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Abstract 

A two-regime self-exciting threshold autoregressive process is estimated for quarterly 

aggregate GDP of the fifteen countries that compose the European Union, and the forecasts 

from this nonlinear model are compared, by means of a Monte Carlo simulation, with those 

from a simple autoregressive model, whose lag length is chosen to minimize Akaike's AIC 

criterion. The results are very negative for the SETAR model when the Monte Carlo 

procedure is used to generate multi-step forecasts. When the “naive'' procedure of 

generating forecasts is used, the results are surprisingly better for the SETAR model in long-

term predictions. Due to the characteristics of the residuals, a bootstrapping method of 

forecasting was also used, yielding even poorer results for the nonlinear model. 
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1 Introduction

Threshold models have raised great interest among economists since Tong's seminal con-

tributions [Tong (1983, 1990)]. Nevertheless, the evidence existing on the forecasting

superiority of threshold autoregressive models (TAR) and, more precisely, self-exciting

threshold autoregressive models (SETAR) when compared to linear models is relatively

small. At �rst sight, the possibility of generating asymmetries that non-linear models

possess could make them capable of better forecasting variables related to business cycle


uctuations such as employment or GDP, where asymmetric behaviour appears to be a

stylized fact. Rothman (1998) brings out evidence on the superior forecasting capabili-

ties of non-linear models (among them, self-exciting threshold autoregressive models) over

univariate linear models when forecasting the unemployment rate in the USA. The same

conclusion regarding the better forecasting properties of SETAR models is achieved by

Pippenger and Goering (1998) and Chappell et al. (1996) on exchange rate data, where

the scheme of exchange rate bands is also intuitively appealing for threshold modelling.

This paper contributes to the comparison between forecasts from linear and nonlinear

models by estimating both an autoregressive and a SETAR model for European GDP and

comparing the forecasts induced by both of them out of the sample used for estimation.

The paper is organized as follows: Section 2 deals with the estimation of the AR model

for European GDP. Section 3 implements the estimation of the SETAR model; while the

estimation method for the AR model is standard, the SETAR model is estimated through

Hansen's (1997, 1999) procedure. Section 4 deals with the complications derived from

forecasting with nonlinear models. Section 5 compares the forecasts from both models

through Monte Carlo simulations, using the \naive" method of obtaining forecasts, and

through a bootstraping procedure. Section 6 concludes.

2 The Linear Model

Quarterly data on the aggregate GDP of the �fteen countries that currently compose the

European Union is available from the OECD's Main Economic Indicators database from

the �rst quarter of 1960 until the �rst quarter of 1999. First di�erences of the logarith-

mized series are used for the present study1. The series of interest is plotted in Figure 1

for the whole available range.

Observations up to 1994:4 are used for the estimation of both the linear and the SE-

TAR model, and the interval 1995:1-1999:1 will be used for comparing the out-of-sample

forecasting performance of both models. The optimal lag length of the autoregressive

process to be estimated is chosen using Akaike's AIC criterion (Akaike, 1973): Autore-

gressive processes with lag length ranging from 1 to 8 are estimated and the AIC statistic

is computed:

AIC = �2l̂=n+ 2k=n;

where l̂ is the estimated log-likelihood of the model, k is the number of estimated pa-

rameters and n is the number of observations. The number of lags to be included in the

1The results of the augmented Dickey-Fuller test suggested taking �rst di�erences from the logarith-

mized series of GDP in order to achieve stationarity. The null of a unit root was accepted at any sensible

signi�cance level (both a constant and a trend component were used in the testing procedure).
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Figure 1: First di�erence of logarithmized GDP: Europe-15 (1960:1-1999:1)

autoregressive process is chosen from the model that minimizes the value of AIC. Table

1 reports the results for 1960:1-1994:4: the �rst column refers to the lag length of the

estimated AR process, the second one to the AIC corresponding to that lag and the third

column reports the sum of squared residuals of the estimated model.

