
 

 

 

 
 

Finite Memory Distributed 
Systems

Victor Dorofeenko, Jamsheed Shorish 

190 

Reihe Ökonomie 

Economics Series 



 

 



 

 
 

 

190 

Reihe Ökonomie 

Economics Series 

 

Finite Memory Distributed 
Systems

Victor Dorofeenko, Jamsheed Shorish 
 

May 2006 

To the reader: if you are reading a hard copy of this article, please note that the electronic version

contains multimedia animations which are important to convey the research results. The reader is

invited to download the paper at http://www.ihs.ac.at/publications/eco/es-190.pdf and view the paper in 

e.g. Adobe Acrobat 6 or 7. 

Institut für Höhere Studien (IHS), Wien 
Institute for Advanced Studies, Vienna 



 

Contact: 
 
Jamsheed Shorish 
Department of Economics and Finance 
Institute for Advanced Studies 
Stumpergasse 56 
A-1060 Vienna, Austria 

:  +43/1/599 91-250 
fax: +43/1/599 91-555, e-mail: 
email: shorish@ihs.ac.at 
 
Victor Dorofeenko 
Department of Economics and Finance 
Institute for Advanced Studies 
Stumpergasse 56 
A-1060 Vienna, Austria 
email: dorofeen@ihs.ac.at 

Founded in 1963 by two prominent Austrians living in exile – the sociologist Paul F. Lazarsfeld and the 
economist Oskar Morgenstern – with the financial support from the Ford Foundation, the Austrian
Federal Ministry of Education and the City of Vienna, the Institute for Advanced Studies (IHS) is the first 
institution for postgraduate education and research in economics and the social sciences in Austria.
The Economics Series presents research done at the Department of Economics and Finance and
aims to share “work in progress” in a timely way before formal publication. As usual, authors bear full
responsibility for the content of their contributions.  
 
 
Das Institut für Höhere Studien (IHS) wurde im Jahr 1963 von zwei prominenten Exilösterreichern –
dem Soziologen Paul F. Lazarsfeld und dem Ökonomen Oskar Morgenstern – mit Hilfe der Ford-
Stiftung, des Österreichischen Bundesministeriums für Unterricht und der Stadt Wien gegründet und ist
somit die erste nachuniversitäre Lehr- und Forschungsstätte für die Sozial- und Wirtschafts-
wissenschaften in Österreich. Die Reihe Ökonomie bietet Einblick in die Forschungsarbeit der 
Abteilung für Ökonomie und Finanzwirtschaft und verfolgt das Ziel, abteilungsinterne
Diskussionsbeiträge einer breiteren fachinternen Öffentlichkeit zugänglich zu machen. Die inhaltliche 
Verantwortung für die veröffentlichten Beiträge liegt bei den Autoren und Autorinnen. 
 



Abstract 

A distributed system model is studied, where individual agents play repeatedly against each 
other and change their strategies based upon previous play. It is shown how to model this 
environment in terms of continuous population densities of agent types. A complication 
arises because the population densities of different strategies depend upon each other not 
only through game payoffs, but also through the strategy distributions themselves. In spite of 
this, it is shown that when an agent imitates the strategy of his previous opponent at a 
sufficiently high rate, the system of equations which governs the dynamical evolution of 
agent populations can be reduced to one equation for the total population. In a sense, the 
dynamics 'collapse' to the dynamics of the entire system taken as a whole, which describes 
the behavior of all types of agents. We explore the implications of this model, and present 
both analytical and simulation results. 
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1 Introduction

Distributed models of heterogeneity, in which many agents engage in repeated play against

each other in a spatial or network environment, are pervasive in the social sciences and

particularly in Economics (see e.g. Brock and Durlauf [2002, 2003], Kirchkamp and Nagel

[2001], Kirchkamp [2000], and Epstein and Axtell [1996] for a small subset of such models,

and Tesfatsion and Judd [forthcoming 2006] Handbook of Computational Economics Vol.

