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Abstract

This paper proposes a new class of nonlinear time series models in which one
of the coefficients of an existing regression model is frequency dependent – that
is, the relationship between the dependent variable and this explanatory variable
varies across its frequency components. We show that such frequency dependence
implies that the relationship between the dependent variable and this explanatory
variable is nonlinear. Past efforts to detect frequency dependence have not been
satisfactory; for example, we note that the two-sided bandpass filtering used in such
efforts yields inconsistent estimates of frequency dependence where there is feedback
in the relationship. Consequently, we provide an explicit procedure for partitioning
an explanatory variable into frequency components using one-sided bandpass filters.
This procedure allows us to test for and quantify frequency dependence even where
feedback may be present. A distinguishing feature of these new models is their
potentially tight connection to macroeconomic theory: indeed, they are perhaps best
introduced by reference to the frequency dependence in the marginal propensity to
consume posited by the Permanent Income Hypothesis of consumption theory. An
illustrative empirical application is given, in which the Phillips Curve relationship
between inflation and unemployment is found to be negligible at low frequencies,
corresponding to periods greater than a year, but inverse at higher frequencies –
just as predicted by Friedman and Phelps in the 1960’s.
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1 Introduction

Much of the literature on nonlinear time series modeling focuses on detecting
and quantifying nonlinear serial dependence in a single time series. Yet surely
it is obvious that the nonlinear dynamics of greatest interest from an economics
perspective are usually multivariate in nature. Consequently, a new framework
is proposed here for detecting and modeling nonlinear dynamic relationships
between time series. In particular, the focus here is on modeling frequency
dependence in a regression model coefficient.

A valuable and distinguishing characteristic of the frequency dependent regres-
sion model developed below is its potentially tight relationship with relevant
economic theory. Indeed, the nature of this kind of frequency dependence is
introduced in Section 2 with reference to a stylized consumption function em-
bodying the well–known Permanent Income Hypothesis (PIH) of consumption
theory, as in Modigliani and Brumberg (1954) and Friedman (1957). The PIH
theory predicts that the partial derivative of aggregate consumption spend-
ing with respect to disposable income – which Keynes called the “marginal
propensity to consume” – will differ across frequencies. In particular the PIH
theory predicts that this coefficient will be large for slowly-varying (persistent
or low frequency) fluctuations in household income, because these fluctuations
are likely to be identified by the agents as primarily corresponding to changes
in “permanent” income. In contrast, the theory predicts that the marginal
propensity to consume will be small for quickly–varying (non–persistent or
high frequency) fluctuations in household income, as these transitory fluctua-
tions will be identified as primarily corresponding to changes in “temporary”
income. Thus, the marginal propensity to consume – which would be a fixed
parameter in an ordinary consumption function specification – is posited to be
larger at low frequencies than at high frequencies: in other words, frequency
dependence in this coefficient is the embodiment of the PIH theory.

Other examples of economic relationships which are likely to be frequency
dependent abound: the interest rate elasticity of foreign exchange rates, price
elasticities in markets for goods and services, the coefficient on unemployment
in a Phillips Curve . . . the list goes on and on.

In Section 2 we also demonstrate – again using the PIH example – that this
kind of frequency dependence inherently represents dynamic nonlinearity in
the relationship. The frequency dependence is an intrinsic symptom of under-
lying nonlinearity which has not yet been explicitly modeled. In this sense,
the frequency dependent regression model proposed here should be taken as
a starting point rather than an ending point, in much the same way that an
observation of conditional heteroscedasticity in a linear model’s errors ought
actually to suggest that an investigation of a nonlinear model might be fruit-
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ful. Still, because of its close relationship to theoretically important issues,
the detection and modeling of frequency dependence is an important issue in
its own right and, in particular, can yield graceful and powerful tests of the
relevant theories. Moreover, while the frequency dependent regression frame-
work does not directly suggest the form of an appropriate underlying nonlinear
model, it is suggestive and does provide a benchmark for evaluating the es-
sential adequacy of any proposed nonlinear model, in that one might sensibly
require that data simulated by this model should exhibit the kind of frequency
dependence which has been observed.