Lag length (g) AIC=�2l̂=n+ 2k=n SSR

1 -7.09321 0.00652

2 -7.10281 0.00631

3 -7.11149 0.00612

4 -7.11072 0.00599

5 -7.09092 0.00597

6 -7.07177 0.00594

7 -7.04927 0.00594

8 -7.02864 0.00592

Table 1: AIC Statistics: AR(g) models

A lag length of three is optimal according to this procedure of model selection, and the

estimated process is

yt = 0:004016 + 0:20964yt�1 + 0:09376yt�2 + 0:17318yt�3 + �t; (1)

where the ys are �rst di�erences of logarithmized European GDP and �t is assumed to
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be a sequence of i.i.d. random variables distributed according to a Gaussian distribution

with mean zero and constant variance �2�. Except for the parameter of the second lag of

yt, whose t-statistic is 1.082, all estimated parameters are statistically signi�cant at 5%

signi�cance level. Ljung and Box's Q-test [ Box and Ljung (1978)], using up to 36 lags,

was applied to the residuals of (1), and it showed no departure from iid-ness.

3 The SETAR Model: Estimation

Before reporting the results of the estimation of the 2-regime SETAR model for European

GDP, a brief explanation of the method used is required. The next subsection is mainly

based on Hansen (1997,1999).

3.1 Hansen's Method

Let the two-regime SETAR model to be estimated be of the form

yt = (�0 + �1yt�1 + : : :+ �pyt�p) I (yt�d � 
) +

+ (�0 + �1yt�1 + : : :+ �pyt�p) I (yt�d > 
) + �t; (2)

where I(�) is the indicator function, which takes value 1 if its argument is true and zero

if it is false, and �t is assumed to be a sequence of independent, identically distributed

random variables with expectation 0 and constant variance �2. The autoregressive order

of the model is p � 1, yt�d is the threshold variable and 
 is the threshold parameter.

Let us rewrite the model in equation (2), by de�ning

xt = (1 yt�1 : : : yt�p)
0 ;

xt(
) =
�
x0tI (yt�d � 
) x0tI (yt�d > 
)

�
0

;

� = (�0 �1 : : : �p)
0 ;

� = (�0 �1 : : : �p)
0

and

 = (�0 �0)0

as

yt = xt(
)
0 + �t: (3)

The parameters to be estimated, apart from the delay parameter, d, are 
 and  , and the

estimation method to be used [Hansen(1997)] will be sequential conditional least squares.

Using the least squares estimator of  for a given value of 
,

 ̂(
) =

 
nX
t=1

xt(
)xt(
)
0

!
�1 nX

t=1

xt(
)yt

!
;

the estimation problem is reduced to �nding 
̂ that minimizes the sum of squared residuals

of the model (that now depends exclusively on 
), and recovering the estimates of � and

� through  ̂(
̂). The search for 
̂ is done by evaluating the sum of squared residuals of

the model �xing the threshold variable to be equal to yt�d, t = d+1; : : : ; n, in the sample
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space. Thus, we simplify the problem of �nding 
̂ in a continuous interval � = [
1; 
2]

by replacing � by ~� = fyt�d for all d + 1 � t � ng, which has a �nite { and not too

enormous { number of elements [n� (d+1)]. Estimating the delay parameter, d, amounts

to extending the search just explained by allowing the variable d 2 IN , 1 � d � D, to be

also a choice variable in the discrete optimization problem. That implies that we need to

evaluate the sum of squared residuals on [n � (d + 1)]D models, and pick the pair (
̂; d̂)

that minimizes it.

The procedure for testing for threshold models against linear ones allows us, as well, to

construct con�dence intervals for the threshold parameter: the LR-type test statistic to

be used for such a testing procedure is

Fn = n

 
~�2n � �̂2n
�̂2n

!
;

where ~�2n is the residual variance for the restricted (� = �) linear model and �̂2n is the

residual variance of the alternative threshold model. The pointwise F statistic for the test

H0 : � = � against H1 : � 6= � for a given 
 is, thus,

F = sup
2� Fn(
) = sup
2� n

 
~�2n � �̂2n(
)

�̂2n(
)

!
:

Such a test statistic has a non-standard distribution [see, e.g., Andrews and Ploberger

(1994)], which has been approximated by Hansen (1999) using a bootstraping procedure.