2 for an overview). These models are of interest because they allow complicated behavior

to emerge, as many different types of agents can interact with each other in a complex

variety of ways over time. As this behavior is usually too complicated to admit a closed

form, analytical solutions of a model’s quantitative and/or qualitative properties are often

obtained by appealing to the ergodicity of the system, and by resorting to numerical,

Monte Carlo simulations.

Recently, Dorofeenko and Shorish [2005] have shown how to take one class of models

of this type and formulate a close analytical approximation of its behavior. This approach

takes as fundamental not the individual players, but rather the probability distribution of

the types of players over some area of interaction. By appealing to this level of abstrac-

tion, analytically quantifiable conclusions may be generated even though the underlying

discrete dynamics are very complicated. Our prototypical example demonstrated that

the demographic prisoner’s dilemma model of the form given in Epstein (1998) admits

an analytical representation, and that the stable spatial structures found in Epstein’s

paper lose their stability and become metastable in the continuous space environment.

The structure of the continuous approximation employed allowed for both analytical and

numerical simulations on the approximation to be performed, which served as a usual

benchmarking procedure when compared to the original model.

One feature of the demographic prisoner’s dilemma as formulated above is that agents

are endowed with a fixed strategy type. That is, they do not adjust their game strategy in

the face of prior (or expected future) experience. Although agents are heterogeneous with

respect to both playing location and to ‘wealth’ (a measure of their aggregate payoff from
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all previous games played), once born they inherit the game strategy which was played by

their forbearers. While this assumption is certainly useful from a technical standpoint, it

does render the economic agents more as ‘zero-intelligence’ traders rather than as players

capable of adaptive behavior, which is more realistic. This paper addresses the issue by

analyzing an extension of the demographic prisoner’s dilemma which allows individual

agents to switch strategies based upon the outcome of previous play. That is, agents are

allowed to adapt their behavior according to what they have previously encountered.

The analysis proceeds along similar lines as in Dorofeenko and Shorish [2005], but the

introduction of adaptive behavior changes the continuous approximation in several ways.

Thus, although the abstract formulation as a partial differential equation system remains

the same, solving the system analytically requires a new approach. Using techniques simi-

lar to those found in e.g. Krall and Trivelpiece [1986], we approximate the dynamics of the

system by noting that, provided there is ‘enough’ memory of what was previously played,

the different strategies available to the agents tend to evolve in the same way. That is,

we can approximate the multi-dimensional system of many strategies by a single relation,

which (in a sense to be made precise) summarizes the ‘total’ movement of the entire sys-

tem. Within this approximation’s domain of applicability (viz., models which contain two

strategies), the resulting dynamical equation can then be numerically simulated.

In addition, we present (as yet) speculative work on obtaining qualitative results of the

resulting approximated system, by considering the evolution of an entropy measure from

information theory and the physical sciences. This measure, known as ‘negentropy’, could

provide future analytical conclusions to be drawn about the approximated system, and

hence provide a unifying framework for both our approach and for previous simulation

work performed with e.g. cellular automata and other discrete systems.

The paper is organized as follows. Section 2 introduces the model, and derives the

underlying system evolution (or ‘law of motion’) for a finite set of strategies. Section

3 describes the model approximation techniques used, focusing upon the single-variable

approximation applied to two strategies, and also introduces speculative work on deriving
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a qualitative stability measure from the negentropy concept. Section 4 then presents

numerical simulation results for the model, and Section 5 concludes. The validity of the

single-variable approximation given in Section 3 is proven in Appendix A, while Appendix

B summarizes the parameter selection and initial conditions for the numerical simulations.

