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1 Introduction

The crucial step in nonparametric spectral density estimation is the choice of the win-

dow width or 'bandwidth' of some speci�ed lag window or spectral window employed

for smoothing the periodogram. To determine this scale parameter optimally one might

try to minimize some measure of the distance between the true spectral density of a

process and its estimator over a the range of scale parameters. Di�erent theoretical

criteria were proposed for that, among them the mean square error (MSE) and the

mean square percentage error (MSPE). The resulting optimal value for the scale pa-

rameter depends, however, on the true underlying spectral density. To overcome this

problem, various approaches have been undertaken. The earlier way to go about it, is to

use a likelihood motivated cross-validation criterion, which may be seen as an estimate

of some distance measure (Hurvich (1985), Beltr~ao & Bloom�eld (1987), Hurvich &

Beltr~ao (1990)). Another line of thought has been taken up by Franke & H�ardle (1992).

They consider bootstrap estimates of some distance measure by resampling the resid-

uals of a multiplicative nonparametric regression, which can be shown to be 'nearly'

independent. A third variant to tackle the problem has been developed by B�uhlmann

(1996), who iteratively estimates the spectral density, calculating the optimal scale pa-

rameter in every step according to one of the theoretical criteria, plugging in the (step-)

spectral density estimate for the true spectral density.

The paper is organized as follows. Section 2 gives basic de�nitions and some well-

known results in spectral density estimation. Cross-validation criteria for determining

the optimal window width, as developed by Hurvich (1985), Beltr~ao & Bloom�eld

(1987) and Hurvich & Beltr~ao (1990), are discussed in section 3. Section 4 gives an

account of the iterative approach formulated by B�uhlmann (1996), and section 5 deals

with the bootstrap method employed by Franke & H�ardle (1992). A small simulation

study for a comparison of the discussed methods is presented in section 6. Section 7

concludes.
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2 The Basics

2.1 The Spectral Density

De�nition 2.1

Let fXt; t 2 INg be a real(-valued) strictly stationary stochastic process with autoco-

variance function 
(�) and zero expectation.1 The spectral distribution function

F (!) of 
(�) or of the process is de�ned as a right-continuous, non-decreasing, bounded

function on [��; �] with F (��) = 0 satisfying


(k) =

Z
(��;�)

eik�dF (�) for all k = 0;�1; ::: (1)

De�nition 2.2

The spectral density function f(!) is de�ned by

F (!) =

Z !

��

f(�)d�; ! 2 [��; �] (2)

and may be written as

f(!) =
1

2�

1X
k=�1

e�ik!
(k) for all ! 2 [��; �]: (3)

The autocovariance function, therefore, is an inverse Fourier transform of the spectral

density function, and vice versa the spectral density function is a Fourier transform of

the autocovariance function. The autocovariance function, however, by nature is only

de�ned on the set of integers.

Remark 2.1 By a Fourier transform F (y) of a function f(x) we understand any inte-

gral of or discrete sum over this function or its discrete values multiplied by e�iyx with

respect to x. We do not care about the constant in front of the integral or sum. Some-

times we call the discrete version a discrete Fourier transform if we think it necessary

to stress that point. If, on the other hand, the multiplying factor in the integral or sum

is eiyx we call the result an inverse Fourier transform.

2.2 The Periodogram

Let x1; :::; xn be the sample of a real, strictly stationary stochastic process. Let the

Fourier frequencies of the sample be de�ned as !j = 2�j
n
, where j assumes integer

values such that �� < !j � �. Let the sample estimate of the autocovariance function,2

denoted by 
̂(�), be given by


̂(k) = 1
n

Pn�k
t=1 (xt+k �m)(xt �m) for k � 0 and (4)


̂(k) = 
̂(�k) for k < 0, where (5)

m = 1
n

Pn
t=1 xt: (6)

1We will assume this throughout the paper.
2This estimate is biased downwards for all k, the larger jkj the larger the bias.
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Then this sample version of the autocovariance function yields an intuitive estimate of

the spectral density by replacing 
(�) in the de�nition of the spectral density, as in (3),

by its estimate 
̂(�).

I(!) =
1

2�

n�1X
k=�(n�1)

e�ik!
̂(k) for all ! 2 [��; �]: (7)

I(�) is called the periodogram and is very often de�ned on Fourier frequencies only. It

is easy to see that the periodogram may also be stated in terms of the observations.

(Brockwell & Davis p. 332)

I(!) =
1

n

�����
nX
t=1

xte
�it!

�����
2

: (8)

The periodogram I(�) is therefore the square of the absolute value of the discrete Fourier

transform of the data x1; :::; xn.

Remark 2.2 The periodogram is apparently de�ned di�erently by di�erent authors.

Especially the constant in front of the sum di�ers a lot.

2.3 Smoothing the Periodogram { Kernel Estimates

The periodogram is NOT a consistent estimator of the spectral density (Priestley p.

425) in the sense that Var(I(!)) does not converge to zero as n ! 1. Also I(!)

does not converge to f(!), the true density, in mean square. A smoothed version of

the periodogram, though, may be shown, under some conditions, to be a mean square

consistent estimate of the true spectral density. Estimators of the form,

f̂(!) =
1

2�

n�1X
k=�(n�1)

�(k)
̂(k)e�ik!; (9)

(Brockwell & Davis p. 354, Priestley p. 434 6.2.54) where �(�) is a so-called lag window,

are generally called Lag Window Estimators. For the moment let the lag window

be some general function that maps IR into the positive real line with some assump-

tions that will guarantee consistency of the above lag window estimator. Typically we

would think of a lag window as an even function with one single maximum at zero and

decaying smoothly and fast enough (to yield a consistent estimate) as the argument

becomes greater in absolute values. As we will later consider only a special type of lag

window estimators, namely scale parameter windows, we will not go into detail about

the general conditions on the window to yield consistent estimates of the spectral den-

sity. Some calculation (Priestley p. 435 6.2.56) shows that, using properties of Fourier

transforms, the lag window density estimate may be written as a weighted average of

nearby periodogram values,

f̂(!) =

Z �

��
I(�)W (! � �)d�; (10)
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whereW (�), the spectral window, is the discrete Fourier transform of the correspond-

ing lag window.

W (�) =
1

2�

(n�1)X
k=�(n�1)

�(k)e�ik�: (11)

The spectral density estimate at some speci�ed frequency !, therefore, is the weighted

average of the periodogram values with the largest weight attached to ordinates in the

neighborhood of � = !. (Priestley p. 435) For practical purposes instead of the integral

in (10) we will rather use a discrete sum over all Fourier frequencies.

f̂(!) �
1

2�

NX
j=�N

W (! � !j)I(!j); (12)

where N is the largest integer less than or equal to n�1
2
.

There are lots of di�erent possible lag windows that would ful�ll the conditions to obtain

a consistent estimate of the spectral density (Priestley, p. 434). A rather convenient

type of lag windows are the scale parameter windows (Priestley, p. 446). These involve

a parameter, the scale parameter, that in some obvious way controls for the width of

the window. Say, a lag window family is given as a function of a scale parameter h that

controls for the width of the window and of k, �(k;h). Then

De�nition 2.3

�(�) is a scale parameter window if it can be written in the form,

�(k;h) = �(k=h); (13)

where �(�) is a lag window generator or lag kernel and h the scale parameter.

De�nition 2.4

A lag kernel or lag window generator is an even function � : IR! IR+ with

�(0) = 1; (14)

j�(x)j � 1; for all x; (15)

and

�(x) = 0; for x > h: (16)

The scale parameter h is very often, a bit confusingly, called the 'bandwidth' of the lag

window and describes the shape or concentration of the lag window. Confusingly, as

on the one hand it in fact has got something to do with the term bandwidth de�ned

di�erently by various authors (cf. Priestley, p. 520 �.) as it also measures or controls

for the width of a window, but on the other hand in general it is not the same as the

bandwidth in any of the given de�nitions.

For spectral window density estimation the lag kernel transforms into a spectral kernel.
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De�nition 2.5

The corresponding spectral kernel or spectral window generator for a given lag kernel

is given by its Fourier transform,

K(!) =
1

2�

Z
1

�1

�(x)e�ix!dx: (17)

The spectral window may then at least approximately be written as

W (!) � hK(h!): (18)

For the Bartlett-Priestley window this holds exactly true.

As already mentioned some windows, like the Lomnicki-Zaremba window (Priestley, p.

445), cannot be put into this scale parameter window generating framework. Examples

of some lag windows that can be put into the kernel framework are the Bartlett or Tri-

angular Window and the Bartlett-Priestley Window. Their respective lag and spectral

kernels are given by,

�(x) =

(
1� jxj if jxj � 1;

0 if jxj > 1;
(19)

with corresponding spectral kernel (Fejer kernel)

K(!) =
1

2�

�
sin(!=2)

!=2

�2

(20)

for the Bartlett window and

�(x) =
3

�2x2

�
sin(�x)

�x
� cos(�x)

�
(21)

with

K(!) =

8<
:

3
4�

�
1�

�
!
�

�2�
if j!j � �

0 if j!j > �:
(22)

for the Bartlett-Priestley Window (see Priestley, p. 447/8).