Past efforts to detect and model frequency dependence have not been satis-
factory. For example, a typical approach has been to apply a bandpass filter
to both the dependent and explanatory variables so as to confine the en-
tire analysis to a specific, pre-chosen band of frequencies, often characterized
as “business cycle” frequencies. 1 There are several shortcomings to this ap-
proach. For example, one might still wonder what impact fluctuations in an
explanatory variable at business cycle (and other) frequencies have on the un-
filtered dependent variable. And one might further wonder to what degree the
results of such studies hinge on the rather ad hoc specification of this particu-
lar band of frequencies: perhaps important relationships in the data have been
obscured by an unfortunate choice as to which frequencies to include in the
analysis. Finally, we show below that the two–sided filters used in such anal-
yses substantially distort the analysis when, as is typical in macroeconomic
systems, feedback is present in the relationship. 2

Our proposed modeling procedure is described below in Sections 3 and 4.
Briefly, the idea is to partition the explanatory variable whose coefficient is of
interest into a set of M components, such that each component corresponds
to a particular set of frequencies, and such that the M components sum up
precisely to the sample data on the original explanatory variable. This ex-
planatory variable is then replaced in the model by a weighted sum of these M

components. The resulting M coefficients on these frequency components are
estimated in place of the original coefficient; these coefficient estimates then
map out the frequency dependence in the original coefficient. In this context
a test for frequency dependence is then straightforward: one merely tests the
null hypothesis that these M coefficients are all equal. Moreover, this new
approach is easy to implement since this linear form in the M components

1 E.g., Christiano and Fitzgerald (2003a), Comin and Gertler (2003) and Den Haan
and Sumner (2004).
2 The results from spectral regression approaches to the modeling of frequency de-
pendent coefficients – e.g., Hannan (1963), Engle (1974, 1978), and Tan and Ashley
(1999b) – are similarly distorted by feedback because the Fourier transformation
used in these approaches is itself a two–sided filter. An exposition of our present ap-
proach as an extension of Tan and Ashley (1999b) is given in Ashley and Verbrugge
(2006).
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can be substituted into whatever estimation framework was already in use,
whether simple or complex.

Since two–sided filtering is problematic in the presence of feedback, we imple-
ment the partitioning of the explanatory variable into frequency components
using a sequence of one-sided filters obtained from a moving window passed
through the sample. The length of this window limits the size of the smallest
frequencies (longest periods) which can be separately distinguished, but has
the concomitant advantage of making it feasible to estimate the regression
coefficient at each of the entire set of allowed frequencies. Consequently, the
procedure lets the data speak freely as to the form of the frequency dependence
without imposing any ad hoc band structure on it.

An illustration of the effectiveness of procedure is given in Section 5 using arti-
ficially generated data. An illustrative empirical example, drawn from Ashley
and Verbrugge (2006), is given in Section 6. There we analyze the frequency
dependence in the coefficient on the unemployment rate in a standard Phillips
Curve model for the inflation rate using monthly U.S. data from 1980 to
2003. We find an economically and statistically significant inverse relation-
ship between inflation and unemployment for high frequency unemployment
rate fluctuations – with periods less than twelve months – but no evidence
for an effect of lower frequency unemployment rate fluctuations. If one inter-
prets low frequency unemployment rate fluctuations as shifts in the so–called
“natural rate” of unemployment and high frequency fluctuations as temporary
deviations from this natural rate, these results are supportive of the Friedman–
Phelps inflation theory. In contrast, a model ignoring frequency dependence
– i.e., constraining the coefficient to be the same at all frequencies – exhibits
no statistically significant relationship at all between the inflation and un-
employment rates over this period. Thus, a failure to recognize and model
the dynamic nonlinearity in this relationship using our frequency dependent
regression approach is in this case catastrophic: it leads to the erroneous con-
clusion that the Phillips Curve relationship does not exist at all.

2 Frequency Dependent Regression Parameters and Nonlinear Dy-

namics

The parameter on each explanatory variable in an ordinary regression model
is a fixed, albeit unknown, constant. In contrast, the value of such a parame-
ter in a frequency dependent regression model varies over time because – due
to its variation with frequency – its value at any given time depends on the
recent history of the explanatory variable it multiplies. Consider, for exam-
ple, the case where this parameter’s value decreases with frequency. In that
case the value of the parameter is larger when a current fluctuation in the
corresponding explanatory variable is part of a smooth, persistent pattern of
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similar recent changes – what might be called a low frequency fluctuation.
Conversely, the value of the parameter is smaller when the current fluctua-
tion in this explanatory variable is instead a brief, transitory (high frequency)
fluctuation in the time series.