2 The Model

The model is an extension of the demographic prisoner’s dilemma model of Epstein [1998],

modeled as a continuous stochastic process over a circle as in Dorofeenko and Shorish

[2005]. The model is an abstraction of an environment where individual agents move

randomly over a grid, and interact with other agents by playing a prisoner’s dilemma

game. Conditional upon the outcome of the game, agents either increase or decrease their

wealth according to the game’s payoff. If wealth falls below some threshold, the agent

dies, whereas if wealth is high enough, the agent has some probability of cloning itself

and generating another agent of the same ‘type’, i.e. generating another agent who will

play the same strategy. One of the interesting questions one may ask about such a model

is whether after a large number of interactions has passed, one of the prisoner’s dilemma

strategies (measured as a proportion of the population) is dominant, and whether or how

the various parameters of the model (such as the spatial extent of the grid, the payoffs

to the prisoner’s dilemma game, the probability of generating a ‘clone’, among others)

influence this proportion.

The underlying model is thus a finite state automata, which generates a complicated

system of interactions. The questions listed above are, then, questions about aggregate

features of the economy than about the characteristics of any given individual. Common to

models of such type, the ‘primitives’ are the behavior of the agent, the rules of interaction,

and any initial conditions of e.g. wealth or other endowments.

For brevity we refer the reader to Dorofeenko and Shorish [2005] for an in-depth

discussion of the approximation method used to move from the discrete finite-state system

to the continuous approximation used. We focus instead upon this approximation and its
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extension to a model in which the individual agents can adapt their strategy according to

the outcomes of previous game encounters, i.e. to the strategies of other players previously

met.

The model is defined over an interval of the real line with endpoints identified, i.e.

over a circle. Time is continuous, and at each time there exists a population density of

agents. This population density depends upon a strategy s ∈ S,1 where S is a finite set

of strategies available to each player, a wealth level w ∈ R+ held by a player, and finally

a location x ∈ [−L/2, L/2] (endpoints identified), which indicates where on the circle an

agent lies:

Definition 1. A population density function for those agents with strategy s, wealth level

w and location x at time t is a function f(s, w, x, t) such that given a subset of strategies

S1 ⊂ S, an interval [a, b] ∈ [−L/2, L/2] and a set of wealth levels [w, w̄], the number of

agents which possess strategy s ∈ S1, location x ∈ [a, b] and wealth level w ∈ [w, w̄] at t is

N(t) =

∫
[−L/2,L/2]

∫ w̄

w

∫ b

a

f(s, w, x, t)dxdwds. (2.1)

Agents may live or die in this environment. There are two ways for an agent to die.

First, there exists a probability mass d > 0 such that df(s, w, x, t) represents the mass of

agents at (s, w, x, t) who die at time t. Second, if an agent’s wealth drops to zero, it is

assumed to be unable to survive and so dies.

We also assume that there exists a rate of diffusion in the wealth space of the popula-

tion distribution f(s, w, x, t). We formalize this diffusion by defining a diffusion parameter

M , which measures how fast wealth diffuses from agents to their closest neighbors with

lower wealth. The diffusion in the wealth space in our model generates a non-uniform

wealth distribution between agents.

If an agent survives, it engages in random play with a neighbor. For each strategy pair

(s, s′), s, s′ ∈ S we associate a payoff νss′ from playing the game, where the agent plays

1In the analysis and simulations, agents play the prisoner’s dilemma game upon interaction, so the
strategy set is given by S = {c, d}, where c stands for ‘cooperate’ and d ‘defect’. We keep to the more
general formulation in setting up the model, however.
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strategy s and the opponent plays s′. Note that the first subscript denotes the recipient

of the payoff–hence νss′ is the payoff for the agent who plays strategy s when an opponent

plays strategy s′. Generally, νss′ 6= νs′s.

Immediately after playing a game the agent may randomly clone itself by sacrificing a

level of wealth and adding to the population mass of its own strategy–this level of wealth

lost is also the threshold wealth for cloning, so that agents without at least this wealth

level do not clone. The wealth lost is fixed at an exogenous value w1, and for those agents

with at least w1 in wealth, the cloning probability is set exogenously to νb ∈ [0, 1].

Once game play and cloning have been performed, the agent moves to a nearby lo-

cation, and the process repeats itself. This causes diffusion of the population density in

location space, in the same way as having zero wealth causes diffusion in the wealth space.

For simplicity, we normalize the location diffusion parameter to one.

