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1. Introduction

Consistent instrumental variables (IV) estimation requires instruments which are valid,

which is to say, at least asymptotically uncorrelated with the error term in the regression

equation.  In practice, however, this condition is hardly likely to be precisely satisfied. 

Moreover, this assumption is virtually impossible to check since the relevant error term is not

directly observable.  Consequently, the validity of IV-based parameter estimation and inference

typically rests on an underlying statistical assumption which is generally both suspect and

untested.

Note that this problem is distinct from that of “weak instruments,” as in Stock, Wright,

and Yogo (2002) and Dufour (2003).  IV estimates using instruments which are weak (i.e., only

weakly correlated with the endogenous variables) are known to yield unreliable parameter

inference even when these instruments are valid, in the sense of being asymptotically

uncorrelated with the model error term.  But there is a relationship between these two problems:

unable to quantify the sensitivity of one’s IV inference results to modest amounts of correlation

between the instruments and the error term, analysts have often turned to weak instruments in a

search for instruments which are credibly uncorrelated with the model errors.

This paper approaches the problem of instrument validity from a new perspective by

developing the sensitivity analysis tools necessary for quantifying the consequences of explicitly

relaxing the assumption that the instruments are uncorrelated with the error term in the regression

equation.  Such tools are of practical value because, while one might not be comfortable

assuming that an instrument is completely uncorrelated with the model error term, one might be

credibly able to assume that the magnitude of whatever correlation does exist is less than, say,
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This suggestion is in the same spirit as Leamer (1985), which addresses the sensitivity of econometric

modeling/inference to model specification search, and Ashley (1998), in which the credibility of bootstrap-based

assessment of postsample model forecasting effectiveness is enhanced by a double bootstrap quantifying the

uncertainty in the ordinary bootstrap inference.

3
The sensitivity analysis proposed here is distinct from – and conceptually much simpler than – the

alternative approach of attempting to construct wider confidence intervals for the IV-estimated parameters based on

the perceived  uncertainty in instrument-error correlations.
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.40.  The large-sample distribution of the usual IV parameter estimates is derived below under

the alternative assumption that the instruments are correlated with the model error term to a

specified degree.  Hahn and Hausman (2003) derive the analogous distribution for the special

case where this correlation is vanishingly small (of order ); here the size of this correlation is

not assumed to be small.  Using the distributional results obtained in Sections 2 and 3 below, one

can readily assess which inferential conclusions are robust to a specified degree of uncertainty in

the instrument validity and which conclusions are not.2

In particular, with this estimate of the IV parameter estimator sampling distribution in

hand (as a function of an assumed value for the instrument-error correlation vector) an analyst

can explicitly examine the sensitivity (to those correlations) of the p-value at which any

particular null hypothesis depending on the model parameters can be rejected.  This null

hypothesis might be a simple restriction on a particular model coefficient.  Or it might involve

restrictions on a number of (possibly) nonlinear functions of the model parameters.  Notably,

some inferential conclusions one might want to draw from a particular model and data set might

be substantially robust to reasonably likely departures from instrument validity, whereas other

conclusions might not – the sensitivity analysis proposed here can settle that question.3

In contrast to the correlations between the instruments and the model errors – which are

ordinarily assumed to be zero – the correlations between one or more of the explanatory variables



4
In evaluating the plausib ility of such a result existing, recall that the Hausman (1978) test for endogeneity

exploits this sample parameter estimator discrepancy (and an assumption that the instrument-error correlation is

zero) to obtain a test for correlations between the endogenous variables and the model errors.

