1 and 2 indicate that the empirical

approximations to the minimum-MSE shrinkage forecast can provide modest but non-negligible

MSE reductions in a variety of circumstances where the noise in the estimated conditional mean

forecast is substantial – i.e., where the sample is fairly small and adjusted R2 is not too large. 



26

References

Armstrong, J. Scott (1978)  Long Range Forecasting New York: Wiley-Interscience.

Ashley, Richard (1983)  “On the Usefulness of Macroeconomic Forecasts as Inputs to

Forecasting Models” Journal of Forecasting 2, pp. 211 - 223.

Ashley , Richard (1990)  “Shrinkage Estimation with General Loss Functions: An Application of

Stochastic Dominance Theory”  International Economic Review 31(2), pp. 301-313.

Blackwell, D.  (1951) “Comparison of Experiments” in Proceedings of the Second Berkeley

Symposium on Mathematical Statistics and Probability  Berkeley: University of

California Press, pp. 93 -102. 

Dave, C. (2004)  “Are Investment Expectations Adaptive, Rational or Neither?” (Unpublished

manuscript). 

Granger, C. W. J. and Newbold, P. (1977)  Forecasting Economic Time Series  New York:

Academic Press.

Hadar, J. and W. R. Russell (1969) “Rules for Ordering Uncertain Prospects”  American

Economic Review 54, pp. 25-34.

Tesfatsion, L. (1976) “Stochastic Dominance and the Maximization of Expected Utility” Review

of Economic Studies 43, pp. 301 - 315.



27

Appendix 1 
Proof of Theorem 1

Theorem 1 

Given :y, <T+1, and ,T+1 as defined above in equations 1 and 2, the shrinkage forecast

which minimizes the mean square forecasting error is   where 8* is

 

and  is what might sensibly be called ’s coefficient of variation due to its

sampling error <T+1.   

Proof:  

The mean square error of the shrinkage forecast is thus:

so that 

Consequently, setting 
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implies that 

where .   This value of 8 is clearly a global minimum since

is positive. 
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Appendix 2 
Proof of Theorem 2

Theorem 2 

Given :y, <T+1, and ,T+1 as defined in equations 1 and 2 of Section 2, the shrinkage

forecast  stochastically dominates the unbiased forecast  over the class of loss

functions which are nondecreasing functions of the generalized forecast error magnitude

M[ Tasy] if and only if 

is greater than or equal to

for all non-negative J, with strict inequality holding for at least one value of J and where

(1)   is the standardized cumulative distribution function of <T+1 conditional

on the value of ,T+1,

(2)   is the standardized density function for ,T+1,

(3)    or “ ’s coefficient of variation due to the sampling error <T+1,”

and

(4)    or “ ’s coefficient of variation due to the intrinsic forecast error

,T+1.”
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Proof: 

Stochastic dominance has been defined many times, going back to Blackwell (1951),

Hadar and Russell (1969), and Tesfatsion (1976).  The basic idea is always the same: a random

variable x stochastically dominates another random variable y in size if the cumulative

distribution function of x lies entirely above (or, equivalently, to the left of) the cumulative

distribution function of y.  This amounts to requiring that the probability that x exceeds a given

value J exceeds the probability that y exceeds J for all values of  J.  This characterizes the notion

that the random variable x “is larger than” the random variable y.

Here the random variables at issue are the generalized magnitudes of the losses associated

with each of the two forecasts, so the definition of dominance is amended in an obvious way to

provide an “is smaller than” notion.  Thus, the shrinkage forecast  stochastically dominates

the unbiased forecast  if and only if

for all non-negative values of J, with strict inequality holding for at least one value.  (Negative

values of J need not be considered since the generalized magnitude function is inherently non-

negative.)  

Re-expressing the two forecast errors in terms of :y, <, and , (and dropping the time

subscripts for simplicity) , this condition becomes:
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for all non-negative values of J, with strict inequality holding for at least one value.

Expressing the joint density of < and , as f<(< | ,)g(,) using Bayes’ Theorem, 

where the upper limit of the integral over < is the value of < just large enough that (8-1) + 8< - ,

equals J and the lower limit is the value of < just small enough that -{(8-1) + 8< - ,} equals

JTasy.  This probability can be expressed in terms of the cumulative distribution function of < as:

Noting that < and , have means of zero and variances of  and  respectively, it is useful to

re-state this expression in terms of the standardized conditional distribution function of <,

and the standardized density function of ,, 

 where  has been substituted for the ratio 

Thus, the shrinkage forecast  stochastically dominates the unbiased forecast  if

and only if 
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is greater than or equal to

for all non-negative J, with strict inequality holding for at least one value of J.  Since this

condition must hold for all non-negative values of J, the ratio J/F< in these expressions can be

replaced by J, yielding the result of the theorem.
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