Con�dence intervals can be, therefore, calculated by inverting the Fn(
) statistic. Let c(�)

be the �-level critical value of the distribution of Fn(
). Then the 100 � % con�dence

interval for 
, �̂, is

�̂ = f
 : Fn(
) � c(�)g :

3.2 A SETAR Model for European GDP

In the framework of the procedure described hitherto, a simple two-regime SETAR model

will be estimated for the data on European GDP, and its forecasting capabilities will

be discussed and compared to the ones of the linear model described in the previous

section. For comparison reasons, when estimating the model the number of lags of the

autoregression to be included in each regime will be set to be equal to the number of lags

in the competing autoregressive process, and the delay parameter will not be allowed to

exceed this number of lags. Table 2 reports the sum of squared residuals for the models

considered, and the p-value for the test of the null of linearity against the threshold model

considered in each case calculated through Hansen's bootstrapping method. The method

for computing this statistic is the one described above, and both the top and bottom 5%

quantiles of the candidates to threshold variable have been trimmed. The SETAR(2;3,3)

model estimated for the observations ranging from 1960:1 to 1994:4 is

yt = (0:02161 + 2:8278yt�1 � 2:6206yt�2 + 3:03937yt�3)I(yt�1 � �0:004564) +

+(0:003469 + 0:30044yt�1 + 0:0945yt�2 + 0:1157yt�3)I(yt�1 > �0:004564) + �t;

where �t is a sequence of i.i.d. random variables, assumed to be normally distributed with

zero mean and constant variance.
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Threshold variable p-value SSR

yt�1 0.004 0.005065

yt�2 0.479 0.005692

yt�3 0.037 0.005343

Table 2: Choosing the appropriate SETAR model

Notice the non-stationary, explosive nature of the process for yt�1 � �0:004564, leading

to \jumps" to the upper process. This model of GDP presents, thus, steep expansions

followed by 
atter contractions, a stylized fact constantly reported in the real business

cycle literature. In order to illustrate such a feature, Figure 2 graphs a simulation of the

process de�ned by (4), where the error process has been taken to have variance �̂�, the

estimated residual variance of equation (4).

Figure 2: Simulation of the SETAR(2,3,3) process.

Figure (3) shows the in-sample �t of both the AR and the SETAR model for the period

1960:1-1994:4. As can be seen from the plot, the SETAR models accounts better for

the deep recession of the mid-seventies and the explosive episode in the beginning of the

sixties. Nevertheless, as Clements and Smith (1997) remark, \neither in-sample �t nor

the rejection of the null of linearity (...) guarantee that SETAR models (...) will forecast

more accurately than linear AR models". The following sections justify such a comment

quantitatively.

4 Forecasting with SETAR and Linear Models

The problems arising when calculating multi-step forecasts in nonlinear models are well

known 2. The complication that nonlinear models posses when trying to forecast h-steps

ahead (h � 2) is based on the fact that, if g(�) is a nonlinear function,

IE[g(�)] 6= g(IE[�]);

2For a clear, brief review see Granger and Terasvirta (1993).
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Figure 3: In-sample �t: AR and SETAR models

where IE[�] is the expectation operator. Thus, closed-form analytic expressions for multi-

step forecasts do not exist for the case of SETAR models. Clements and Smith (1997)

compare several methods for obtaining h-steps ahead minimummean square error forecasts

for SETAR models, and conclude on the usefulness of a simple one: the Monte Carlo

method. The next subsection brie
y explains the procedure for obtaining forecasts of a

SETAR model using Monte Carlo (MC) simulations. This method will be used in the

comparison of the forecast power of the SETAR and AR model, together with the \naive"

or \skeleton" (SK) method.

4.1 The MC Method

Consider a simple SETAR model such as the one speci�ed by equation (2). If we have data

up to period T and want to forecast yT+1, the regime of the SETAR process is known,

and the one-step forecast for the MC procedure is just

ŷT+1 = (�0 + �1yT + : : : + �pyT�p+1) I (yT � 
)+(�0 + �1yT + : : :+ �pyT�p+1) I (yT > 
) :