5
A minimal selection of relevant citations would go back to Gini (1921) and Frisch (1934) and include

Klepper and Leamer (1984), Erickson (1993), Bound, et al. (1994), Card  (1999), and B lack, Berger and Scott

(2000).
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in a model and the model error are often assumed to be non-zero.  Indeed, those correlations (and

the resulting inconsistency of OLS parameter estimation) are the raisons d’être for IV estimation

in the first place.  Somewhat remarkably, results obtained in Section 3 below make it possible to

use the sample discrepancy between the OLS and IV parameter estimates to consistently estimate

these correlations between the endogenous variables and the model errors for any given degree of

correlation between the instruments and the model errors.4  

This result is very useful because – due to its role in producing inconsistency in the OLS

estimates – there is a long and voluminous literature attempting to quantify such correlations

between explanatory variables and the model errors and to thereby at least crudely assess the

expected distortions in the OLS parameter estimates.5  Whatever information is available in any

particular setting as to the likely sign and/or size of these correlations between the endogenous

variables and the model errors can thus be combined with the relationship alluded to above to

provide likely bounds on the correlations between the instruments and the model errors and

hence on the fragility or durability of the statistical inferences based on the IV parameter

estimates.  

For example,  where the endogeneity is thought to arise from measurement error in an

explanatory variable, it is well known that the correlation between the (uncorrupted) explanatory

variable and the model error is opposite in sign to the coefficient with which the variable enters
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See also, Fuller (1987).  Hausman and W atson (1985) and Hyslop and Imbens (2001) consider more

sophisticated specifications of the measurement error process.
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the model.  Going beyond this, Card (1999, p. 1816), for example, cites a substantial body of

research indicating that errors in measures of schooling induce correlations between actual and

observed schooling of around .90, which imply specific bounds on the correlation of measured

schooling and the errors in a model using measured schooling instead of actual schooling.  There

is also a fairly extensive literature on measurement error in labor market variables and its impact

on estimated regression models in which these are used as explanatory variables – e.g., Bound, et

al. (1994)’s study using the Panel Study of Income Dynamics Validation Study and numerous

references cited therein.  Alternatively, where an explanatory variable is a serially correlated time

series corrupted by serially uncorrelated measurement errors, one can bound the correlation

between this variable and the model errors using the spectral method given by Ashley and

Vaughan (1985).6 

The proposed sensitivity analysis is applied to Acemoglu, et al. (2001)’s study of the

impact of institutions on post-colonial development, where the coefficient on an admittedly noisy

index of the quality of a country’s institutions is estimated using an instrument based on the

mortality rates recorded for European settlers in the colonial period.  In this instance the

sensitivity analysis indicates that the relevant IV-based inferences are reasonably robust to

possible correlations between the instrument used and the model errors, particularly when those

instrument-error correlations are restricted to the interval of (in this case, negative) values

consistent with the correlation between the institution-quality index and the model error term

being primarily due to measurement error.
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The assumption that [Zi1 ... Zik , X i1 ... X ik , ,] is independently distributed is made for didactic clarity; as

(briefly) ind icated in the proofs below, this assumption can be weakened. 

5

2. IV Estimation with Flawed Instruments

Consider the usual multiple regression model with N observations and k stochastic

regressors:

(1)

where 

(2)

Here it is assumed that OLS yields an inconsistent estimator for $ because – due to simultaneity,

omitted variables, measurement error, etc. – one or more of the first p # k explanatory variables

are correlated with the model error, ,.  That is, one or more of the first p components of the row

vector EX, are non-zero.  Consequently, $ is estimated using the p column vectors Z1 ... Zp as

instruments for the first p columns of of X; the remaining k-p columns of Z are identical to the

analogous columns of X; notationally,7

(3)

It is assumed that           is of full rank; thus,        could potentially
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provide a consistent estimator for $, except that Z is known to be flawed as an instrument for X,

in that one or more of the first p columns of Z are correlated with , – that is, some or all of the

first p components of the covariance vector EZ, are non-zero.

The object of this section is to obtain the asymptotic sampling distribution of         under

these circumstances, as a function of EZ, – which is taken as given – and of quantities (such as

EXX, EZX, and EZZ) which can be consistently estimated using the sample data.

Lemma 1   Inconsistency of   (Definition of inconsistency vector * and error term 0)

Under the assumptions given above – i.e., Equation 1 and Equation 3 – and with

(4)

which defines the non-zero k-vector, *.

Proof:  This result follows directly from substitution of Equation 1 into the expression for 

and taking probability limits.  The inverse of EZX exists because EZX is of full rank; thus, the

probability limit in Equation 4 is well-defined.  Because EZX is of full rank, * – the  inconsistency

in – is zero if and only if EZ, is zero; the covariance vector EZ, is non-zero because the

instrument Z is flawed.  