To better distinguish the various windows with respect to some crucial aspects, we

formulate the following de�nitions.

De�nition 2.6

A lag window is a Cr window if its lag kernel is r times continuously di�erentiable in

the neighborhood of zero and Lipschitz-continuous on IR.

De�nition 2.7

A window � has characteristic exponent r if its lag kernel has the properties

�(s) = 0 for all s < r (23)

�(r) 6= 0; (24)

where

�(s) = lim
x!0

�
1� �(x)

jxjs

�
(25)

is the generalized s-th derivative of a lag kernel �(�) at zero.
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(see B�uhlmann p. 249, def. 1; Priestley, p. 459, 6.2.121). The generalized derivative is

NOT the same as the (ordinary) derivative of �(k) at zero. For even s, however, there

is an obvious relationship between the two.

�(s) = �
1

s!

�
ds(�(x))

dxs

�
x=0

: (26)

The Bartlett window, therefore, would be a C0 window with characteristic exponent 1,

whereas the Bartlett-Priestley window would be C2 with characteristic exponent 2.

Given a speci�c window one still has to choose the scale parameter. Di�erent scale

parameters yield very di�erent estimates of the spectral density. Basically, one may

get all estimates between a straight line with slope zero and the wildly 
uctuating

periodogram for di�erent choices of h. Optimally, one would choose the scale parameter

such as to minimize some measure of distance between the estimator and the true

spectral density. Various di�erent measures were suggested in the literature (Priestley,

p. 510 �.). We will only mention two.

De�nition 2.8

The mean square error or MSE of a spectral density estimate f̂ at a �xed frequency

! is given by

MSE(f̂ ; !) = E
�
f̂(!)� f(!)

�2
: (27)

De�nition 2.9

The mean square percentage error or MSPE of a spectral density estimate f̂ at a

�xed frequency ! is given by

MSPE(f̂ ; !) = E

 
f̂(!)� f(!)

f(!)

!2

: (28)

Minimizing one of the two above criteria would produce an optimal local scale param-

eter. That is, optimally, the scale parameter and therefore the window will in general

be di�erent for di�erent frequencies. If one would like to employ the same smoothing

window for the whole spectrum, one may choose to select the scale parameter such as

to minimize the integrated version of the above criteria.

De�nition 2.10

The mean integrated square error or MISE of a spectral density estimate f̂ is

given by

MISE(f̂) = E

Z �

��

�
f̂(!)� f(!)

�2
d!: (29)

De�nition 2.11

The mean integrated square percentage error or MISPE of a spectral density

estimate f̂ is given by

MISPE(f̂) = E

Z �

��

 
f̂(!)� f(!)

f(!)

!2

d!: (30)
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MISE and MISPE are just two more or less arbitrary de�nitions of a global distance

between the true spectral density function and its estimate. Other measures are possible

(see e. g. Hurvich (1985), MISE3). The measure to be employed should be determined

by the qualities the induced measure-minimizing estimate is wanted to have. The dif-

ference between MISE and MISPE is the weight they put on di�erent frequencies with

di�erently high values of the true spectral density. Whereas MISE gives equal weight

to all frequencies, MISPE will depend a lot on the �t at frequencies ! with low spectral

density value f(!), as f(!) is in the denominator of MISPE. If we would like to have

a good estimate of the spectral density at peaks especially, one should probably not

consider MISPE as the appropriate criterion, but rather MISE or even another distance

where the squared distance between true and estimated density is multiplied (instead

of divided) by some positive-valued, monotone increasing function of f(!), the value

of the true spectral density. E. g.

MISME(f̂) = E

Z �

��

�
f̂(!)� f(!)

�2
fa(!)d!; (31)

for some positive a (maybe 1 or 2).

Considering local distance measures (MSE, MSPE or others) we realize that it will not

matter which one of them we will choose as long as, at a �xed frequency, one measure

is just a monotone transformation of the other, which is the case for MSE and MSPE.

We will now only consider minimizing the MSE. By the usual variance decomposition

the MSE can be written as the sum of the squared bias and the variance.

E
�
f̂(!)� f(!)

�2
=

�
E
�
f̂(!)

�
� f(!)

�2
+E

�
f̂(!)�E

�
f̂(!)

��2
(32)

MSE(f̂ ; !) = BIAS2(f̂ ; !) + VAR(f̂ ; !): (33)

For various lag or spectral windows, given the true spectral density, it is possible to at

least asymptotically assess bias and variance of the corresponding estimators. We will

again closely follow Priestley (p. 457 �.). The bias as well as the variance generally will

depend on the spectral density and its (generalized) derivatives and the form of the lag

(or spectral) window.

De�nition 2.12

The s-th generalized derivative of a spectral density f(!) is given by

f (s)(!) =
1

2�

1X
k=�1

jkjs
(k)e�ik!: (34)

This generalized derivative is again NOT the same as the (ordinary) derivative of f(!),

but for s even there again is an obvious relationship between the two.

f (s)(!) = (�1)
s

2

�
d

d!

�s
f(!): (35)
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Priestley (p. 459, 6.2.124) derives an asymptotic formula for the bias of a kernel spectral

estimate3

ABIAS(h; !) = �
1

hr
�(r)f (r)(!); (36)

and for the variance (Priestley p. 457, 6.2.113),

AVAR(h; !) = �(!)
h

n
f2(!)

Z
1

�1

�2(x)dx; (37)

where r is the characteristic exponent of a lag window generated by kernel � and where

�(!) =

(
2 if ! 2 f��; 0; �g

1 otherwise:
(38)

For general C2 windows with characteristic exponent 2 (I think B�uhlmann implicitly

assumes that or forgot about it) these are given by (see B�uhlmann, p. 249, equation 4).

ABIAS(h; !) = �
1

2h2
f (2)(!)�00(0); (39)

AVAR(h; !) = �(!)
h

n
f2(!)

Z
1

�1

�2(x)dx: (40)

Minimizing the sum of the squared asymptotic bias and the asymptotic variance over

h will yield the optimal asymptotic local scale parameter (see section 4 and 5). This

optimal value for h does, however, depend on the true spectral density and its (gener-

alized) derivatives. As we do not know the true spectrum we will have to adopt some

kind of estimation of either the MISE directly (see section 3) or the MISE indirectly by

iteratively estimating the true density and its generalized derivatives (see section 4).

3The di�erent estimators are represented by the scale parameter. Therefore we replace f̂ in expres-

sions like BIAS(f̂ ; !) by the scale parameter h.
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3 Cross-validation Methods

Beltr~ao & Bloom�eld (1987)4 provide the �rst objective criterion for the selection of

the window width in the area of cross-validation methods. They argue that, by mini-

mizing a cross-validatory version of the log-likelihood function (CVLL), one will also

minimize the mean square integrated error, which is what they propose as a theoretical

�gure of merit for a spectrum estimate. The class of potential estimates they consider is

still limited, though, as it only contains non-parametric estimates. This is a restriction

which is relaxed by Hurvich (1985). He extends the class of candidate estimates to in-

clude any estimate derived from the observed data. In particular, the class of estimates

now includes both Yule-Walker and periodogram-based type estimates. As Hurvich still

wants to use Beltr~ao & Bloom�eld's technique for the automatic smoothness parame-

ter selection, he de�nes a leave-out-one spectrum version for any candidate estimate.5

Apart from the mean square integrated error used by Beltr~ao & Bloom�eld, Hurvich

examines two other distance measures to assess the quality of spectrum estimates. His

main contribution, though, is certainly the introduction of a method that allows for

simultaneous and objective choice of both a type of estimate and the corresponding

smoothness parameter.

The last part of this section deals with computational e�ciency in cross-validatory

spectral density estimation. While Hurvich uses the generalized CVLL to simultane-

ously determine the window width for non-parametric density estimation and the order

for parametric density estimation, Hurvich & Beltr~ao (1990) suggest the use of CVLL

for non-parametric density estimation only and the use of the computationally more

e�cient Akaike information criterion (AIC) for parametric density estimation. Hurvich

& Beltr~ao motivate this procedure by showing that CVLL can in fact be seen as a

cross-validatory generalization of AIC. Finally, they suggest a computationally more

e�cient non-cross validatory version of CVLL for non-parametric estimates.

3.1 Beltr~ao & Bloom�eld 1987

In probability density estimation, which is a �eld closely related to spectral density es-

timation, Marron (1985) and others have already discussed the use of a cross-validated

log-likelihood function to determine the window width. Beltr~ao & Bloom�eld adopt

a similar approach to Marron's and suggest to use a slightly adapted function to de-

termine the smoothness parameter in spectral kernel density estimation. Beltr~ao &

Bloom�eld show that their cross-validated log-likelihood criterion is asymptotically

equivalent to the mean integrated squared error.