In view of the fact that such a parameter does not have a single value to
estimate, least squares estimators of it cannot possibly be consistent. Thus,
such estimates can easily mislead; the Phillips Curve example in Section 7
illustrates this nicely.

The Permanent Income Hypothesis (PIH) in consumption theory provides the
canonical example of this kind of frequency dependence. Consider, for example,
the following simple consumption function relating aggregate consumption at
time t (ct) to aggregate disposable income in the previous period (yt−1), where
each of these variables is expressed as a deviation from its trend value:

ct = λ1yt−1 + λ2ct−1 + ǫc,t

yt = α1yt−1 + α2ct−1 + ǫy,t.
(1)

The parameter λ1 is what would, in Keynes’ terminology, be identified as the
marginal propensity to consume; this parameter would be taken as constant
in an ordinary regression equation. In contrast, the PIH implies that λ1 will
be larger in time periods during which yt−1 is primarily part of smooth fluc-
tuation over time – identified in the theory as a change in permanent income
– and smaller in periods where during which yt−1 is a sudden fluctuation,
corresponding in the theory to a change in temporary income. In the present
context, these are identified as low frequency and high frequency changes in
income, respectively, so that λ1 is indicated to be a function – in this case, an
inverse function – of the degree to which yt−1 is a high frequency fluctuation.

One might model this kind of frequency dependence in λ1 by observing that
this dependence implies that the value of λ1, rather than being a constant,
depends on the recent history of yt−1. For example, a crude model for λ1

exhibiting history dependence consistent with frequency dependence (and the
PIH theory) would parametrize λ1 as:

λ1 = l0/
{

1 + l1
(

yt−1 − ysmoothed
t−1

)2
}

= l0/

{

1 + l1

(

yt−1 −
[

1

2
yt−1 +

1

2
yt−2

])2
}

= l0/
{

1 +
1

4
l1 (yt−1 − yt−2)

2
}

(2)

with l1 a positive constant. This particular formulation specifies that λ1 is
smaller to the extent that the current value of lagged income represents a
deviation from its average over the previous two periods. Clearly, this simple
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model for λ1 implies that

ct =

{

l0

1 + 1
4
l1 (yt−1 − yt−2)

2

}

yt−1 + λ2ct−1 + ǫc,t (3)

so that, in the context of this particular example, the relationship between ct

and yt−1 is dynamically nonlinear if and only if λ1 is frequency dependent in
the sense used here. 3

The particular parameterization of the history dependence of λ1 posited above
provides a useful example of what we mean by frequency dependence in a
regression parameter and how this dependence is equivalent to otherwise–
unmodeled nonlinear dynamics in the relationship. Indeed, this example sug-
gests that the frequency dependent regression model described below is actu-
ally a new class of nonlinear dynamic model.

However, the particular parameterization examined above is too specific and
ad hoc to provide an attractive general framework for detecting and modeling
frequency dependence in a regression relationship. For such a framework we
turn in the next Section to a consideration of how this kind of frequency
dependence can be more gracefully examined using ideas based on the spectral
regression literature.

3 The Frequency Dependent Regression Model

Frequency dependence in a regression coefficient is most gracefully examined,
not by positing some specific, particular model for the history–dependence of
the coefficient – as in the example at the end of the previous section – but
by transforming the regression equation into the frequency domain, as in the
spectral regression models of Hannan (1963), Engle (1974, 1978), and Tan and
Ashley (1999a,b).

These early spectral frameworks typically required specialized software and
(because of the two-sided nature of the fourier transforms used) were unsuit-
able for use in feedback relationships. Both of these limitations are eliminated
in the work reported here, which is based on theory developed in Ashley and
Verbrugge (2006); this framework involves only time domain regressions and
effectively uses only one-sided transformations. Nevertheless, the Engle (1974)
spectral regression framework is a good place to begin the exposition.