All newborn agents have their initial wealth levels drawn from a distribution defined

over the probability density function g(w). In order to keep the level of wealth in the

model stationary, we must assume that:

w1 := w̄ =

∫ ∞

0

w(g(w)dw. (2.2)

If w1 < (>)w̄, where w̄ is the mean wealth level of the population, then the cloning

process itself will add to (subtract from) the wealth level of the population.

Following Dorofeenko and Shorish [2005] the continuous approximation outlined above

is only valid when the time of interaction between agents (i.e. the time it take them to

play the prisoner’s dilemma game) is effectively instantaneous when compared with the

time of a ’period’ δt. This ensures that for any two-player interaction, the densities of

the strategies before and after the interaction remain essentially the same. This features

is also what allows us to model what it means for‘adaptive play’ in this framework.

Recall that in a discrete setting, an individual agent may adapt their strategy if they

condition their current (and/or future) play upon those strategies which were observed

as being played by previous competitors. Using the time assumption given above, we
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infer that in the continuous setting given here, adaptive play means that the population

density function of one strategy will be conditioned (within the time interval δt) upon the

population density functions of all other strategies. More properly, this means that the

change in the population density function of one strategy is dependent upon the level of

the population densities of the other strategies in the population.

For exposition a few further definitions are in order. First denote the total mass of

agents with strategy s at location x to be

n(s, x, t) :=

∫ ∞

0

f(s, w, x, t)dw, (2.3)

while the mass of those (s, x) agents with wealth level at least equal to w1, i.e. those

agents which have enough wealth to clone themselves is given by

n1(s, x, t) :=

∫ ∞

w1

f(s, w, x, t)dw. (2.4)

In addition, it is also useful to define the residual of the mass of agents located at a

point x, using the suggestive notation ‘e’ for ‘empty’:

ne(x, t) := 1−
∑
s∈S

n(s, x, t). (2.5)

Finally, we define for every strategy s, the net wealth transfer V (s, t) of the strategy

at time t. This wealth transfer incorporates the wealth gain due to the payoff from

interacting with other agents (playing the game), minus any loss of wealth due to cloning

(which costs the threshold wealth level w1). This net wealth transfer, again expressed as

a population aggregate, is:

V (s, x, t) :=
∑
s′∈S

νss′n(s′, x, t)− νbw1ne(x, t)1w≥w1 , (2.6)

where 1w≥w1 is an indicator function, equal to one if wealth w is greater than the threshold

wealth w1, and zero otherwise.
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Armed with these definitions, we may specify the law of motion of the population

densities of this economy (for exposition we shall often suppress the dependence on (x, t)

and shorten f(s, w, x, t) to fs, n(s, x, t) to ns, n1(s, x, t) to n1s and V (s, x, t) to Vs when

doing so will cause no confusion):

∂fs

∂t
+

∂

∂w
(Vsfs)−M

∂2fs

∂w2
− ∂2fs

∂x2
= νbnen1sg(w)−dfs+ns

∑
s′∈S

λs′sfs′−fs

∑
s′∈S

λss′ns′ . (2.7)

We shall interpret this system (and define the terms λss′) shortly. In order to solve

this system, both initial and boundary conditions must be specified. The initial condition

for the population density of strategy s is

f(s, w, x, 0) := f0(s, w, x), (2.8)

where f0 is the initial population density of strategy s.2

There are also boundary conditions for wealth and location. The wealth boundary

conditions ensure that no one possesses exactly zero wealth, and unbounded wealth is

also impossible:

f(s, 0, x, t) = 0∀x, t; lim
w→∞

f(s, w, x, t) = 0∀x, t. (2.9)

The location boundary conditions ensure that the population densities are periodic

over the circle, so that both the values and the first derivatives agree everywhere:

f(s, w,−L/2, t) = f(s, w, L/2, t);
∂fs

∂x

∣∣∣∣
x=−L/2

=
∂fs

∂x

∣∣∣∣
x=L/2

∀w, t. (2.10)