4To avoid confusion, let us note that although the publication year of Beltr~ao & Bloom�eld's paper

is 1987, they put down their ideas on the topic in a working paper already in 1983, that is in particular

before Hurvich published his 1985 paper.
5Thus, he obtains a new method for autoregressive order selection. Note, however, that this new

method is computationally extremely ine�cient as opposed to the use of Akaike's information criterion.
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The class of estimates Beltr~ao & Bloom�eld consider (non-parametric estimates) con-

tains all estimates that are derived from the periodogram I(!) of the observed data

fxt : 0 � t < ng, as de�ned in (8).

The estimates f̂ are obtained by a discrete averaging process, using kernel K(�) and a

window width h:

f̂(!j ; h) =
1

�(h)

X
k

K(h!k)I(!j � !k); (41)

where

�(h) =
X
k

K(h!k) (42)

and the summations extend over all !k in the support of K (h!k < �). To judge

the quality of a spectrum estimate Beltr~ao & Bloom�eld propose to use the mean

square percentage error (MSPE), as de�ned by (28), which will be integrated to provide

one single global measure for the spectrum estimate. For discrete samples Beltr~ao &

Bloom�eld de�ne the mean integrated square percentage error (MISPE) by summing

up the MSPE, rather than integrating it, over the Fourier frequencies, omitting the

endpoints:

MISPE = E
1

N

X
0<!j<�

 
f̂(!j; h)� f(!j)

f(!j)

!2

: (43)

An approximate expression for minus twice the logarithm of the Gaussian likelihood

function for spectrum f is given by6

A =

NX
j=0

log f(!j) +
I(!j)

f(!j)
: (44)

It can easily be seen that straightforward substitution for f(!j) is not useful, as function

A is clearly minimized among all f by setting f(!j) equal to I(!j), which is done by

choosing su�ciently small values of h in (41). So, one way to go about it is to construct

a 'leave-out-one' or cross-validated form of A, where I(!j) is omitted in estimating

f(!j)

f�j(!j ; h) =
1

�j(h)

X
k 62J(n;j)

K(h!k)I(!j � !k); (45)

where

�j(h) =
X

k 62J(n;j)

K(h!k) (46)

and J(n; j) is the set of indices k for which I(!j � !k) = I(!j).

6Note that while the likelihood function is always maximized in an estimation procedure, the ap-

proximation employed here, denoted cross-validated log-likelihood (CVLL), is being minimized.
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Substitution of f̂�j(!) for f(!) in (44) and omitting some terms �guring twice leads

to the cross-validated log-likelihood function.7

CVLLBB(f̂) =
X

0<!j<�

log f̂�j(!j; h) +
I(!j)

f̂�j(!j; h)
: (47)

In the following large sample result Beltr~ao & Bloom�eld show that choosing h to

minimize CVLL is asymptotically equivalent to minimizing MISPE.

For large n

1

N
CVLLBB(f̂) =

1

N

X
0<!j<�

 
log f(!j) +

I(!j)

f(!j)

!
+

1

2
MISPE + oP (MISPE): (48)

Thus, one may approximately minimize MISPE by choosing h to minimize CVLL.

Notice that, the �rst term on the right-hand side being constant for any h, one can

also use the di�erence in 2N�1CVLL for two di�erent window widths, h1 and h2, to

estimate the additional MISPE that is incurred as a result of the change in the window

width.
2

N
(CVLLBB(h1)� CVLLBB(h2)) � MISPE(h1)�MISPE(h2): (49)

The actual MISPE for a given h cannot be estimated, though, as we obviously do not

know the true spectrum f(!).

The proposal to determine h such as to minimize CVLL derived from (48) is investigated

by a small simulation study. Beltr~ao & Bloom�eld generate 100 samples of length 128

for an autoregressive and a moving-average model, respectively. The simulation results

show that, on average, CVLL can be viewed as a good indicator of MISPE, even though

variability across samples may be substantial.

3.2 Hurvich 1985

Hurvich extends the class of potential estimates used by Beltr~ao & Bloom�eld to a

bigger class of estimates by extending the applicability of existing cross-validatory tech-

niques through the introduction of generalized leave-out-one spectrum estimates. His

main purpose is to �nd objective smoothness parameter selection methods that al-

low for comparison of both autoregressive estimates and discrete periodogram average

estimates.

Hurvich presents three di�erent forms of cross-validatory methods: the cross-validated

log-likelihood method of Beltr~ao & Bloom�eld (1987), Stuetzle's smoothed estimate

(SES, see Palmer (1983)) and an adaptation of the cross-validation mean squared error

7The cross-validated log-likelihood function is de�ned slightly di�erently by Beltr~ao & Bloom�eld,

Hurvich, and Hurvich & Beltr~ao, and it will be denoted CVLLBB , CVLLH and CVLLHB , respectively.

As the di�erence in de�nition is negligible for the maximization problem, we will still use the term

CVLL whenever referring to the technique but not to one particular method.
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(CVMSE) method of Wahba and Wold (1975). By introducing two generally applicable

de�nitions of leave-out-one versions of the spectrum estimate he extends the applicabil-

ity of the CVLL, SES and CVMSE techniques. Either of these de�nitions in conjunction

with the CVLL, SES, or CVMSE method will yield an objective choice from a general

class C, where C includes any estimate whose leave-out-one version is de�ned.

The distance measure, which Hurvich quite loosely denotes MISE, for the CVLL, SES,

and CVMSE methods, respectively, are de�ned by8

MISE1(f̂) = E
1

N

NX
j=1

 
f̂(!j)� f(!j)

f(!j)

!2

; (50)

MISE2(f̂) = E
1

N

NX
j=1

�
f̂(!j)� f(!j)

�2
; (51)

MISE3(f̂) = E
1

N

NX
j=1

�
log f̂(!j)� log f(!j)

�2
: (52)

The cross-validatory estimates of MISEi(f̂); for i = 1; 2; 3 are

CVLLH(f̂) =
1

N

NX
j=1

log f̂�j(!j) +
I(!j)

f̂�j(!j)
; (53)

SES(f̂) =
1

N

NX
j=1

(f̂�j(!j)� I(!j))
2; (54)

CVMSE(f̂) =
1

N

NX
j=1

f(log f̂�j(!j)� (log I(!j) + C))2 � �2=6g (55)

where C = 0:577216 : : : is Euler's constant and f̂�j(!j) is a general leave-out-one

(cross-validated) version of f̂ , such that f̂�j(!j) is approximately independent of I(!j)

for each j. The independence is achieved by omitting I(!j) from the computation of

f̂�j(!j).

In a �rst step, Hurvich de�nes the general leave-out-one spectrum estimate for any

estimate that is a function of the sample autocovariances 
̂(k) as de�ned in (4). In par-

ticular, this class of estimates includes both all non-parametric estimates (lag window

estimates and spectral window estimates) and the Yule-Walker autoregressive estimates.

Let any estimate of this class be written as f̂(!; f
̂(k)g).

I�j(!) = I(!) ! 62 f(!j�1; !j+1) [ (!�j�1; !�j+1)g

= �1;!I(!j�1) + �2;!I(!j+1) ! 2 (!j�1; !j+1)

= I�j(�!) ! 2 (!�j�1; !�j+1)

(56)

8Actually, MISE1 corresponds to what we de�ned as MISPE, and MISE2 corresponds to what we

de�ned as MISE.
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for ! 2 [��; �], where

�1;! = 1�
! � !j�1

!j+1 � !j�1
and �2;! =

! � !j�1

!j+1 � !j�1
:

In general, the periodogram is only evaluated at the Fourier frequencies. If it is evaluated

on a su�ciently �ne grid, though, it completely determines the f
̂(k)g sequence by


̂(k) =
2�

n0

n0�1X
k=0

I(!0k)e
ir!0

k ; (57)

where n0 = 2n and !0k = 2�k=n0. Here the !0k are de�ned on a grid exactly twice as

�nely spaced as the Fourier frequencies. Hurvich then de�nes the sequence f
̂(k)�jg by


̂(k)�j =
2�

n0

n0�1X
k=0

I�j(!0k)e
ir!0

k : (58)

Finally he de�nes the general leave-out-one version of the spectrum estimate f̂�j(!j)

for 1 � j � N as follows:

f̂�j(!j) = f̂(!j; f
̂(k)
�jg): (59)

It is important to note that f̂�j(!j) and I(!j) will be approximately independent for

each j, as the computation of f̂�j(!j) does not involve I(!) for ! in the intervals

(!j�1; !j+1) and (!�j�1; !�j+1).

Now, Hurvich de�nes a second general leave-out-one spectrum estimate which can be

applied to any estimate whatsoever and is denoted by f̂(!; fxtg). First, he de�nes

fJkg
n
k=1, the Fourier transform of fxtg

n
t=1, by

Jk =
1

n

nX
t=1

xte
�i!kt: (60)

This sequence completely determines the data sequence, through the relation

xt =
nX

k=1

Jke
i!kt: (61)

Then, Hurvich de�nes the leave-out-one version of Jk, J
�j
k , for 1 � j � N :

J
�j
k = Jk k 6= j; k 6= n� j

= 1
2
(Jk�1 + Jk+1) k = j; k = n� j

(62)

and the leave-out-one-!j version of the data sequence fx�jt gn�1t=0 by

x
�j
t =

nX
k=1

J
�j
k ei!kt: (63)
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Finally, the general leave-out-one spectrum estimate is de�ned as:

f̂�j(!j) = f̂(!j ; fx
�j
t g): (64)

Note that (59) and (64) do not coincide, even when f̂ can be written in terms of the

f
̂(k)g sequence.