However, when forecasting yT+2 we only have ŷT+1 [which di�ers from yT+1 by an error

term when considering (2) the DGP] in order to decide on the regime in which the process

is. For a given realization of the error process, the forecasts for period T + 2 and T + 3

are

ŷjT+2 = (�0 + �1ŷT+1 + : : :+ �pyT�p+2) I (ŷT+1 � 
) +

+ (�0 + �1ŷT+1 + : : :+ �pyT�p+2) I (ŷT+1 > 
) + �jT+2

ŷjT+3 =
�
�0 + �1ŷ

j
T+2 + : : :+ �pyT�p+3

�
I
�
ŷjT+2 � 


�
+�

�0 + �1ŷ
j
T+2 + : : : + �pyT�p+3

�
I
�
ŷ
j
T+2 > 


�
+ �

j
T+3
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Simulating J replications of the error process, the forecast for yT+h would be

ŷT+h = 1=J
JX

j=1

ŷ
j
T+h;

Following this reasoning, and using a high enough number of replications of the error

process, h-steps ahead (h > 2) forecasts can be computed.

4.2 The SK Method

The \naive" or SK method amounts to approximating IE[g(�)] by g(IE[�]), and can be

interpreted as a special case of the MC method in which the errors are set to zero. Thus,

through the SK method

ŷT+2 = (�0 + �1ŷT+1 + : : :+ �pyT�p+2) I (ŷT+1 � 
) +

+ (�0 + �1ŷT+1 + : : :+ �pyT�p+2) I (ŷT+1 > 
) ;

and

ŷT+h = (�0 + �1ŷT+h�1 + : : :+ �pŷT�p+h) I (ŷT+h�1 � 
) +

+ (�0 + �1ŷT+h�1 + : : :+ �pŷT�p+h) I (ŷT+h�1 > 
) :

5 Forecasting European GDP: SETAR vs. AR Models

The forecasting experiment is designed as follows. Starting in the last quarter of 1994,

models (1) and (4) are using for computing s-steps ahead forecasts (s=1,2,...8) through

both the MC and the SK method described above. When a new observation comes up, the

AR model is reestimated, choosing its optimal lag length (d1) through AIC. Conditional

on this lag length for both regimes, the SETAR(2; d1; d1) is estimated by searching through

the delay parameter and the threshold and choosing the best model measured by the p-

value of the F-test described in section 2.1. The forecasts are then computed again, and

the procedure is repeated for the new coming observation: d2, the new delay parameter

and the new threshold are chosen, and forecasts are computed again. 1000 replications of

the error process -assumed iid normal with mean zero- were used in each step for the MC

procedure, where the variance was chosen in each step to be equal to the residual variance

of the model considered.

Once the forecasts were obtained, the following statistics were computed for each step,

model and procedure:

� Root Mean Squared Error (RMSE): f1=N
P
[At � Ft]

2
g
1=2,

� Mean Absolute Deviation (MAD): 1=N
P

jAt � Ftj,

� Theil's U statistic (U): RMSE=[1=N
P
A2],

� Confusion Rate (CR): Number of wrongly forecasted moves (up/down)/Number of

observations to be forecasted.
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AR model