2In the numerical simulations it was assumed that for each strategy the joint density f0(s, w, x) over
wealth and space could be decomposed into the product of two marginal densities, one defined over wealth
and one defined over space. See Appendix B.
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2.1 Interpretation of the PDE representation

The PDE representation of the population density f(s, w, x, t) is similar to that studied

in Dorofeenko and Shorish (2005), but it contains a few notable differences. Most impor-

tantly, the last two terms of (2.7) together describe the ‘memory’ of the population from

previous play, and λss′ is a coefficient used to indicate how strong memory plays a role in

deciding which strategy to choose. For example, the first of these terms, given by

n(s, x, t)
∑
s′∈S

λs′sfs′ , (2.11)

shows how many new agents have decided to switch to strategy s from strategy s′ based

upon previous play. The term λs′sfs′ is the proportion of the density of those agents

playing fs′ who would, if facing strategy s, decide to switch to s. The total mass of such

agents who actually switch are those who actually face agents playing strategy s, which

is given by n(s, x, t). Thus, the total mass of agents switching from s′ to s is simply the

product of n(s, x, t) and λs′sfs′ . Summing over all possible strategies s′ ∈ S yields (2.11).

Similarly, the second term indicates how much population mass is lost from strategy s,

where λss′f(s, w, x, t) shows how many strategy s players have the potential to switch to s′,

and the product λss′f(s, w, x, t)n(s′, x, t) indicates how many actually switch. Summing

over all possible strategies s′ yields the desired relation, which is subtracted from the

population mass of strategy s.

The coefficients λss′ thus measure the importance of ‘memory’ in determining which

strategy adds to (or subtracts from) its population density. These coefficients depend

upon the payoffs of the game being played, and are by no means stationary in general.

However, for ease of analysis we assumed that they take on fixed values in time, so that the

problem remains stationary. In addition, we presume that the matrix of λ’s is symmetric,

so that λss′ = λs′s. This matrix may be thought of as a matrix of ‘switching rates’ or

‘coupling coefficients’ linking one strategy set to another–note finally that own-switching

carries a coefficient of zero, so that λss = 0 ∀s ∈ S.
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3 Model Approximation

The term

φs :=
∑
s′∈S

(λss′(nsfs′ − ns′fs)) (3.1)

has an analogous relationship to a type of friction in fluid dynamics. In particular, if

the coefficients λss′ are large enough, they overwhelm the dynamics of (2.7) and the

problem becomes one of defining the evolution of Markov switching between strategies

independent of direct game payoffs, cloning and death rates, etc. It may be the case

that this switching between strategies continues until a stationary solution is found (see

Section 3.2 on ‘Negentropy’ and our speculative efforts to prove that such a solution is

stable under this dynamical system). If this is the case, then each strategy mass fs is a

stable proportion of a ‘total density’ f :=
∑

s∈S fs, such that

fs =
ns

n
f + δfs, |δfs| � f ∀s, (3.2)

where n = n(x, t) :=
∑

s∈S ns.
3

We show in Section 3.1 below that this simplification can in fact be performed if the

system has only two strategies. Anticipating what follows, let us continue and show how

the system can be reduced to a single law of motion.

By aggregating (2.7) over s and substituting (3.2) into the result, and noting that

∑
s∈S

φs = 0,

we find that

∂f

∂t
+

∂

∂w
(V f)−M

∂2f

∂w2
− ∂2f

∂x2
= νbnen1g(w)− df, (3.3)

where V := 1
n

∑
s∈S nsVs is the average net gain or loss from game-playing in the economy,

since V may also be written as V = 1
n

∑
s,s′∈S νss′nsns′ .