In his simulation study Hurvich generates 40 samples of length 100 for a superposition

of sinusoids with random phases and amplitudes, for an AR(3) process and an MA(3)

process, respectively. The results suggest that if one does not have any indication as to

the type of stochastic process, it seems unwise to arbitrarily choose one speci�c type of

spectrum estimate. Hurvich argues that if the type of estimate and the corresponding

smoothness parameter is determined objectively by minimizing the cross validatory

log-likelihood over all candidate estimtates, one will usually get much better estimates

than one would get by (unluckily) making the wrong guess about the type of estimate,

and almost as good ones as one would get by (luckily) making the right guess about

the type of estimate. Thus, Hurvich proposes to apply a generalized type smoothness

parameter selector, regardless of how well or poorly various restricted versions of the

method do for particular processes.

Hurvich is already indicating that it would be nice to modify the generalized cross-

validatory method to incorporate existing model order selection techniques like the

AIC criterion. This is the subject of the next section.

3.3 Hurvich & Beltr~ao 1990

Hurvich & Beltr~ao (1990) motivate the use of a generalized version of the cross-validated

log-likelihood criterion (CVLL) for selecting a spectrum estimate from an arbitrary

class of estimates theoretically. It is shown that both CVLL and the non-cross valida-

tory Akaike information criterion (AIC) are asymptotically equivalent to the Kullback-

Leibler information. As the application of AIC is restricted to parametric estimates,

CVLL can be viewed as a cross-validatory generalization of AIC.

To save computation time when the class of potential estimates includes both non-

parametric and parametric (autoregressive) estimates, CVLL need only be evaluated for

the non-parametric estimates, while the computationally more e�cient AIC is evaluated

for the parametric estimates. In this situation all criteria will be directly comparable,

as CVLL and AIC both estimate the same information measure.

First, Hurvich & Beltr~ao show that the generalized CVLL is an estimate of the expected

Kullback-Leibler information. CVLL can be written as the sum of two terms, a log

estimated white noise variance and a random penalty term. In the case of parametric

spectrum estimation, the �rst term of CVLL is identical to the �rst term of AIC, and

the mean of the random penalty term of CVLL is asymptotically equivalent to the

constant penalty term of AIC.
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Then, Hurvich & Beltr~ao motivate the use of a computationally more e�cient non

cross-validatory version of CVLL, CVLL2, by showing that CVLL2 can be viewed as

an approximately unbiased estimate of the Kullback-Leibler information.

A general way how to choose a speci�c spectrum estimate f̂(!) = f̂(fxtg
n
t=1; !) from a

class of candidates C is to construct a discrepancy function d(f; g) such that d(f; f̂) �

d(f; g) for all f; g, obtain an approximately unbiased estimate d̂(f; f̂) of Efd(f; f̂ )g

which is applicable for all f̂ 2 C and �nally choose the estimate f̂ which minimizes

d̂(f; f̂) over the class C.

The discrepancy function Hurvich & Beltr~ao choose is

d(f; g) = 2n log(2�) +
n

2�

Z �

��

�
log g(!) +

f(!)

g(!)

�
d!: (65)

To understand the motivation to select d as a discrepancy function, note the following

shown by Parzen (1983, p. 231)

lim
n!1

1

n
Ef�2 loglikelihood (g)g = 2 log(2�) +

1

2�

Z �

��

�
log g(!) +

f(!)

g(!)

�
d!

=
1

n
d(f; g): (66)

d(f; g) thus approximates Ef�2 loglikelihood (g)g, which is by de�nition the Kullback-

Leibler information.

The Akaike information criterion

AIC = �2 loglikelihood (g
�̂
) + 2(m+ 1) (67)

can be seen as an estimate of Efd(f; g
�̂
)g where the expectation is taken with respect

to the true joint distribution of the sample oberservations. Hurvich & Beltr~ao now

de�ne a slightly modi�ed version of CVLLBB, which is valid for any (parametric and

non-parametric) spectrum estimate f̂

CVLLHB(f̂) = 2n log(2�) +
n

N

NX
j=1

 
log f̂(!j) +

I(!j)

f̂�j(!j)

!
: (68)

The function f̂�j(!) is the leave-out-one version of the spectrum estimate f̂ de�ned by

Hurvich in (64). It can be shown that f̂�j(!) � f̂(!), but that f̂�j(!) is approximately

independent of I(!j). Note that (68) di�ers from the original de�nition by Beltr~ao &

Bloom�eld in two ways. First, Hurvich & Beltr~ao include a constant term in the like-

lihood function to make it comparable to AIC, and second, they use log f̂(!j) in place

of log f̂�j(!j). The reason they give for the latter change is to save computation time.
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Hurvich & Beltr~ao also claim that the di�erence between the two terms is negligible

and give an upper bound.9

CVLLHB can be written as

CVLLHB(f̂) = d(f; f̂) + (d(I; f) � d(f; f))

+
n

N

X
!j

(I(!j)� f(!j))

 
1

f̂�j(!j)
�

1

f(!j)

!

+
n

N

X
!j

f(!j)

 
1

f̂�j(!j)
�

1

f̂(!j)

!
: (69)

The second term in (69) is a random level term which does not depend on the potential

estimate. Its expectation is approximately zero. Since E(I(!j)) � f(!j), and since

I(!j) and f̂�j(!j) are approximately independent, the expectation of the third term is

also approximately zero. Finally, if we assume that E(1=f̂�j(!j)) � E(1=f̂ (!j)), then

the expectation of the fourth term is also approximately zero, and we have

EfCVLLHB(f̂)g � Efd(f; f̂)g; (70)

which con�rms that CVLLHB is an asymptotically unbiased estimate of the expected

Kullback-Leibler information.

In the following, Hurvich & Beltr~ao obtain a computationally more e�cient version of

the CVLL by introducing another unbiased estimate of the Kullback-Leibler informa-

tion which does not require computation of the leave-out-one estimate.

Since the distribution of a classical estimate f̂(!j) is often approximated as (f(!j)=v)�
2
v

with v = 2=(
P

��=h<!j<�=h
K2(h!j)), it follows that

Efd(f; f̂)g � 2n log(2�) +E
n

N

X
log f̂(!j) +

n

N

X
!j

E

 
f(!j)

f̂(!j)

!

� 2n log(2�) +E
n

N

X
!j

log f̂(!j) +
nv

v � 2
: (71)

Thus CVLL2, as given in the following equation, can be view as an approximately

unbiased estimate of Efd(f; f̂ )g

CVLL2 = 2n log(2�) +
n

N

X
!j

logf̂(!j) +
nv

v � 2
: (72)

9This step remains somewhat unclear, as we do not see how the computation time, applying log f̂(!j)

in place of log f̂�j(!j), will be reduced substantially. After all, the leave-out-one estimate has to be

computed anyway.
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Notice that computing time for calculating the non-cross validatory CVLL2 decreases

substantially, as it requires O(nlogn) computations, whereas the cost of computing

CVLLHB is O(nlogn+ nN
h
).

In their simulation study Hurvich & Beltr~ao generate 100 samples of length 100 (500)

for an AR(3) process, for a MA(1) process and a superposition of a number of complex

exponentials with random phases and amplitudes, respectively. Their simulation results

suggest that the automatic window width selector, makes non-parametric spectrum

estimation quite competitive with parametric spectrum estimation, as long as the true

process is not a �nite-order autoregression. Furthermore, the combined selector, i.e. the

estimator that yields the minimum CVLL or AIC, respectively, is usually capable of

determining the best estimate type for the data at hand.
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4 An Iterative Procedure

B�uhlmann (1996) estimates the optimal local and global window widths that are min-

imizing the asymptotic mean square error AMSE(!;h) or the asymptotic mean inte-

grated square error AMISE(h) by an iterative procedure. The optimal local and global

window widths for speci�c lag windows and a given true spectral density are known

and depend on the unknown spectral density (see Priestley). As we are interested in

estimating the spectral density, however, we should not assume the true density to be

known. One way of exploiting the fact that there are known formulas for optimal win-

dow widths depending on the true density is to iteratively estimate the density and its

induced optimal window widths, using these for the next density estimate and hoping

that this procedure will make the density estimates converge in some sense to the true

spectral density. This approach was followed by B�uhlmann (1996) building on the work

by Brockmann et al. (1993) who employed this idea in the context of nonparametric

regression.