In Engle’s formulation, the ordinary multiple regression model

Y = Xβ + ǫ ǫ ∼ N(0, σ2I where Y is T × 1 and X is T × K (4)

3 See Tan and Ashley (1999a) and also Ashley and Verbrugge (2006, Section 3),
which includes a discussion of nonlinear impulse response functions and the Wold
decomposition.
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is transformed via premultiplication by the complex-valued T × T matrix W ,
whose (k, t)th element is given by (1/

√
T )exp[(2πitk)/T ]. This yields

WY = WXβ + Wǫ

Ỹ = X̃β + ǫ̃ ǫ̃ ∼ N(0, σ2I)
(5)

which define Ỹ , X̃ and ǫ̃; the variance of ǫ̃ is still σ2I because W is an orthog-
onal matrix.

Note that the coefficient vector β is unaffected by this transformation but that
the T components of Y and ǫ̃ and the T rows of X̃ now correspond to the
T frequencies, {0, 2π/T, 4π/T, . . . , 2π(T − 1)/T} rather than to the T time
periods of the original regression model. Thus, finding that the jth component
of β “depends on frequency” is equivalent to finding that βj is unstable across
the T “observations” in the model for Ỹ .

Engle’s spectral regression framework is problematic because W is complex–
valued, implying that Ỹ and X̃ are complex–valued also. The Tan and Ashley
(1999a,b) framework resolves this difficulty by replacing W with the real–
valued matrix A, whose (s, t)th element is given by

as,t =























































































(

1
T

)
1

2 , for s = 1;

(

2
T

)
1

2 cos
[

πs(t−1)
T

]

, for s = 2, 4, 6, . . . , (T − 2) or (T − 1);

(

2
T

)
1

2 sin
[

π(s−1)(t−1)
T

]

, for s = 3, 5, 7, . . . , (T − 1) orT ;

(

1
T

)
1

2 (−1)t+1, (for s = T when T is even)

(6)

This matrix is simply related to W by means of row manipulations based
on the usual exponential expressions for the sine and cosine – e.g., cos(x) =
1/2eix + 1/2e−ix. Premultiplying the original regression model instead by A
yields

AY = AXβ + Aǫ

Y ⋆ = X⋆β + ǫ⋆ ǫ⋆ ∼ N(0, σ2I)
(7)

which defines Y ⋆, X⋆ and ǫ⋆; the variance of ǫ⋆ is still σ2I because A is an
orthogonal matrix. Again, the T components of Y ⋆ and ǫ⋆ and the T rows of
X⋆ now correspond to frequencies rather than to time periods. Thus, finding
that the jth component of β “depends on frequency” is again equivalent to
finding that βj is unstable across the T “observations” in the model for Y ⋆.
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Note, however, that – since A, Y ⋆ and X⋆ are all real–valued – the model for
Y ⋆ can be estimated using ordinary regression software.

Consequently, the constancy of βj across the T “observations” in the model
can be examined using any of the multitude of parameter instability tests
available in the literature – e.g., Chow (1960), Brown, Durbin and Evans
(1975), Farley, Hinich and McGuire (1975), Ashley (1984), Bai (1997), or Bai
and Perron (1998, 2003).

Supposing, for the moment, that it is possible to partition these T “obser-
vations” into M “frequency bands”, the parameter instability test which is
most convenient to use for this purpose is the straightforward extension of
the usual Chow test for parameter instability given in Ashley (1984). This
test amounts to simply assigning an appropriately defined dummy variable,
D⋆1 . . . D⋆M , to each band and testing the null hypothesis that the coefficients
on all M of these dummy variables are equal. Thus, in testing for possible
frequency dependence in the jth component of β, the sth “observation” on the
dummy variable for the mth band – denoted D⋆m

s – would equal X⋆
s,j for values

of s in the mth frequency band and would equal zero for values of s outside
of this band. Because these M dummy variables by construction add up to
the jth column of X⋆, the constancy of βj across the T “observations” can be
readily tested by replacing the βjX

⋆
s,j term in the frequency domain regression

(Equation 7) by the linear form
∑M

m=1 βj,mD⋆m:

Y ⋆ = X⋆
{j}β{j} +

M
∑

m=1

βj,mD⋆m + ǫ⋆ (8)

where X⋆
{j} denotes the X⋆ matrix with its jth column omitted and β{j} denotes

the β vector with its jth component omitted. One then tests the null hypothesis
H0 : βj,1 = βj,2 = . . . = βj,M .