3For future reference, we also define n1 = n1(x, t) :=
∑

s∈S n1s as the total density of all agents who
have enough wealth to clone themselves.
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The dynamics given by (3.3) determine the law of motion of the entire system, via the

approximation given by (3.2). This problem is easier to solve than the original system

(2.7). Approximation (3.2) also implies that the ‘spatial densities’ ns also obey certain

restrictions:

∂ns

∂t
− ∂2ns

∂x2
= νbnen1 − dns −M

∂fs

∂w

∣∣∣∣
w=0

. (3.4)

Since from (3.2) we know that

n1s =
n1

n
ns, (3.5)

∂fs

∂w

∣∣∣∣
w=0

=
ns

n

∂f

∂w

∣∣∣∣
w=0

, (3.6)

we may substitute these relations into (3.4) to yield

∂ns

∂t
− ∂2ns

∂x2
=

[
νbne

n1

n
− d−M

1

n

∂f

∂w

∣∣∣∣
w=0

]
ns. (3.7)

This relation may also be expressed in terms of the total spatial density n:

∂n

∂t
− ∂2n

∂x2
= νbnen1 −

[
d + M

1

n

∂f

∂w

∣∣∣∣
w=0

]
n. (3.8)

Defining αs = α(s, x, t) := n(s, x, t)/n(x, t) we may finally express the above relations as:

∂αs

∂t
− ∂2αs

∂x2
− 2

∂αs

∂x

∂

∂x
ln n = 0. (3.9)

Equations (3.2), (3.3) and (3.7) thus comprise the complete system for the total density

approximation.

3.1 Two Strategy Approximation

It remains to be shown that the approximation given in (3.2) is actually valid. To do so, we

restrict our attention to systems with only two strategies (such as the canonical repeated

prisoner’s dilemma game) and define a domain of applicability for the approximation.
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First, we define the conditional probability densities at a given spatial point x, i.e. the

‘normalized’ probability density for each strategy s = c, d:

ϕs(x, w, t) :=
fs(x, w, t)

ns(x, t)
. (3.10)

Using this definition, the general system (2.7) may be rewritten in the form:

∂ϕs

∂t
+

∂

∂w
(Vsϕs)−M

∂2ϕs

∂w2
− ∂2ϕs

∂x2
− 2

∂ϕs

∂x

∂

∂x
ln ns = (3.11)

νbneβsg(w)−
(

νbneβs + M

(
∂ϕs

∂w

)
w=0

)
ϕs +

∑
s′∈S

λs′sns′ϕs′ − ϕs

∑
s′∈S

λss′nr,

where

βs =
n1s

ns

=

∫ ∞

w1

ϕs dw

is the mass of type s agents who can clone themselves relative to the total number of

agents of that strategy type.

As in the unmodified law of motion (2.7), it is the relative size and frequency of the

‘memory terms’ λss′ which determines how differently the normalized densities ϕs, ϕs′

behave. If there are only two strategies, in fact, the difference between the two densities

ϕc and ϕd can be expressed as a difference term which fluctuates on a scale faster than

the mean transition time τ ∼ λ−1 between strategies. In other words, the behavior of the

two densities can be captured (to this degree of precision) by the dynamics of a ‘total

density’ function, denoted ϕ, and a ‘difference density’ denoted ϕ̃:

ϕ :=
nc

n
ϕc +

nd

n
ϕd,

ϕ̃ := ϕc − ϕd, (3.12)

with n(x, t) := nc + nd representing the total mass of all individuals at (x, t), regardless

of strategy.
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Notice that if ϕ̃ varies symmetrically (so that there is no bias) and quickly (so that

the law of large numbers applies) during the mean transition time τ , then for all intents

and purposes it vanishes during the time scale which drives the dynamics. This means

that over this time scale, the dynamics of ϕc and ϕd, and hence of ϕ itself, are essentially

the same, i.e. ϕc ' ϕd ' ϕ + O(λ−1), and that all three distributions follow the law of

motion governed by (2.7). The proof that ϕ̃ vanishes to order τ is given in the Appendix.

The resulting dynamical system after imposing this approximation is

∂

∂t
(nϕ) +

∂

∂w
(V nϕ)−

(
M

∂2

∂w2
+

∂2

∂x2

)
(nϕ) = νbneβng(w)− dn. (3.13)

This system is the two strategy approximation of the system (2.7), and is equivalent to

(3.3) with restrictions (3.7). It is this approximation that is used to derive the simulations

of the system in Section 4.