In this section we will for the �rst time in this paper choose a window width, for kernel

smoothing the periodogram, locally, that is possibly di�erent at di�erent frequencies

depending on the curvature of the true spectral density. The advantage of allowing for

locally di�erent scale parameters (window widths) is the possibility to adjust for the

shape of the actual density function at di�erent frequencies. As for 
at regions of the

density a high amount of smoothing may be called for, for peaky regions it might be

better not to smooth too much, i.e. not to give too much weight to periodogram values

that are far apart from the considered frequency as their mean value would be very

di�erent from the one at the considered frequency.

The spectral density estimates considered by B�uhlmann are lag window estimates of

the scale parameter type as de�ned in (9). B�uhlmann considers two types of windows,

a C0 window, speci�cally the Bartlett or triangular window, and general C2 windows

with characteristic exponent 2.

B�uhlmann �nds the optimal local and global scale parameters by minimizing the asymp-

totic mean square error AMSE(h; !) or the asymptotic mean integrated square error

AMISE(h). The AMSE is given by the sum of the squared asymptotic bias and the

asymptotic variance at the frequency !,

AMSE(h; !) = ABIAS2(h; !) + AVAR(h; !): (73)

The AMISE then is just the integral of the AMSE over all frequencies. For a general

C2 window, expressions for the asymptotic bias and the asymptotic variance are given

by (39) and (40) in section 2. For the particular C0 window considered by B�uhlmann,

the Barlett window, (see B�uhlmann, p. 249, equation 3) these expressions are

ABIAS(h; !) = �
1

h
f (1)(!) (74)
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and

AVAR(h; !) = �(!)
2h

3n
ff(!)g2; (75)

respectively, with �(!) as de�ned in (38).

The optimal value of the local and global scale parameters for any C2 window by simple

calculus can be shown to be

hopt(!) = n1=5
(

f�00(0)g2ff (2)(!)g2

�(!)
R
1

�1
�2(x)dxff(!)g2

)1=5

(76)

and

hopt = n1=5

(
f�00(0)g2

R �
��ff

(2)(!)g2d!R
1

�1
�2(x)dx

R �
��ff(!)g

2d!

)1=5

; (77)

respectively. For the Bartlett window we obtain

hopt(!) = n1=3
(
3ff (1)(!)g2

�(!)ff(!)g2

)1=3

(78)

and

hopt = n1=3

(
3
R �
��ff

(1)(!)g2d!R �
��ff(!)g

2d!

)1=3

; (79)

respectively. These optimal values for the scale parameter h apparently depend on

the true spectral density and its �rst or second generalized derivatives, as de�ned in

equation (34), depending on whether the considered lag window is a Bartlett one or C2,

respectively. B�uhlmann uses the above results and iteratively estimates the density and

its generalized derivatives to determine �rst the optimal global and then the optimal

local scale parameter for the window used, in a few iteration steps.

For the various spectral density related objects B�uhlmann considers the following esti-

mators. For the integrated squared density10 he suggests to use the integrated squared

periodogram divided by two,

1

2

Z �

��

8<
: 1

2�

n�1X
k=�n+1


̂(k)e�ik!

9=
;

2

d!: (80)

For the density, f(!), as in (9),

f̂(!; h) =
1

2�

n�1X
k=�(n�1)

~�

�
k

h

�

̂(k)e�ik!; (81)

and for the �rst and second generalized derivatives of the spectral density, f (1)(!) and

f (2)(!),

f̂ (1)(!; h) =
1

2�

n�1X
k=�(n�1)

��

�
k

h

�
jkj
̂(k)e�ik! (82)

10B�uhlmann mentions that the squared periodogram is not a consistent estimator of the squared

density, whereas the integral thereof is consistent for the integrated squared density.
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and

f̂ (2)(!; h) =
1

2�

n�1X
k=�(n�1)

��

�
k

h

�
k2
̂(k)e�ik!; (83)

respectively.

In his remark 2 B�uhlmann proposes to use di�erent windows for estimating the general-

ized derivatives of the spectral density, f (s)(!) = 1
2�

P
1

k=�1 jkjs
(k)e�ik!, s = 1; 2. He

argues that the reason for that is the fact that the terms jkj
̂(k) and k2
̂(k) usually do

not decay very fast. The lag window he proposes is a speci�c splitted rectangular-cosine

window with lag kernel

�(x) =

8>><
>>:

1 if jxj < 0:8

f1 + cos(5(x � 0:8)�)g=2 if 0:8 � jxj < 1

0 otherwise.

(84)

This kernel has in�nite characteristic exponent. If we would use it for estimating the

spectral density also, formulations of bias and variance would be di�erent and the above

theoretically optimal window width not valid.

The fact that one has to use di�erent windows for estimates of the density and its

derivatives might seem a bit complicated and might make B�uhlmann's iterative ap-

proach somewhat inelegant. One may ask whether to exploit the relationship between

the generalized and the ordinary derivatives as stated in equation (35), at least for the

second derivatives and therefore for the case of a C2 window, will not be more appro-

priate. Approximating the second derivative by some �nite di�erence scheme does in

general not produce a very good estimate, however. In fact, this estimate might not

be very smooth in contrast to the true second derivative. This depends, however, on

the kernel used for the spectral density estimate. If one would use a kernel, similar

to the splitted rectangular-cosine window, that has characteristic exponent of two, the

numerical approximation would probably be just as good as the lag window estimate.

For the Bartlett-Priestley window the numerical approximation does not seem to be a

very good one as we see in our simulation study.

As the type of the window is not that much of importance as compared to the choice

of the scale parameter (see Priestley p. 449), in our simulation study we only look at

one speci�c C2 window, the Bartlett-Priestley window as de�ned by (21) and (22). For

this speci�c window bias and variance are given by (Priestley p. 463)

ABIAS(h; !) = �
�2

10h2
f 00(!) (85)

and

AVAR(h; !) = �(!)
6h

5n
f2(!); (86)

respectively. The optimal values for the local and global scale parameters are

hopt(!) = n1=5

(
�4

30

ff 00(!)g2

�(!)f2(!)

)1=5

(87)
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and

hopt = n1=5

(
�4

30

R �
��ff

00(!)g2d!R �
�� f

2(!)d!

)1=5

; (88)

respectively.

The iteration scheme employed by B�uhlmann is the following.

Algorithm 4.1

1. h0 = n�1=2, the initial window width

2. i = 0, counting the number of iterations

3. i = i+ 1

4. Global steps: hi = n1=5

8<
:

2f�00(0)g2
P

n�1

k=�n+1
��2
�

k

hi�1
n4=45

�
k4
̂2(k)R

1

�1
�2(x)dx

P
n�1

k=�n+1

̂2(k)

9=
;

1=5

5. if i < 4 goto 3

6. Local step: hopt(!) = n1=5

8><
>:

2f�00(0)g2
n
f̂(2)
�
!;

h4

n
4=45

�o2

R
1

�1
�2(x)dx

n
f̂

�
!;

h4

n
4=45

�o2

9>=
>;

1=5

.

B�uhlmann motivates the in
ation factor n4=45 by some asymptotics for the local step

and argues that using the same factor in the global steps as well will yield a more stable

procedure. This argument is based on some simulation B�uhlmann mentions.

B�uhlmann argues that four global iteration steps will already yield the right order and

further steps will not give any improvement. Also performing more than one local step

will not improve the estimate.

The only problem that might arise in local smoothing is at in
ection points of the

spectral density. At these points, where the second derivative is zero, the above formu-

lation (88) of the optimal scale parameter is not true. B�uhlmann suggests to employ a

semi-local scale-parameter selection criterion. The estimate of the second derivative in

the local step in algorithm 4.1 is replaced by its integral over a small range.

Algorithm 4.2

1. h0 = n�1=2, the initial window width

2. i = 0, counting the number of iterations

3. i = i+ 1

4. Global steps: hi = n1=5

8<
:

2f�00(0)g2
P

n�1

k=�n+1
��2
�

k

hi�1
n4=45

�
k4
̂2(k)R

1

�1
�2(x)dx

P
n�1

k=�n+1

̂2(k)

9=
;

1=5
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5. if i < 4 goto 3

6. Semi-local step: hopt(!) = n1=5

8><
>:

2f�00(0)g2
R
!+c

!�c

n
f̂(2)
�
�;

h4

n
4=45

�o2

d�R
1

�1
�2(x)dx

n
f̂

�
!;

h4

n
4=45

�o2

9>=
>;

1=5

,

where c = n4=45

b4
. In our simulation we determine not only the estimates of the global as

well as the semi-local window widths as given by the above algorithm, but also some

estimates using the same plug-in scheme, but with di�erent estimates for the various

objects. In particular we try to approximate the second derivative by di�erences and

we use estimates with in
ated as well as not-in
ated window widths.
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5 A Bootstrap Approach

Franke & H�ardle (1992) adopt a bootstrap approach in order to determine the optimal

scale parameter. Given the periodogram of a strictly stationary real-valued time series

X1; :::;Xn, denoted by I(!), Franke & H�ardle consider kernel spectral density estimates

of the form (compare (12))

f̂(!; h) =
2�h

n

NX
j=�N

K (h(! � !j)) I(!j); (89)

where K is a spectral window generating kernel as de�ned by (17) and N denotes

the largest integer less than or equal to n=2. In contrast to B�uhlmann (1996), Franke

& H�ardle determine locally optimal scale parameters according to the minimal mean

square percentage error (MSPE) as de�ned by (28). They introduce the bootstrap in

frequency domain via a multiplicative regression problem,

I(!j) = f(!j)�j : (90)

The residuals are approximately independent and identically distributed for large n (see

Priestley Chpt. 6.2). It is these residuals, replacing the true density by the kernel esti-

mate using an 'arbitrary' initial bandwidth, that constitute the sample of independent

observations to be resampled.