For the present purpose, however, it is even more convenient to transform this
regression equation back into the time domain by pre-multiplying it by A−1.
Since this matrix inverse is just the transpose of A in this case, we have:

AtY ⋆ = AtX⋆
{j}β{j} +

M
∑

m=1

Atβj,mD⋆m + Atǫ⋆

Y = X{j}β{j} +
M
∑

m=1

Atβj,mD⋆m + ǫ

(9)

where X{j} denotes the original X matrix with its jth column omitted. Note
that this regression model is identical to the original model (Equation 4) except
that now there are M new regressors – AtD⋆1 . . . AtD⋆M replacing Xj, the jth

column of X.

Each of these new regressors can be interpreted as the result of applying a
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simple passband filter to Xj – one for each of the M frequency bands. 4 These
implied filters are not optimal in terms of sharp passband cut–offs – one would
choose Baxter–King (1999) or Christiano-Fitzgerald (2003b) filters instead
were that the goal – but they have the desirable property of partitioning Xj

into M orthogonal frequency components whose sum is precisely Xj. Thus,
the stability of βj across the M frequency bands can be readily examined by
simply estimating Equation 9 and testing the null hypothesis, Ho : βj,1 =
βj,2 = . . . = βj,M .

Thus, once one has decided on exactly which frequencies one wants to include
in each of the M frequency bands, it is straightforward to partition the jth

regressor (Xj) into M frequency components which add up precisely to Xj

and test βj for frequency dependence. In principle, one can choose the num-
ber and composition of the M frequency bands to minimize some adjusted
measure of the regression model’s goodness–of–fit, such as the Schwarz Crite-
rion. However, this specification search will substantially distort the sampling
distribution of the F statistics used in testing hypotheses about βj,1 . . . βj,M .
Unfortunately, correcting for this distortion by estimating these sampling dis-
tributions using monte carlo simulations yields a test of low power.

And there is a second problem. The bandpass filters defined above – in common
with all other bandpass filters in common use – are two–sided. That is, the
tth observation in the component of Xj for the mth frequency band – i.e., the
tth component of AtD⋆m– depends on all T values of Xj , including the future
values, Xt+1,j , . . . , XT,j. This is of no special concern if there is unidirectional
Granger causality from Xj to Y , but it induces inconsistency in least squares
estimates of βj,1 . . . βj,M if, as is commonly the case in macroeconomic and
financial applications, there is feedback in the Y − Xj relationship.

Both of these problems are eliminated by instead partitioning Xj into fre-
quency components using one–sided filters based on a moving window; this is
addressed in the next section.

4 The Problem with Feedback – and a Solution Using One–Sided

Filtering

Least squares estimators of βj,1 . . . βj,M , M will be consistent if and only if the
error term in the model for Y is uncorrelated with each of the explanatory
variables in the model, including the M frequency components of Xj. Since,
as defined in Section 3 above, each of these components is the result of what
amounts to a two–sided bandpass filter applied to Xj, this will be the case
only if Xj is strongly exogenous, that is, only if every observation on Xj –

4 See Ashley and Verbrugge (2006, sections 3.4 and 3.5) for a more detailed expo-
sition.
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i.e., X1j . . .XTj – is uncorrelated with every observation on the error term
in the regression model for Y . (This is, of course, equally the case for any

methodology which applies a two–sided bandpass filter to Xj .) Unfortunately,
feedback in the Y − Xj relationship induces exactly this kind of correlation.

For example, consider the analysis of possible frequency dependence in the
parameter λ2 of the following bivariate equation system:

yt = λ1yt−1 + λ2xt−1 + ǫt

xt = α1xt−1 + α2yt−1 + ηt

(10)

Clearly, this is a feedback relationship only if α2 is nonzero. But note that the
Equation 10 implies that

xt = α1xt−1 + α2yt−1 + ηt

= α1xt−1 + α2(λ1yt−2 + λ2xt−2 + ǫt−1) + ηt

= α1xt−1 + α2λ1yt−2 + α2λ2xt−2 + α2ǫt−1 + ηt

(11)

so that xt is correlated with ǫt−1 if there is feedback from past yt to xt. But,
two–sided filtering implies that x1