3.2 Negentropy

It must be shown that the approximation (3.2) of the dynamics of the system as repre-

sented by the general formulation (2.7) is stable, that is, for an open and dense set of

initial conditions, the system (2.7) will converge to a stationary distribution given by 3.2).

Similar to the stability properties of a Lyapunov function, we introduce a ‘negentropy’

function H(t) for this system. Such a function H(t) can be obtained under the assumption

of the symmetry of the coefficients λss′ = λs′s.

The negentropy function is defined as:

H(t) =

∫ ∞

0

∫ L/2

−L/2

∑
s∈S

G (fs) dwdx ≡
∫ ∑

s∈S

G (fs) dwdx, (3.14)

where the function G(f) satisfies the conditions:

G(0) = G′(0) = 0, (G(f), G′(f), G′′(f)) ≥ 0,∀f ≥ 0 (3.15)
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The simple example of such a function is G(f) = fα, 1 ≤ α. The more conventional

example: G(f) = (1 + f)[ln(1 + f)− 1].

Multiplying each of equations (2.7) by G′(fs), integrating by w and x over the solution

domain 0 < w < ∞, −L/2 < x < L/2 and taking a sum over the index s, we obtain:

Ḣ = νb

(
w1

∫ L/2

−L/2

ne

∑
s∈S

[fs (w1) G′ (fs (w1))−G (fs (w1))] dx +

∫
neg(w)

∑
s∈S

n1sG
′ (fs) dwdx

)

−
∫ ∑

s∈S

[
M

(
∂fs

∂w

)2

+

(
∂fs

∂x

)2
]

G′′ (fs) dwdx− d

∫ ∑
s∈S

fsG
′ (fs) dwdx (3.16)

− 1

2

∫ ∑
s,s′∈S

λss′nsns′ [G′ (fs)−G′ (fs′)]

(
fs

ns

− fs′

ns′

)
dwdx

The first term in parentheses is non-negative, because fG′(f)−G(f) =
∫ f

0
fG′′(f)df ≥ 0.

However, the sign of the frictional term is not defined.

Thus, the birth process yields the non-negative negentropy production, while all the

other processes excluding the last one yield the non-positive negentropy production. This

function can be used in the total density approximation, where the frictional term is

absent.

We may introduce the other negentropy function using G(f/n) in (3.14) instead of

G(f). Then the frictional term produces the non-positive contribution:

−1

2

∫ ∑
s,s′∈S

λss′nsns′

[
G′
(

fs

ns

)
−G′

(
fs′

ns′

)](
fs

ns

− fs′

ns′

)
dwdx (3.17)

but the sign of contribution of some other terms (namely, spatial diffusion and birth rate

terms) is not defined in that case. Future analysis may allow us to use this negentropy

function to derive analytical stability results for the total density approximation of Section

3.1.
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4 Simulations

The dynamical system given by (2.7) can be simulated once the parameters of the model

have been specified. These simulations used a discretized grid to approximate the PDE

system in the wealth and location space. For illustrative purposes, the simulation results

presented here are based upon one specification of the parameter set, the values of which

are defined in the Appendix. These results, while not generalizable, nonetheless present

the reader with some mode of comparison between an environment where memory is

relevant for distributed systems, and an environment where memory is absent.

The simulations of the full system with memory were compared to a ‘benchmark’

system without memory. As shown in Dorofeenko and Shorish [2005] the environment

without memory admits a metastable cooperative structure, which later decays to zero.

Defectors, while initially profiting from the cooperators in a similar fashion to ‘predatory-

prey’ interaction, eventually also die out as cooperators become ever more scarce.

In order to remain within the limits of the single-component approximation, a scale

value for the memory switching term λ = λcd = λdc was chosen which demonstrates how

the cooperator and defector probability densities converge to the same ‘total’ density after

a characteristic time period at the order of 1/λ. For the simulations, this memory term

was set to λ = 20. For the benchmark model without memory, λ = 0.