A corollary to Lemma 1, however, provides a regression model for which Z is a valid

instrument for X:
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Corollary 1    A Regression Model in Which Z is a Valid Instrument for X

Under the assumptions given above, Z is a valid instrument for X in the model

(5)

which defines the modified error term, 0, for which EZ0 is zero.

Proof:  That EZ0 =           is zero follows directly from substitution (for 0 and *) and

taking the indicated limit.

In effect, then, when one uses Z as an instrument for X in estimating $ in Equation 1, one

is actually (consistently) estimating the parameter vector $+* in the model of Equation 5.   It

follows that the sampling distribution of   is fairly simple, but – due to the structure of the

modified error term, 0 – a bit different from the usual result:

Theorem 1   Sampling Distribution of  

Under the assumptions given above by Equations 1 and 3,

(6)

where  

(7)

and where the (j, R)th element of W is:
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(8)

 and the indicated fourth moments in wjR are the same for all values of the index i

and assumed to be finite.  Note that the  term in the expression for wjR is zero

under the usual homoscedasticity assumption.

Proof:   Substituting Equation 5 into the expression for  in Lemma 1 yields

From Corollary 1, EZ0 equals zero, so that   is zero also.  Each row of [Z, X, ,]

is assumed iid; the asymptotic normality of each of the k components of  follows from

the definition of 0 and the usual Central Limit Theorem for iid data.

The asymptotic variance of   is 

(9)

Because the modified error term in Equation 5 (0) depends on X when the instruments are

flawed – so that * is non-zero – the evaluation of the middle term in Equation 9 differs from the

usual derivation.  The (j, R)th element of is:
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Weaker assumptions on the rows of [Z,X, ,] would suffice, at the cost of a more complicated expression

here and an appeal to an appropriately modified version of the Central Limit Theorem.
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(10)

where the sum over the index s is eliminated using the assumption that the rows of [Z, X, ,] are

independent and the result (Corollary 1) that GZ0 is zero.8   Using the assumption that the rows of

[Z, X, ,] are identically distributed, this expression for the (j, R)th element of 

reduces to:

(11)

where the indicated expectations are the same for all values of the index i and are assumed to

exist.  The expression for (j, R)th element of W given in Equation 8 then follows immediately,

completing the proof of Theorem 1. 



9
The original model errors (,) can be consistently estimated as  for given

GZ,.  Or one could simply use the usual robust standard errors based on the 
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The fourth moments needed in order to evaluate the elements of W can be consistently

estimated using the corresponding sample moments.9  However, for samples which are

insufficiently large as to support such estimates – N < 500, say – it is preferable to make a

distributional assumption on the rows of [Z, X, ,], so as to express these fourth moments in

terms of more-easily estimated second moments.  For example, if it is assumed that this vector is

normally distributed, then it follows from the multivariate gaussian moment generating function

that:

Corollary 2   Moments needed for evaluating wjR when the rows of [Z, X, ,] are normally

distributed and an explicit formula for the sampling variance of   in the single-

instrument case.

Using the notation given by Equation 3 and additionally assuming that the rows of 

[Z, X, ,] are normally distributed, the expectations required for evaluating wjR, given by 

Equation 11, are:

(12)

(13)

and 

(14)
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where, for example,  is the (j, R)th element of GZZ.  These follow directly from the

appropriate fourth partial derivatives of the moment generating function of the multivariate

gaussian distribution; similar results would obtain for alternative distributional assumptions.

For the single-instrument case, where j, R, u, and v are all one (and GXX,  GXZ, and GZZ,

GX,, and GZ, are all scalars),  the asymptotic variance of  in Theorem 1 reduces to:

(15)

where * is now just GZ,/GZX.  This completes the proof.