t−1 . . . xM
t−1, the M frequency components

of xt−1, all depend on xt, xt+1, . . . , xT−1. Consequently, x1
t−1 . . . , xM

t−1 are all
correlated with ǫt−1, ǫt, . . . , ǫT−2. Since x1

t−1 . . . xM
t−1 are thus all correlated with

ǫt, replacing λ2xt−1 in Equation 10 by a weighted sum of x1
t−1 . . . xM

t−1 will yield
inconsistent parameter estimates. 5

To eliminate this problem, we instead partition Xj into frequency compo-
nents using one–sided filters based on a moving window. This calculation steps
through the sample data using blocks which are τ periods in length, where
a typical value for τ might be 48 or 60 with monthly data. In the first step,
observations one through τ on Xj (i.e, X1,j . . .Xτ,j) are used to compute the
M bandpass–filtered component series, AtD⋆1 . . . AtD⋆M . Note that A is now a
τ × τ matrix, so that each of these M component series is τ periods in length.
The last (period τ) observation in each of these M components is retained
as the filtered output for this window; the other τ − 1 observations on the
M components are discarded. The window is next advanced one period and
the new set of τ sample observations (i.e, X2,j . . .Xτ+1,j) are bandpass filtered
to again yield M component series; the last observation in each of these M

series (which now corresponds to period τ + 1 in each case) is retained as the
filtered output for this window and, as before, the other τ − 1 observations on

5 Note that this problem with feedback is not particular to the approach used here:
the above argument also implies that applying a two–sided bandpass filter to both yt

and xt−1, as in Christiano and Fitzgerald (2003), Comin and Gertler (2003) and Den
Haan and Sumner (2004) will similarly lead to inconsistent least squares estimation
if there is feedback in the y−x relationship. Examples of two–sided bandpass filters
include the Hodrick–Prescott (1987) filter, and bandpass filters such as those given
by Baxter and King (1999) or Christiano and Fitzgerald (2003b), as well as the
filters based on the A matrix as discussed in the previous section.
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the M components are discarded. And so forth. Finally, in the last window,
the sample observations XT−τ+1,j . . .XT,j are bandpass filtered to compute the
M component series and the last observation in each (now corresponding to
period T ) is retained as the filtered value derived from this final window.

In this way, Xt,j can be partioned into M frequency components using only ob-
servations Xt,j, Xt−1,j , . . . , Xt−τ+1,j for each time period in the interval [τ, T ].
These M components are no longer precisely orthogonal, but they still, by
construction, add up exactly to Xt,j for each time period in this interval. A
weighted sum of these M frequency components can now be used to replace
Xj even in settings where feedback in the Y −Xj relationship is a possibility
because each of these components is now effectively the product of one–sided
bandpass filtering.

By specifying a modest value for τ , the length of the moving–window, it be-
comes feasible to estimate a distinct coefficient for every possible frequency.
Thus, partitioning Xj in this way not only makes it possible to filter in an ef-
fectively one–sided manner, it also eliminates the need to choose a value for M

and to specify which frequencies are to go into each of the M bands. Instead,
one can simply calculate a component for every possible frequency allowed by
the length of the window. For example, setting τ equal to 48 – corresponding
to windows four years in length with monthly data – there are only 25 possible
frequencies to consider. 6 Similarly, with windows 60 months in length, there
are only 32 possible frequencies to consider. A frequency partitioning of Xj

using a 60–month window cannot distinguish between variations in Xj with
periods greater than 60 months in length – i.e., frequencies smaller than 1/60
– but this is not a problem unless the important frequency variation in βj is
occurring at frequencies this small or smaller.

Thus, the total cost of this moving window partitioning procedure is a loss of
τ−1 observations at the beginning of the sample (to initiate the first window),
a loss of M− 1 degrees of freedom (in order to estimate βj,1 . . . βj,M instead of
just βj), and a loss of resolution at frequencies greater than 1/τ . This seems
a small price to pay in exchange for robustness to feedback and a graceful
solution to the problem of choosing the frequency bands. 7

6 For a window 48 periods in length the A matrix of Equation 4 has 48 rows. But
this does not imply that there are 48 possible frequencies. The first row corresponds
to frequency zero, but rows 2 and 3 both correspond to the same frequency (1/48);
rows 4 and 5 both correspond to the same frequency (2/48), and so forth. Finally,
rows 46 and 47 both correspond to a frequency of 23/48 and row 48 corresponds to
a frequency of 24/48. This yields a total of 25 distinct frequencies.
7 Because one expects the coefficient variation across frequencies to be fairly
smooth, a more parsimonious approach is to model the variation in the M coef-
ficients by means of a low–order polynomial, as in the distributed lag literature.
This approach is discussed and implemented in Ashley and Verbrugge (2006) but
omitted here due to space limitations.
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Software implementing this moving–window frequency partitioning procedure
is available from the authors as a stand–alone Windows program and as a
RATS procedure. This software also linearly de-trends the data in each window
prior to the filtering, adding the value of the trend at observation τ into the
zero–frequency component so that the filtered series still add up to Xj.