�̂j =
I(!j)

f̂(!j;h0)
: (91)

In fact the residuals actually used are the rescaled ones, given by

~�j =
�̂j

�̂�
; (92)

where

�̂� =
1

N

NX
j=1

�̂j : (93)

The bootstrap procedure is performed as follows. A bootstrap sample, ��1; :::; �
�

N from

the empirical distribution of ~�1; :::; ~�N is drawn. Using a bandwidth g, possibly di�erent

from h0, bootstrap periodogram values are obtained, which are

I�(!j) = f̂(!j; g)�
�

j : (94)

The corresponding bootstrap spectral estimate is then given by

f̂�(!; h; g) =
2�h

n

NX
j=�N

K (h(! � !j)) I
�(!j): (95)

Alluding to the fact that the rescaled residuals asymptotically follow an exponential

distribution with scale parameter 1, there is an obvious second (parametric) way of

performing the bootstrap. One may draw samples of the size N from an exponential
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distribution with scale parameter 1, denoting them �1; :::; �n, obtain the bootstrap

periodogram values as

I+(!j) = f̂(!j; g)�j ; (96)

and determine another bootstrap spectral estimate

f̂+(!; h; g) =
2�h

n

NX
j=�N

K (h(! � !j)) I
+(!j): (97)

As Franke & H�ardle (Theorem 1) point out, the bootstrap principle holds for both cases

under some convenient assumptions.

We will now use the above bootstrap resampling schemes in order to determine the

optimal scale parameter h. In contrast to the cross-validation methods used by e.g.

Beltr~ao & Bloom�eld (1987), we will not minimize the average mean square percentage

error, but the local mean square percentage error for each Fourier frequency as de�ned

by (28). The average MSPE would just be given by

AMSPE(h) =
1

N

NX
j=1

MSPE(!j; h) (98)

MinimizingMSPE with respect to h should yield the optimal scale parameter. As MSPE

is not known, however, we will minimize its bootstrap estimate, given by

MSPE�(!; h) = E�

(
f̂�(!; h; g) � f̂(!; g)

f̂(!; g)

)2

: (99)

In fact, there is no need to resample, as we may calculate MSPE� explicitly.11

f̂2(!; g)MSPE�(!;h) =

h2var�(��1)
n2

�
K2(0)f̂2(0; g) +

PN
j=1 fK (h(! � !j)) +K (h(! + !j))g

2 f̂2(!j ; g)
�
(100)

+
n
h
n

PN
j=�N K (h(! � !j)) f̂(!j; g) � f̂(!; g)

o2
:

Franke & H�ardle note (p. 135) that var�(��1) ! 1 in probability. The scale parameter

minimizing the above estimate of the MSPE is the one regarded optimal. Franke &

H�ardle are able to proof that the resulting estimate is in fact a consistent estimate of

the optimal scale parameter (p. 133, Theorem 3).

11There seems to be an error in Franke & H�ardle's formula (6). They seem to have forgotten about

the cross terms in the variance, which are present as I(!�j) = I(!j) = ��j f̂(!j ; g).
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6 Simulation

In this section we compare several procedures, discussed in the previous sections, for

obtaining optimal scale parameters by means of a small simulation study. These proce-

dures are applied to a set of AR and MA processes, selected such as to exhibit di�erent

shapes of spectral densities. For each process, we simulate 300 time series of length 120

and 480. For each process and each scale parameter selection method three di�erent

distance measures are approximated, MISE, MISPE and MISME, as de�ned by (29),

(30) and (31) with a = 2. These are in fact calculated as the average over all simulations

of

IS(P,M)E =
1

N

NX
j=�N

�
f̂(!j)� f(!j)

�2
(f(!j))

a ; (101)

where a = 0 yields the ISE, a = �2 ISPE and a = 2 ISME.

Standard normal random numbers are generated by RNDN, the normal random num-

ber generator in GAUSS. A time series of, say, length 120 is generated by setting initial

values to zero, generating a sequence of 220 standard normal random numbers, re-

cursively (if necessary) determining 220 'observations' of the particular process, and

dropping the �rst hundred at the end (see appendix in Hurvich (1985), p. 939).

In the tables that summarize the simulation results, we abbreviate the methods in the

following way. The cross-validation methods, CVLL, CVLL2, SES and CVMSE are

as de�ned in previous sections. There are several iterative methods that we discuss,

however. ITB is the global method suggested by B�uhlmann (1996) and is given by the

�rst part of algorithm (4.1), that is using the splitted rectangular-cosine lag window

estimate of the second generalized derivative and using the in
ation factor n(4=45),

which is approximately 1.53 if n is 120 and 1.73 if n is 480. ITC refers to a global

method according to the same algorithm, but without using this in
ation factor, while

ITA is yet another global method, following the said algorithm, that also does not use

this in
ation factor and furthermore approximates the second generalized derivative by

�nite di�erences. The su�ces 1 and 2 in e.g. ITA1 and ITA2 refer to the semi-local

estimation method as in the second part of algorithm (4.2), where 1 indicates that

for this semi-local step the in
ation factor was used and 2 that it was not used. The

global window width used in the one further semi-local step are always given by the

corresponding global method, e.g. ITA for ITA1. BOOT denotes the bootstrap criterion

(100), where the reference bandwidth g is determined by ITC.
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Fig.1: Xt = 0:8Xt�1 + Zt Fig.2: Xt = 0:4Xt�1 � 0:5Xt�2 + 0:3Xt�4 + Zt

Fig.3:

Xt = Zt +0:9Zt�1 � 0:8Zt�2 +0:6Zt�3 � 0:5Zt�4 +0:3Zt�5

Fig.4:

Xt = 0:5Xt�1�0:6Xt�2+0:3Xt�3�0:4Xt�4+0:2Xt�5+Zt

Fig.5: Xt = 0:4Xt�2 � 0:4Xt�4 + Zt
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Table 1:

Method MISE MISPE MISME

CVLL 0.394 (0.158) 0.328 (0.048) 3.912 (21.258)

CVLL2 0.423 (0.282) 0.393 (0.074) 4.445 (39.435)

SES 0.511 (0.417) 0.424 (0.121) 5.349 (65.688)

CVMSE 0.413 (0.144) 0.363 (0.061) 4.089 (18.544)

ITA 0.384* (0.244) 0.308 (0.042) 4.108 (37.085)

ITA1 0.367 (0.081) 0.310 (0.035) 3.677 (9.597)

ITA2 0.351 (0.111) 0.295 (0.033) 3.643** (13.722)

ITB 0.385 (0.091) 0.306 (0.048) 3.715* (10.732)

ITB1 0.453 (0.061) 0.473 (0.090) 4.246 (8.626)

ITB2 0.373 (0.082) 0.325 (0.037) 3.696 (9.678)

ITC 0.391 (0.269) 0.303* (0.040) 4.255 (41.921)

ITC1 0.373 (0.085) 0.321 (0.034) 3.755 (10.327)

ITC2 0.350 (0.115) 0.279 (0.027) 3.651 (14.668)

BOOT 0.344** (0.099) 0.264** (0.023) 3.741 (14.442)

AR(1): Xt = 0:8Xt�1 + Zt, Zt � N(0; 1), (n=120). Variances are in brackets. A * indicates the best

global estimate, whereas a ** points out the best semi-local estimate.

For the AR(1)-process in table 6, whose spectral density has one peak at frequency zero,

the best method among the cross-validation ones is CVLL, which is in fact only slightly

worse than all three global iterative procedures. The three iterative procedures perform

similarly, the best in this case may be B�uhlmann's original if we consider variances as

well. Semi-local procedures seem to improve the estimate, and this is similar for all

three methods, where using no in
ation factor (i.e. su�x 2) seems to be superior to

using it. The bootstrap criterion, however, seems to be even slightly better than ITC2.
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Table 2:

Method MISE MISPE MISME

ITA 0.2265 (0.0744) 0.1804 (0.0052) 2.5255 (14.5014)

ITA1 0.1511 (0.0184) 0.0898 (0.0017) 1.6911 (3.0110)

ITA2 0.1605 (0.0278) 0.1165 (0.0021) 1.7677 (4.9347)

ITB 0.1434* (0.0163) 0.0782* (0.0016) 1.5675* (2.4446)

ITB1 0.1789 (0.0122) 0.1124 (0.0024) 1.8399 (2.0646)

ITB2 0.1397** (0.0154) 0.0867** (0.0015) 1.5373** (2.3410)

ITC 0.1680 (0.0472) 0.1071 (0.0028) 1.9056 (9.0932)

ITC1 0.1505 (0.0168) 0.0901 (0.0017) 1.6400 (2.7457)

ITC2 0.1462 (0.0237) 0.0890 (0.0017) 1.6223 (4.1144)

AR(1): Xt = 0:8Xt�1 + Zt, Zt � N(0; 1), (n=480). Variances are in brackets. A * indicates the best

global estimate, whereas a ** points out the best semi-local estimate.