steps ahead RMSE MAD U CR

2 0.00326 0.00279 0.5656 0.7142

3 0.00326 0.00275 0.5579 0.6923

4 0.00334 0.00275 0.5540 0.75

5 0.00298 0.00245 0.4802 0.4545

6 0.00304 0.00250 0.4781 0.50

7 0.00314 0.00263 0.4866 0.4444

8 0.00316 0.00269 0.4883 0.25

SETAR model

steps ahead RMSE MAD U CR

2 0.00359 0.00286 0.6229 0.6428

3 0.00357 0.00294 0.6112 0.6923

4 0.00348 0.00300 0.57725 0.5833

5 0.00336 0.00274 0.5408 0.4545

6 0.00334 0.00265 0.5254 0.60

7 0.00307 0.00253 0.4765 0.3333

8 0.00325 0.00281 0.5021 0.625

Table 3: Forecasting comparison: MC procedure

8



AR model

steps ahead RMSE MAD U CR

1 0.00290 0.00231 0.4984 0.60

2 0.00326 0.00278 0.5655 0.7142

3 0.00331 0.00285 0.5665 0.7692

4 0.00326 0.00271 0.5411 0.75

5 0.00303 0.00253 0.4885 0.2727

6 0.00304 0.00251 0.4779 0.50

7 0.00307 0.00256 0.4762 0.4444

8 0.00318 0.00266 0.4914 0.625

SETAR model

steps ahead RMSE MAD U CR

1 0.00314 0.00230 0.5404 0.60

2 0.00350 0.00276 0.6081 0.6428

3 0.00354 0.00293 0.6063 0.6153

4 0.00339 0.00286 0.5628 0.5833

5 0.00274 0.00223 0.4407 0.4545

6 0.00277 0.00222 0.4363 0.60

7 0.00245 0.00210 0.38028 0.4444

8 0.00260 0.00203 0.40307 0.625

Table 4: Forecasting comparison: SK procedure
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A refers to the actual values of the series and F to the forecasted ones. For a more exten-

sive explanation of these concepts, see Holden et al. (1990) or Clements and Hendry (1998).

The results are shown in Tables 3 and 4. The optimal lag length for the AR process (and,

therefore, the lag length of each one of the regimes of the SETAR process) was 3 for the

interval 1994:4-1996:3. When the observation corresponding to 1996:4 enters the sample

for estimation, the optimal lag length according to AIC is 4, and the optimal delay lag for

the SETAR model, which was 1 until 1996:3, is 4 according to the procedure explained

above. The threshold variable is, thus, yt�1 for the range 1994:4-1996:3, and yt�4 for

1996:4-1998:4. The threshold is -0.00456 in the �rst case and 0.00991 in the second one.

Furthermore, both regimes of the SETAR processes for the range 1996:4-1998:4 have roots

outside the unit circle.

Figure 4: Forecasting comparison: MC procedure

Figures 4 and 5 present the comparison graphically. The results are rather surprising: for

a start, the SETAR model performs much better when using the SK procedure than it

does when using the MC, which is more adequate to its nonlinear nature. In the MC sim-

ulations, the AR model gives superior forecasts (measured in MSFE, MAD or U) for every

forecasting horizon except for seven steps ahead. The results for the CR are not decisive

for the case of the MC method of obtaining multi-step forecasts. The forecasting failure of

the SETAR model can be explained by the non stationary nature of the contractive regime

in the range 1994:4-1996:3, which could have \in
ated" many of the replications of the

Monte Carlo simulation, resulting in misleading forecasts. This hypothesis is sustained by

10



Figure 5: Forecasting comparison: SK procedure

the better performance in the SK method.

In any case, the results for the SETAR forecasts with the SK procedure are also rather

dissapointing: the AR model beats the SETAR model or performs equally well for all

statistics when forecasting up to one year (four quarters) ahead. It is only for longer fore-

casting horizons that the SETAR model proves to give better forecasts than the simple

linear model.

Another explanation for the poor performance of the SETAR model has to do with the

features of the errors: in the MC simulation the replicated errors are normally distributed

with mean zero and variance equal to the estimated variance of the model �tted to the

available observations in each period. However, the residuals of both the AR and the

SETAR model in (1) and (4) di�er strongly from normality: the Jarque-Bera test [ Jarque

and Bera (1980)] applied to the residuals of (1) and (4) rejects the null of normality at 1%

signi�cance level. The same happens for the residuals of the out-of-sample reestimated

models for every range of observations.

The sensible step to take is, thus, to repeat the forecasting experiment using a bootstrap-

ing (BS) method for obtaining multi-step forecasts. The method is similar to MC, with

the exception that the errors are drawn randomly from the residuals of the regression

performed at each observational point; that is, once an AR(4) and a SETAR(2;4,4) have

been �tted to, for example, the observations up to 1997:2, the residuals of this regression

are used as source of the errors for the multi-step forecasts, in a similar fashion to the

procedure explained in section 4.1. If the forecast failure of the SETAR model resides on

the assumed normality of the error process, the forecasting exercise using bootstrapping

should obtain better results for the nonlinear model when compared to the linear autore-