Thus, for given GZ ,, the quantities needed in order to estimate the sampling distribution

of using Theorem 1 are estimates of GXX,  GXZ, and GZZ, *, W, GX,, and F,
2.   The population

moments GXX,  GXZ, and GZZ can be consistently estimated via the analogous sample moments; *

can be consistently estimated from   for any given value of GZ,; and estimation of the

fourth moments entering W was just discussed.  Estimates of GX, and F,
2 are necessary for

implementing the results of Theorem 2 and Corollary 2, so as to examine the sensitivity with

respect to GZ, of the p-values at which hypothesis tests regarding functions of $ can be rejected. 

A second motivation for estimating GX, and F,
2, however, is so that one can also compute the

variation (with GZ,) of the correlations, RZ, = [corr(Zi1, ,i), ... corr(Zik, ,k)] and RX, = [corr(Xi1,

,i), ... corr(Xik, ,k)], as these are more easily interpreted than the corresponding covariances. 

While GX,, and F,
2 can be estimated directly, using  as a large-sample estimator of ,,

it is more graceful to estimate GX,, and F,
2 using the results obtained in the next section, which

are based on GZ, and the observed discrepancy between  and .
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3.  Estimation of F,
2 and EX, for Given EZ,

In the previous section Theorem 1 provides the sampling distribution of   given 

EZ, = [cov(Zi1, ,i) ... cov(Zi1, ,k)], the covariance of the instruments with the model error.  Using

this result, one can readily examine the sensitivity of the p-value at which any particular null

hypothesis regarding functions of $ can be rejected to various assumptions about the covariance

vector GZ,.  

Implementation of this result requires an estimate of GX, and of F,
2.  An estimate of GX,

is additionally useful because it is often possible to sign EX,, as in the empirical example of

Section 4 below; thus a concomitant estimate of GX, allows one to restrict the sensitivity analysis

to the most relevant values of GZ,.  An estimate of F,
2 is additionally useful in allowing one to re-

express EZ, and EX, in terms of the more-easily interpreted correlation vectors, 

RZ, = [corr(Zi1, ,i) ... corr(Zi1, ,k)] and RX, = [corr(Xi1, ,i), ... corr(Xik, ,k)].  Theorem 2 below

provides consistent estimators of GX, and F,
2, based on an assumed value for GZ, and the sample

discrepancy between  and    

Theorem 2   Expressions for EX, and F,
2, given GZ, and 

Under the assumptions given in Section 2 – i.e., Equations 1 and 3 –  

EX, = [cov(Xi1, ,i) ... cov(Xi1, ,k)] can be written:

(16)

providing a consistent estimator for EX,, given EZ, and consistent estimates of EXX and EZX. 
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Further,  

(17)

Since the IV regression which is actually estimated provides a consistent estimator of F0
2,

Equation 17 can be used to construct a consistent estimator of F,
2; this estimate of F,

2 can then

be used to convert estimates of the covariances – EX, and GZ, –  into the corresponding

correlation vectors.

Proof:   From Lemma 1,   equals $.  For the special case of OLS, where 

Z = X, this implies that   also equals $.  Setting these two expressions for

$ equal to one another and solving for GX, yields Equation 16. 

It follows from 0  =  ,  -  X* that 0t0 is equal to ,t,  - 2*tXt,  + *tXtX*.  Dividing by N

and taking limits yields

(18)

 

Equation 17 follows by solving Equation 18 for F,
2 and substituting into the resulting expression

 for * and Equation 16 for GX,.   This completes the proof.

These results (and Theorem 1) are applied in the next section to a single-instrument

regression model due to Acemoglu, Johnson and Robinson (2001), providing explicit estimates

as to how the p-value for their key hypothesis test varies with corr(Zi1, ,i), the correlation of their

instrument with the model error term.
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Acemoglu, et al. also investigate a number of other measures of expropriation risk and other institutional

measures –  see their  footno tes 3 and 11 .  R i is measured on a scale from zero to ten, with a higher value indicating

lower risk.  For example, R i is 10.00 for the U.S., 9.32 for Singapore, 8.27 for India, 6.27 for Ghana, and 4.00 for

Mali.