As we may see in table 6 B�uhlmann's original, ITB, outperforms the other global

methods for this AR(1)-process and n = 480. Semi-local window-width choice, ITB2,

might be of a slight advantage. ITC2 does not perform much worse than ITB and ITB2.
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Table 3:

Method MISE MISPE MISME

CVLL 0.02619 (0.00041) 0.456 (0.120) 0.00770 (0.00006)

CVLL2 0.03509 (0.00100) 0.474 (0.088) 0.00996 (0.00014)

SES 0.03233 (0.00063) 0.745 (1.200) 0.00997 (0.00010)

CVMSE 0.02806 (0.00090) 0.475 (0.141) 0.00830 (0.00011)

ITA 0.02531* (0.00052) 0.370* (0.062) 0.00716* (0.00006)

ITA1 0.02395 (0.00016) 0.420 (0.082) 0.00712 (0.00003)

ITA2 0.02377** (0.00024) 0.376 (0.055) 0.00689** (0.00003)

ITB 0.03179 (0.00014) 1.518 (2.224) 0.00947 (0.00003)

ITB1 0.03658 (0.00010) 0.960 (0.866) 0.01137 (0.00003)

ITB2 0.03001 (0.00014) 0.681 (0.339) 0.00902 (0.00003)

ITC 0.02604 (0.00054) 0.402 (0.091) 0.00764 (0.00008)

ITC1 0.02576 (0.00019) 0.489 (0.141) 0.00776 (0.00003)

ITC2 0.02380 (0.00025) 0.384 (0.060) 0.00697 (0.00004)

BOOT 0.02427 (0.00027) 0.370** (0.054) 0.00752 (0.00004)

AR(4): Xt = 0:4Xt�1 � 0:5Xt�2 + 0:3Xt�4 + Zt, Zt � N(0; 1), (n=120). Variances are in brackets. A

* indicates the best global estimate, whereas a ** points out the best semi-local estimate.

The spectral density of this particular AR(4)-process as in table 6 contains one sharp

peak. This peak calls for a rather low amount of smoothing (high h) at least in the

region around the peak. CVLL performs best among the cross-validation methods.

The global estimates induced by ITC and ITA are slightly better. Contradicting our

belief semi-local or local (BOOT) window width choice does yield only slightly better

estimates than global procedures. This is somewhat surprising, because in the region of

this one single sharp peak it would be of advantage to use much higher scale parameters

than in the 
at region further apart from the peak. B�uhlmann's original methods, ITB

and ITB1, do not perform very well for this process. ITA2, ITC2 and BOOT perform

very similarly.
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Table 4:

Method MISE MISPE MISME

ITA 0.0947 (0.0062) 0.2082 (0.0047) 0.5187 (0.2716)

ITA1 0.1052 (0.0036) 0.1427** (0.0029) 0.6495 (0.2198)

ITA2 0.0909** (0.0037) 0.1542 (0.0028) 0.5360* (0.1936)

ITB 0.1314 (0.0031) 0.1796 (0.0055) 0.7819 (0.2278)

ITB1 0.2014 (0.0026) 0.3887 (0.0211) 1.1644 (0.2408)

ITB2 0.1246 (0.0031) 0.1672 (0.0036) 0.7626 (0.2187)

ITC 0.0874* (0.0054) 0.1723* (0.0040) 0.4919* (0.2394)

ITC1 0.1184 (0.0039) 0.1575 (0.0037) 0.7257 (0.2430)

ITC2 0.0917 (0.0037) 0.1455 (0.0029) 0.5458 (0.1995)

AR(4): Xt = 0:4Xt�1 � 0:5Xt�2 + 0:3Xt�4 + Zt, Zt � N(0; 1), (n=480). Variances are in brackets. A

* indicates the best global estimate, whereas a ** points out the best semi-local estimate.

B�uhlmann's original can not compete with the other two methods for the process in

table 6. ITC seems to yield the best global estimate. One can hardly tell whether

semi-local procedures yield better estimates than ITC.
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Table 5:

Method MISE MISPE MISME

CVLL 0.0262 (0.0004) 0.4560 (0.1205) 0.0077 (0.00006)

CVLL2 0.0351 (0.0010) 0.4743 (0.0876) 0.0100 (0.00014)

SES 0.0323 (0.0006) 0.7449 (1.2001) 0.0100 (0.00010)

CVMSE 0.0281 (0.0009) 0.4754 (0.1405) 0.0083 (0.00011)

ITA 0.0253* (0.0005) 0.3698* (0.0617) 0.0072* (0.00006)

ITA1 0.0240 (0.0002) 0.4205 (0.0818) 0.0071 (0.00003)

ITA2 0.0238** (0.0002) 0.3763 (0.0551) 0.0069** (0.00003)

ITB 0.0318 (0.0001) 1.5179 (2.2244) 0.0095 (0.00003)

ITB1 0.0366 (0.0001) 0.9600 (0.8660) 0.0114 (0.00003)

ITB2 0.0300 (0.0001) 0.6815 (0.3390) 0.0090 (0.00003)

ITC 0.0260 (0.0005) 0.4015 (0.0906) 0.0076 (0.00008)

ITC1 0.0258 (0.0002) 0.4890 (0.1407) 0.0078 (0.00003)

ITC2 0.0238** (0.0003) 0.3843 (0.0596) 0.0070 (0.00004)

BOOT 0.0243 (0.0003) 0.3705** (0.0544) 0.0075 (0.00004)

AR(5): Xt = 0:5Xt�1�0:6Xt�2+0:3Xt�3�0:4Xt�4+0:2Xt�5+Zt, Zt � N(0; 1), (n=120). Variances

are in brackets. A * indicates the best global estimate, whereas a ** points out the best semi-local

estimate.

The best cross-validation method is clearly CVLL for the AR(5)-process in table 6,

with spectral density that exhibits two rather broad and rather low peaks (bumps),

and is not much worse than the two iterative procedures ITA and ITC. ITB as well as

the other cross-validatory methods are not competitive for this process. ITA and ITC

perform rather similarly with a slight advantage for ITA. BOOT performs similar to

ITC2. The best estimate seems to be determined by ITA2, which does not much better

than ITC2, though.
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Table 6:

Method MISE MISPE MISME

ITA 0.0157 (6.20E-05) 0.1843 (0.0042) 0.0045 (1.00E-05)

ITA1 0.0094 (2.20E-05) 0.1145 (0.0041) 0.0029 (5.00E-06)

ITA2 0.0104 (3.00E-05) 0.1240 (0.0020) 0.0030 (5.00E-06)

ITB 0.0125 (3.70E-05) 0.1931 (0.0169) 0.0042 (8.00E-06)

ITB1 0.0180 (4.00E-05) 0.2679 (0.0160) 0.0058 (1.10E-05)

ITB2 0.0112 (3.90E-05) 0.1280 (0.0043) 0.0037 (8.00E-06)

ITC 0.0098* (3.50E-05) 0.1133* (0.0025) 0.0029* (6.00E-06)

ITC1 0.0098 (2.30E-05) 0.1222 (0.0034) 0.0032 (5.00E-06)

ITC2 0.0091** (2.20E-05) 0.1090** (0.0020) 0.0028** (5.00E-06)

AR(5): Xt = 0:5Xt�1�0:6Xt�2+0:3Xt�3�0:4Xt�4+0:2Xt�5+Zt, Zt � N(0; 1), (n=480). Variances

are in brackets. A * indicates the best global estimate, whereas a ** points out the best semi-local

estimate.

ITC and ITC2 are clearly dominating for the process from as in table 6. Only ITA1

performs equally well. There is not much di�erence between ITC and ITC2, i.e. between

the global and the semi-local procedure.
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Table 7:

Method MISE MISPE MISME

CVLL 0.0577 (0.0022) 0.2204 (0.0290) 0.0262 (0.0006)

CVLL2 0.0936 (0.0055) 0.3208 (0.0535) 0.0454 (0.0017)

SES 0.0691 (0.0053) 0.2387 (0.0418) 0.0334 (0.0018)

CVMSE 0.0625 (0.0025) 0.2372 (0.0299) 0.0288 (0.0008)

ITA 0.0818 (0.0044) 0.2748 (0.0383) 0.0383 (0.0012)

ITA1 0.0460 (0.0011) 0.1708** (0.0136) 0.0207 (0.0003)

ITA2 0.0604 (0.0020) 0.2118 (0.0187) 0.0277 (0.0006)

ITB 0.0478* (0.0007) 0.2051* (0.0168) 0.0213* (0.0003)

ITB1 0.0489 (0.0007) 0.2175 (0.0166) 0.0213 (0.0002)

ITB2 0.0478 (0.0008) 0.2000 (0.0155) 0.0213 (0.0003)

ITC 0.0640 (0.0028) 0.2190 (0.0259) 0.0301 (0.0008)

ITC1 0.0452** (0.0009) 0.1721 (0.0122) 0.0204** (0.0003)

ITC2 0.0529 (0.0015) 0.1897 (0.0162) 0.0242 (0.0004)

BOOT 0.0518 (0.0012) 0.1884 (0.0127) 0.0241 (0.0004)

MA(5): Xt = Zt+0:9Zt�1�0:8Zt�2+0:6Zt�3�0:5Zt�4+0:3Zt�5, Zt � N(0; 1), (n=120). Variances are

in brackets. A * indicates the best global estimate, whereas a ** points out the best semi-local estimate.