11



AR model

steps ahead RMSE MAD U CR

2 0.00326 0.00276 0.5655 0.7857

3 0.00329 0.00276 0.5626 0.7692

4 0.00318 0.00265 0.5285 0.75

5 0.00306 0.00259 0.4926 0.3636

6 0.00291 0.00243 0.4585 0.60

7 0.00298 0.00248 0.4622 0.3333

8 0.00317 0.00265 0.4906 0.50

SETAR model

steps ahead RMSE MAD U CR

2 0.00352 0.00283 0.6117 0.7142

3 0.00400 0.00328 0.6840 0.6153

4 0.00334 0.00273 0.5541 0.5833

5 0.00362 0.00248 0.5828 0.6363

6 0.00675 0.00458 1.0617 0.50

7 0.01492 0.01138 2.3151 0.3333

8 0.03524 0.02802 5.4533 0.75

Table 5: Forecasting comparison: BS procedure

gressive model. 1000 bootstrap replications of the error process have been generated for

each step ahead forecast in each model, and the results are reproduced in Table 5. The

forecasting superiority of the AR over the SETAR model when the forecasts are obtained

through the BS procedure is even more devastating than when the other procedures of

obtaining multi-step forecasts are used, and the SETAR forecasts are especially bad for

longer horizon forecasts, which is the strength of the nonlinear model under the SK pro-

cedure. The fact that the empirical distribution of the residuals for the SETAR model is

leptokurtic for all estimation ranges may explain the poor results, as errors would tend to

drive the long horizon forecasts into the \contractive" regime, which is non-stationary for

the SETAR models computed up to observation 1996:4, in
ating the value of the forecasts.

Is the non-stationary nature of the \expansive" regime the only responsible for the poor

forecasting abilities of the SETAR(2;3,3) model? The following experiment is aimed to

show if the potentially explosive expansive regime of the estimated SETAR model is caus-

ing the poor forecasting performance of the nonlinear model when compared to the simple

linear AR process. We replaced our original SETAR(2;3,3) for a SETAR(2;3,1) for the

estimation horizons where the expansive regime (yt�1 � �0:004564) was nonstationary.

The new expansive regime is

yt = �0:8yt�1 + �t;

12



Adjusted SETAR model

steps ahead RMSE MAD U CR

2 0.00363 0.00290 0.6310 0.5714

3 0.00362 0.00299 0.6187 0.6153

4 0.00344 0.00298 0.5713 0.6666

5 0.00325 0.00264 0.5233 0.6363

6 0.00331 0.00265 0.5206 0.60

7 0.00301 0.00246 0.4866 0.4444

8 0.00299 0.00244 0.4631 0.50

Table 6: Forecasting statistics of the SETAR(2;3,1) model: MC procedure

which is expected to make observations in this regime be re
ected into the \contractive"

regime, and ful�lls stationarity. Table 6 reports the forecasting statistics of this adjusted

SETAR(2;3,1) model for the Monte Carlo procedure of computing h-steps ahead forecasts.

Although 7 and 8-steps ahead forecasts improve with the new model, and the SETAR(2;3,1)

is superior to the AR model in these forecasting horizons, still non-stationarity does not ac-

count for the failure in short and medium term forecasting, where the SETAR model with

non-stationary expansive regime displays better forecasting features measured in mean

square forecasting error.

6 Conclusions

We have compared the forecasts of a SETAR model on European GDP with those of a

simple AR model by means of a Monte Carlo method, proved to perform well for self-

exciting threshold models, and a simple, \naive" method. The nonlinear model performs

rather poorly in terms of most of the statistics used to measure forecast accuracy, and is

outperformed by the AR model in all except for one of the forecasts horizons used when

we implement the MC method. Such a performance improves with the \naive" or SK

method in the long run forecasts, but the SETAR model keeps on being beaten by the

AR model for forecast horizons up to four periods. Due to the rejection of the null of

normality when applying the Jarque-Bera test to the residuals of the estimated models,

a bootstrapping method for obtaining multi-step forecasts was also implemented, and the

results of the SETAR model were considerably worse than in the other cases. The study

performed strengthens the results of, for example, Diebold and Nason (1990) or De Gooijer

and Kumar (1992), concluding that the forecasting supremacy of nonlinear models when

compared to linear ones is not evident. The sometimes excellent in-sample �t of SETAR

models on real business variables does not mirror itself in excellence of out-of-sample

forecasting, as has been demonstrated in the present paper for European GDP.
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