It should also be noted that bandpass filters generically yield poor results near
the sample endpoints. The standard method for addressing this shortcoming
– as originally suggested in Dagum (1978) and described in Stock and Watson
(1999) – is (with monthly data) to augment the windowed sample using twelve
projected values obtained using an AR(4) model with seasonal dummy vari-
ables. The software implements this procedure, yielding filtered values twelve
periods away from the end of the window.

The effectiveness and usefulness of the procedure is illustrated in the next two
sections.

5 An Example Using Artificially Generated Data

So as to illustrate the results from our procedure, 450 observations were gen-
erated from a particular example of the bivariate model considered at the end
of Section 2:

ct =

{

1/2

1 + (yt−1 − yt−2)
2

}

yt−1 + .2ct−1 + 1/2ǫc,t

yt = .7yt−1 + .2ct−1 + ǫy,t

(12)

where the realizations of ǫc,t and ǫy,t were independent draws from the unit
normal distribution. Observe that there is both nonlinear serial dependence
and feedback in this specification of the c−y relationship. As noted in Section
2, the coefficient λ1 on yt−1 in the linear model

ct = λ1yt−1 + λ2ct−1 + ǫc,t (13)

ought consequently to be larger for low frequency fluctuations in yt−1 than for
high frequency fluctuations.

We used a moving window 60 periods in length to partition yt−1 into all 37 pos-
sible frequency components, 8 replaced λ1yt−1 in Equation 13 by

∑37
j=1 λ1,jy

j
t−1

and estimated λ1,1 . . . λ1,37 using OLS. Based on these estimates, the null hy-
pothesis H0 : λ1,1 = λ1,2 = . . . = λ1,37 can be rejected with p–value .0006.
Consequently, our procedure does indeed detect the frequency dependence in

8 The 60 months in each window were augmented with the 12 projected values
as described at the end of the previous section; that is why there are 36 possible
non–zero frequencies and hence 37 frequency components.
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Figure 1. Smoothed parameter estimates
(

λ̂1,1 . . . λ̂1,37

)

based on Equation 13.

λ1 induced by the dependence of the marginal propensity to consume in this
model on the squared deviation of yt−1 from its recent average value.

The 37 OLS parameter estimates, λ̂1,1 . . . λ̂1,37 are plotted, plus or minus one
estimated standard deviation, in Figure 1. Because these individual estimates
display quite a bit of sampling variation, they are smoothed in the plot using
a three–point symmetric moving average. 9 Clearly, the coefficient on yt−1 in
this regression model is indeed larger for low frequency (i.e., high period)
fluctuations in yt−1.

6 An Empirical Example: The Phillips Curve

The Phillips Curve postulates an inverse relationship between inflation and
the unemployment rate; it is one of the most–studied relationships in empirical

9 That is, the smoothed value of λ̂1,j is 1
4 λ̂1,j−1 + 1

2 λ̂1,j + 1
4 λ̂1,j+1 for j = 2, . . . , 36

with double weight put on the central value at the two endpoints – i.e., for j
equal to 1 or 37. The coefficient standard error estimates are adjusted accord-
ingly. The 37 frequencies implied by the 72 month rolling window are given by
0, 1/72, 2/72, . . . , 36/72 and the concomitant periods for the non–zero frequencies
are given by 72, 72/2, 72/3, . . . , 2; see footnote 6.
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macroeconomics. A standard Phillips Curve specification is of the form:

πt = α + γunt +
12
∑

i=1

δiπt−i + ∆Zt + ǫt (14)

where πt is the inflation rate, unt is the unemployment rate, and Zt typically
includes seasonal dummy variables and adjustments for structural changes,
such as changes in relative energy prices. 10

Estimating an equation of this form using monthly US data from 1980 : 1 to
2003 : 12, we find that the OLS estimate of γ is −.05 ± .06. (Robust (White)
standard error estimates are used since there is some evidence for heteroscedas-
ticity in these data.) Thus, ignoring the possibility of frequency dependence in
this coefficient, we find (as is typical) that there is no statistically significant
Phillips Curve relationship over this sample period.