The spectral density of the MA(5)-process in table 6 is rather 
at with three di�erently

sized bumps. CVLL performs best among the cross-validation methods, but is worse

than B�uhlmann's original global estimate, ITB, worse than ITC2 and worse than all

semi-local estimates that use the in
ation factor. These perform in fact similarly for

all three iterative procedures. BOOT performs similar to ITC2. The best estimate is

determined by ITC1.
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Table 8:

Method MISE MISPE MISME

ITA 0.05529 (0.00058) 0.18844 (0.00450) 0.02654 (0.00020)

ITA1 0.02028 (0.00014) 0.07211 (0.00108) 0.00940 (0.00005)

ITA2 0.03221 (0.00024) 0.11190 (0.00193) 0.01520 (0.00008)

ITB 0.02111* (0.00007) 0.09361 (0.00163) 0.00914* (0.00003)

ITB1 0.02537 (0.00007) 0.11948 (0.00226) 0.01072 (0.00003)

ITB2 0.01981 (0.00006) 0.08491 (0.00163) 0.00866 (0.00002)

ITC 0.02702 (0.00030) 0.09132* (0.00231) 0.01299 (0.00010)

ITC1 0.01527** (0.00009) 0.05777** (0.00088) 0.00693** (0.00003)

ITC2 0.02080 (0.00017) 0.07198 (0.00127) 0.00982 (0.00006)

MA(5): Xt = Zt+0:9Zt�1�0:8Zt�2+0:6Zt�3�0:5Zt�4+0:3Zt�5, Zt � N(0; 1), (n=480). Variances are

in brackets. A * indicates the best global estimate, whereas a ** points out the best semi-local estimate.

The best global method for the process of table 6 seems to be B�uhlmann's original,

ITB. Dominating, however, is ITC1.
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Table 9:

Method MISE MISPE MISME

CVLL 0.0175 (0.00010) 0.398 (0.079) 0.00227 (0.000002)

CVLL2 0.0226 (0.00025) 0.442 (0.080) 0.00292 (0.000005)

SES 0.0209 (0.00021) 0.447 (0.097) 0.00284 (0.000006)

CVMSE 0.0179 (0.00009) 0.409 (0.073) 0.00229 (0.000002)

ITA 0.0169 (0.00012) 0.347 (0.052) 0.00215 (0.000002)

ITA1 0.0166 (0.00005) 0.384 (0.051) 0.00222 (0.000002)

ITA2 0.0163 (0.00006) 0.350 (0.039) 0.00213** (0.000001)

ITB 0.0231 (0.00006) 0.774 (0.259) 0.00302 (0.000002)

ITB1 0.0270 (0.00005) 0.837 (0.393) 0.00372 (0.000002)

ITB2 0.0239 (0.00006) 0.584 (0.122) 0.00335 (0.000002)

ITC 0.0166* (0.00010) 0.345* (0.052) 0.00213* (0.000002)

ITC1 0.0180 (0.00005) 0.415 (0.054) 0.00245 (0.000002)

ITC2 0.0162 (0.00006) 0.352 (0.041) 0.00213** (0.000001)

BOOT 0.0161** (0.00006) 0.329** (0.0359) 0.00227 (0.000002)

AR(4): Xt = 0:4Xt�2 � 0:4Xt�4 + Zt, Zt � N(0; 1), (n=120). Variances are in brackets. A * indicates

the best global estimate, whereas a ** points out the best semi-local estimate.

For the AR(4)-process in table 6, with a spectral density that exhibits two equal-sized

peaks that are quite distant from each other, the best cross-validation method is again

CVLL. ITB is not competitive, whereas ITA, ITA2, ITC and ITC2 seem to perform

quite similarly and better than CVLL. There seems to be a slight improvement if one

considers semi-local estimates (without in
ation factor). The best estimate, however,

seems to be obtained by BOOT.
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Table 10:

Method MISE MISPE MISME

ITA 0.0112 (2.50E-05) 0.1885 (0.0042) 0.00160 (8.00E-07)

ITA1 0.0065 (7.00E-06) 0.1148 (0.0022) 0.00094 (3.00E-07)

ITA2 0.0071 (1.00E-05) 0.1251 (0.0022) 0.00098 (3.00E-07)

ITB 0.0066* (9.00E-06) 0.1156 (0.0038) 0.00099 (3.00E-07)

ITB1 0.0100 (1.70E-05) 0.1796 (0.0065) 0.00149 (6.00E-07)

ITB2 0.0063 (8.00E-06) 0.1053** (0.0021) 0.00094 (3.00E-07)

ITC 0.0068 (1.60E-05) 0.1145* (0.0028) 0.00097* (5.00E-07)

ITC1 0.0067 (8.00E-06) 0.1165 (0.0025) 0.00099 (3.00E-07)

ITC2 0.0062** (9.00E-06) 0.1088 (0.0021) 0.00089** (3.00E-07)

AR(4): Xt = 0:4Xt�2 � 0:4Xt�4 + Zt, Zt � N(0; 1), (n=480). Variances are in brackets. A * indicates

the best global estimate, whereas a ** points out the best local estimate.

For the process of table 6 all methods perform rather similarly, with the exception of

ITA and ITB1. The best procedure might be ITC2.
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7 Conclusion

In this paper we reviewed and compared several methods for determining optimal scale

parameters for non-parametric lag or spectral window estimation of a spectral density

of a stationary zero mean process. These are cross-validation based estimates following

Hurvich (1985), Beltr~ao & Bloom�eld (1987) and Hurvich & Beltr~ao (1990), iterative

estimates following B�uhlmann (1996) and a bootstrap estimate following Franke &

H�ardle (1992). The means of comparison was a simulation study performed for selected

ARMA(5,5) processes with simulation size 300 and time series length 120 and 480. In

the case of n = 480, only iterative methods were looked at, for reasons of speed and

because we do not expect the cross-validation based procedures to suddenly perform

better than the iterative ones for larger sample sizes.

It seems that best among the cross-validation methods in general is CVLL, no matter

which of the three distance measures we use.

Concerning the iterative methods it depends a bit on the criterion, as well as on the

shape of the spectral density function, and on the sample size, which of the three

procedures is better adapted for determining the optimal window width. In general,

however, B�uhlmann's original method is worse than the other iterative methods and

even worse than CVLL, unless the spectral density is rather 
at. This seems to stem

from the fact that this method tends to yield rather low scale parameters induced by

the in
ation factor. For larger sample sizes, B�uhlmann's original seems to be more

competitive, but still worse than the other two methods, in general. The other two

iterative procedures seem in general to perform better or nearly as good as the best

cross-validatory one. Semi-local procedures seem to improve the estimate, unless the

spectral density exhibits sharp peaks. The best among them is probably ITC2, which

is using the non-in
ation factor global estimate for determining the non-in
ation factor

semi-local estimate.

The bootstrap procedure performs similarly to ITC2. We think that this is additional

evidence that the in
ation factor should not be used in the iterative methods.

Generally, it seems most appropriate to use method ITC for the global estimates and

ITC2 for the local one, that is using B�uhlmann's iterative scheme as in algorithm (4.1),

but without the in
ation factor. ITC2, very often, seems to perform best in terms of

at least one of the three criteria, and is never much worse than other methods. It is

furthermore a very fast method compared to the bootstrap procedure and the cross-

validatory ones, as it only needs �ve iterations in order to determine the optimal scale

parameter as compared to many more steps necessary when searching for the e.g. CVLL

minimizing scale parameter.

Our insight, however, depends on the particular set of simulations we chose, where we

tried to pick processes that are rather di�erent from each other in terms of the shape

of their spectral density. To be able to draw valid conclusions one should probably
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perform a much more rigorous simulation study. For example one might do a total of

about one hundred simulations for di�erent processes in the ARMA(5,5) class, where

in a �rst step the one hundred times ten parameters are chosen randomly according

to a uniform distribution taking into consideration some stationarity conditions. With

these one hundred simulation results one might in fact do some statistical inference in

order to �nd the best general method for this class of processes, provided there is one.

One may argue, however, that, in practice, we are not confronted with one in the

uniformly distributed mass of processes, but rather with very speci�c types only. This

belief might make our small simulation approach more reasonable.
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