14

4.  An Illustrative Example: Using IV Estimation to Account for Measurement
Error in a Development Equation

Acemoglu, Johnson and Robinson (2001) examine the relationship between variation in

per capita income across countries and an index of the protection against government

appropriation of assets.  In particular, over a sample of 64 countries which were at one time

European colonies, they find that OLS estimation of the regression model

yields what appear to be positive values for the parameter ", where log yi is the logarithm of

1995 per capita GDP (on a PPP basis) for country i and Ri is the “protection from risk of

expropriation” index from Political Risk Services, averaged over the period 1985-95.10  They also

consider the effects of a number of additional explanatory variables  but these are not

included in their “base” model and will not be further considered here.

They obtain the OLS model estimates,

where the figures in parentheses are estimated standard errors.  But they observe that this

estimate of " is of somewhat dubious value since it is likely that Ri is correlated with ,i, due to

reverse causality (“rich economies may be able to afford, or perhaps prefer, better institutions’),
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Their " estimates are not terribly sensitive to including covariates such as dummy variables for the

dominant religion, being a former British colony, being a former French colony, or a French origin for the legal

system.  In the interest of expositional simplicity these variations on the base model are not included in the analysis

reported  here, but this insensitivity suggests to them that omitted-variables bias is less important here  than reverse

causality or measurement error.
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omitted variables which are correlated with institutional quality,11 and due to measurement error

in Ri.  Arguably, in this case, measurement error (“broadly construed,” as they put it) is the most

important problem with Ri; they note:

In reality the set of institutions that matter for economic performance is very
complex, and any single measure is bound to capture only part of the “true
institutions,” creating a typical measurement error problem.  Moreover, what
matters for current income is presumably not only institutions today, but also
institutions in the past.  Our measure of institutions which refers to 1985-1995
will not be perfectly correlated with these.

[Acemoglu, et al. (2001, p. 1385-6)]

Consequently, they estimate " via instrumental variables using as an instrument for Ri the

logarithm of an estimate of the mortality rate experienced by European settlers during the time

period in which the country was colonized.  This instrument is denoted “morti” below. 

Acemoglu, et al. (2001, p. 1370) argue persuasively that this mortality rate is correlated

with the current institutions in a country:

1. There were different types of colonization policies which created different sets
of institutions.  At one extreme, European powers set up “extractive states,”
exemplified by the Belgian colonization of the Congo.  These institutions did not
introduce much protection for private property, nor did they provide checks and
balances against government appropriation.  In fact, the main purpose of the
extractive state was to transfer as much of the resources of the colony to the
colonizer.
At the other extreme, many Europeans migrated and settled in a number of
colonies, creating what the historian Alfred Crosby (1986) calls “Neo-Europes.” 
The settlers tried to replicate European institutions, with strong emphasis on
private property and checks against government power.  Primary examples of this



16

include Australia, New Zealand, Canada, and the United States.
2. The colonization strategy was influenced by the feasibility of settlements.  In
places where the disease environment was not favorable to European settlement,
the cards were stacked against the creation of Neo-Europes, and the formation of
the extractive state was more likely.
3. The colonial state and institutions persisted even after independence.

[Acemoglu, et al. (2001, p. 1370)]

And, indeed, the sample correlation of morti with Ri is -.520; evidently, morti is not a “weak”

instrument.

This instrument choice yields the (IV) estimated model:

in which the null hypothesis that " is zero can clearly be rejected.

The authors’ argument that morti is uncorrelated with the model error term (pp. 1371-72)

is less persuasive, however.  This, no doubt, is why much of the remainder of their paper is

devoted to various alternative formulations of the model, each of which presumably yields a

different set of model errors, in the hope of demonstrating that their inference result is robust.

 Table 1 below displays the results obtained with this model by instead considering the

sensitivity of inference results on " to varying degrees of assumed correlation between the

instrument (morti) and the original model error term.  