Decomposing unt in the manner described in Section 5 above into 37 compo-
nents – unt,1 . . . unt,37 – using a sequence of 60–month moving windows yields
the modified regression model: 11

πt = α +
37
∑

m=1

γmunt,m +
12
∑

i=1

δiπt−i + ∆Zt + ǫt (15)

Estimating Equation 15 using OLS, we find that the null hypothesis that
γ1 . . . γ37 are all equal to zero can be rejected with p–value equal to .018. Thus,
once frequency dependence in γ is appropriately allowed for, the Phillips Curve
relationship becomes evident. Moreover, we find that the null hypothesis that
γ1 . . . γ37 are all equal can be rejected with p–value equal to .014. Thus, the
frequency dependence in γ is statistically significant, providing strong evidence
that the kind of nonlinearity discussed here is actually present in the Phillips
Curve relationship.

Figure 2 below plots smoothed values of γ̂1 . . . γ̂25, corresponding to fluctua-
tions in unt with periods greater than or equal to 3 months, plus and minus one
estimated standard deviation. This smoothing – analogous to the smoothing
used in estimating a power spectrum from a sample periodogram – is necessary

10 See Ashley and Verbrugge (2006) for a thorough review of the literature on the
Phillips Curve and also for a detailed description of the particular specification and
data used in this section. More detailed results are discussed there. One might won-
der about the exogeneity of unt in this model, but this is the standard specification
and the use of OLS estimation is common practice in this literature.
11 The 60 months in each window were augmented with the 12 projected values
described in footnote 8; that is why there are 36 possible non–zero frequencies
and hence 37 frequency components. Similar results are obtained using 60 and 84
month windows. Also, in view of the criticism of linear de–trending in the context of
spectral regression given by Corbae, Ouliaris and Phillips (2002), it is notable that
the results are not sensitive to how or even whether the within–window de–trending
described at the end of Section 5 above is done.
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Figure 2. Smoothed parameter estimates (γ̂1 . . . γ̂25) from Equation 15.

because the γ̂j estimates are individually quite noisy. A seven–point symmet-
ric moving average is used for this purpose and the coefficient standard error
estimates are adjusted accordingly. The estimates γ̂26 . . . γ̂37 correspond to
fluctuations in unt with periods between 2 and 3 months; these are omitted
from the plot because their standard error estimates are so large as to distort
the scale of the figure. 12

Evidently, low frequency fluctuations in unt – i.e., fluctuations corresponding
to periods greater than or equal to around a year – have no impact on in-
flation, whereas higher frequency fluctuations in unt have an inverse impact.
In particular, H0 : γ1 = . . . = γ4 = 0 – corresponding to unt fluctuations
with periods greater than or equal to 12 months – can be rejected only with
a p–value of .381; whereas H0 : γ5 = . . . = γ25 = 0 – corresponding to unt

fluctuations with periods of 3 to 12 months – can be rejected with a p–value of
.019. Associating low frequency unt fluctuations with changes in the so–called
“natural rate of unemployment” and high frequency unt fluctuations with de-
partures from the natural rate – as in Hall (1999), Cogley and Sargent (2001),
and Staiger, Stock and Watson (2001) – these results are consistent with the
Friedman–Phelps theory of inflation.

12 The null hypothesis that these twelve coefficients are all zero cannot be rejected;
the p–value for this test is .912.
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7 Conclusions

The frequency dependent regression modeling approach proposed here intro-
duces a new class of nonlinear models. This new approach is also exceptionally
easy to implement: once the relevant explanatory variable has been partitioned
into frequency components, one merely replaces the variable by a weighted
sum of these components in whatever estimation framework was already being
used. Because these new models are so tightly connected to economic theory,
they are both readily interpretable in terms of theory and particularly well–
suited for testing economic theory. This point is illustrated with an applica-
tion to the Phillips Curve, in which the observed frequency dependence in the
coefficient on the unemployment variable provides strong empirical support
for the Friedman–Phelps theory of inflation, whereas an ordinary regression
model fails to detect any relationship between inflation and unemployment
whatsoever.
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