Clearly, “",” “log yi,” “Ri,” and “morti” here play the roles denoted “$1,” “Yi,” “Xi1,” and

“Zi1" in the theoretical results obtained in Sections 2 and 3 above.  And it is assumed here that the

sample length is sufficiently large that it is reasonable to replace [EYX, EYZ, EXX, EXZ, EZZ, F0
2] by

the corresponding sample moments [1.126150, -.906735, 2.156920, -.960240, 1.582520,
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It is additionally assumed, as is necessary for Theorem 1and Corollary 2, that morti, R i, and ,i are

normally, identically and independently distributed to a reasonable approximation.  Per the discussion preceding

Corollary 2, normality is assumed so as to obtain estimates with this modest sample of the fourth moments required

for Theorem 1.  Based on a visual examination of histograms and on formal tests – such as the skewness-kurtosis and

Shapiro-Wilk tests – there is no evidence that morti, R i, or the IV regression fitting errors are non-gaussian,

13
The p-values reported are obtained using tail areas from the normal distribution given by Theorem 1;

using tail areas from the Student’s t distribution do not noticeably affect the conclusions; indeed, if it did, then the

assumption that the sample size was sufficiently large for IV estimation would hardly be reasonable.  With a two-

instrument model, one might want to display the results as a two-dimensional array in which the entry for a particular

[cov(Z i1,,i), cov(Zi2,,i)] pair is one if the null hypothesis can be rejected at the 5% level and zero otherwise.
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.899330].12  Table 1 then displays – for a grid of different posited values for GZ, – the implied

values for   corr(Zi1, ,i),  corr(Xi1, ,i) and the p-values at which Ho: $1 = 0.0 and

Ho: $1 = 0.5 can be rejected.13  For convenience of interpretation, $1, Zi1, and Xi,1 are expressed as

", morti, and Ri in Table 1 and below to correspond with the notation in the Acemoglu, et al.

(2001) study.  

The issue for these authors is clearly whether the parameter " is positive or whether it is

zero: they are not going to be rejecting Ho: " = 0.0 based on negative estimates.  Therefore, one-

tailed p-values are reported in Table 1 for this hypothesis test.  Note also that " $ 0 implies that it

is mainly negative values for ER, and corr(Ri, ,i) that are relevant, since Acemoglu, et al. (2001)

identify measurement error in Ri as the primary reason that ER,�0.

Reference to the column of Table 1 for Ho: " = 0.0 shows that this null hypothesis can be

rejected at the 5% level for all values of corr(Ri, ,i) less than .53 – including all of the possible

negative values, which (given " $ 0) are the only ones consistent with measurement error being

the primary problem in the OLS regression model.  Moreover, in view of the observed 

discrepancy between the OLS and IV estimates of ", the results in Table 1 show that values of

corr(Ri, ,i) greater than .53 would correspond to values of |corr(morti, ,i)| exceeding .65, which is

to say an instrument which is quite highly correlated with the model error term.   Thus, the
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sensitivity analysis shows that the authors’ rejection of the null hypothesis Ho: " = 0.0 is very

robust to likely flaws in the colonial mortality rate instrument, even if measurement error is not

the only problem.

Note that the results of the sensitivity analysis are appropriately sensitive to the null

hypothesis considered.  Here the null hypothesis Ho: " = 0.0 – which is the hypothesis which is

relevant to whether or not the quality of a country’s institutions matter for growth – is highly

robust to likely flaws in the colonial mortality rate instrument.  But inferential results on other

null hypotheses one might consider – such as Ho: " = 0.50 – are clearly sensitive to modest

values of |corr(morti, ,i)| and hence what one might call “fragile.”
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Table 1

Sensitivity Analysis Results Regarding ", 

the Coefficient on the Expropriation Protection Measure, Ri
a

Gmort,, corr(morti, ,i) corr(Ri, ,i)
p-value for
rejecting 

Ho: " = 0.0

p-value for
rejecting 

Ho: " = 0.5 

-1.00 -0.097 -0.686 0.785 0.7325 0.0001

-0.95 -0.045 -0.687 0.758 0.6133 0.0005

-0.90 0.007 -0.686 0.726 0.4821 0.0016

-0.85 0.059 -0.683 0.688 0.3529 0.0048

-0.80 0.111 -0.678 0.644 0.2388 0.0130

-0.75 0.163 -0.670 0.592 0.1485 0.0314

-0.70 0.215 -0.657 0.532 0.0845 0.0689

-0.65 0.267 -0.638 0.462 0.0438 0.1372

-0.60 0.319 -0.614 0.383 0.0206 0.2487

-0.55 0.372 -0.582 0.295 0.0088 0.4117

-0.50 0.424 -0.543 0.198 0.0034 0.6254

-0.45 0.476 -0.496 0.095 0.0012 0.8764

-0.40 0.528 -0.443 -0.011 0.0004 0.8594

-0.35 0.580 -0.385 -0.117 0.0001 0.6102

-0.30 0.632 -0.324 -0.219 0.0000 0.3996

-0.25 0.684 -0.263 -0.314 0.0000 0.2400

-0.20 0.736 -0.203 -0.401 0.0000 0.1316

-0.15 0.788 -0.146 -0.478 0.0000 0.0657

-0.10 0.840 -0.093 -0.546 0.0000 0.0298

-0.05 0.892 -0.044 -0.604 0.0000 0.0122

0.00 0.944 0.000 -0.654 0.0000 0.0045

0.05 0.996 0.040 -0.696 0.0000 0.0015

0.10 1.048 0.075 -0.733 0.0000 0.0005

0.15 1.100 0.107 -0.764 0.0000 0.0001

0.20 1.153 0.136 -0.790 0.0000 0.0000

a
Morti is the mortality rate instrument used by Acemoglu, et al. (2001); the sensitivity analysis is conducted over a

grid of posited values for Gmort,, = cov(mort i, ,i); the figures in all of the other columns are thus estimates implied by

the value of this entry and the sample estimates of  EYX, EYZ, EXX, EXZ, EZZ, and F0
2.  In particular,  is

the implied (consistent) estimate of "; similarly, corr(mort i, ,i) and corr(R i, ,i) are the implied correlations of the

mortality rate instrument and of the explanatory variable with the model error term.  As noted in the text, the p-value

for Ho: " = 0.0 is for a one-tailed test and that for Ho: " = 0.5  is for a two-tailed test.
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The analogous sensitivity analysis for models estimated using 2SLS and  GM M methods is being explicitly

considered in other work.  In those particular instances where the crucial inferential question can be boiled down to

the size of a single parameter, the kind of sensitivity analysis proposed here could alternatively be subsumed in a

confidence interval estimate which has been suitably augmented to account for the uncertainty in GZ,.  Such

augmentation poses some analytical challenges, but Imbens and Manski (2004) provide a  good starting point. 
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5. Conclusions

Instrumental variables estimation is a powerful and useful technique, but it involves

assuming that the instruments are at least asymptotically uncorrelated with the model error term. 

Since this assumption is often open to question and is (in practice) almost impossible to check,

the credibility of the resulting IV parameter estimates and confidence intervals suffers.  By

providing the means to easily check the sensitivity of IV estimation/inference to failures of this

assumption, the results obtained above allow us to increase the credibility of the conclusions we

draw from models estimated using IV methods.  

The empirical example, drawn from the Acemoglu, et al. (2001) study of the impact of

institution quality on a country’s growth rate, illustrates how this sensitivity analysis can either

confirm or disconfirm the proposition that the IV results are in fact robust with respect to the

inference of interest.  The results in this case provide strong support for the credibility of the IV

results with respect to the inference which is arguably at issue, but they also illustrate the fragility

of other possible inferences.

The basic idea used here is both simple and broadly applicable; it can be extended to

2SLS (where the model is over-identified), to GMM estimation, and in a variety of other

contexts.14  Estimation and inference in econometric modeling often requires us to make

assumptions which are difficult or impossible to check: that an instrument is uncorrelated with an

error term, or that a particular moment condition equals zero, etc.  The approach here is to
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suggest that it is generically useful to parametrically relax this assumption/condition and

critically examine the sensitivity of one’s inference results to this relaxation.  If the most crucial

inferential conclusions are insensitive to relaxing these assumptions or conditions, then it can be

concluded that one’s inference results are robust and credible.  If the results are, in contrast, quite

sensitive to such departures, then it must be concluded that these inference results are fragile and

not very credible.
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