Figures 1 and 2 compare the long-run evolution of the system with and without mem-

ory, for the spatial densities of cooperators (diamonds, in red) and defectors (stars, in

blue).4 As can be seen, the dynamical systems with and without memory behave in a

similar fashion–given a small initial concentration of cooperators in a uniform ‘sea’ of de-

fectors, there is first the development of a tight central cluster of cooperators surrounded

by defectors on the sides. As time progresses, the cooperator cluster waxes and then

wanes, and both densities eventually converge to the stationary state where all agents die

out.

Judging from the spatial densities alone one would conclude that the two systems

4Note that in order to display these animations and the animation of Figure 6 correctly, this PDF
document must be opened on a system which can handle the AVI movie format.
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(Loading density evolution...)

Figure 1: Density Evolution Without Memory (λ = 0)
Play NormalPlay Slow Pause/Resume

(Loading density evolution...)

Figure 2: Density Evolution With Memory (λ = 20)
Play NormalPlay Slow Pause/Resume

are roughly equivalent, and the existence of memory does not substantially alter the

conclusions that one would draw in the absence of the switching terms given by λ–the

main difference is in speed, as the system with memory takes longer to dissipate. But an

examination of the probability density functions over both the location and wealth space

tell a different story. Although it is true that the long run time evolution of the system

is identical with and without memory, the densities evolve in a different way.

Figure 3 for cooperators and Figure 4 for defectors each compare the probability

densities for the system without memory to the system with memory. Although the

time evolution for systems with and without memory appear similar, they still exhibit
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differences along their respective time paths. For example, Figure 3(b) indicates that the

cooperator density with memory has ‘tails’ at relatively low wealth levels, which differs

from the density without memory given in Figure 3(a). In addition, comparing Figure

3(b) with Figure 4(b) shows that at these low wealth levels, the probability density of

cooperators looks very similar to the probability density for defectors in the environment

with memory. That is, there exists a tendency for the probability mass of cooperators

to cluster at points in common with the probability mass of defectors when memory is

present.

(a) Cooperator Density, λ = 0 (b) Cooperator Density, λ = 20

Figure 3: Cooperator Densities Without and With Memory

(a) Defector Density, λ = 0 (b) Defector Density, λ = 20

Figure 4: Defector Densities Without and With Memory
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This tendency is due to the fact that after a certain period of time, the ‘relaxation

time’ of the system, both normalized probability densities ϕc and ϕd converge toward each

other. Figure 5 compares the behavior of these normalized densities at a given location

in space, as they evolve over a range of wealth values. Figure 5(a) shows that even after a

sufficiently long period of time, the normalized densities without memory remain different

from each other–indeed, this difference remains throughout the evolution of the system,

until both populations die out. This is due to the fact that when the switching rate λ = 0,

i.e. when memory effects are absent, the characteristic relaxation time is 1/0 = ∞. It

takes an infinitely long period of time for the normalized densities to converge to each

other.

(a) Normalized Density, λ = 0 (b) Normalized Density, λ = 20

Figure 5: Differences Between Normalized Densities, Without and With Memory

By contrast, Figure 5(b) demonstrates that in the environment with memory, after

sufficient time has passed the normalized densities converge toward each other, and a

one-dimensional system emerges. The amount of time which must pass, the relaxation

time, is here on the order of 1/20 = 0.05, and the observed time to convergence is around

τ ' 0.2. This convergence is also demonstrated in Figure 6, which shows an animated

time evolution of the normalized densities over wealth–around the characteristic time of

τ ' 0.2, the two densities converge to the same ‘total density’ representation.
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(Loading density evolution...)

Figure 6: Evolution of Normalized Density, λ = 20
Play NormalPlay Slow Pause/Resume

5 Conclusion

In using the PDE representation to explore multiple agent interaction with memory, we

have relied upon the observation that when examining aggregate behavior, it is not vital

to associate memory with a specific individual, or collection of individuals. Rather, the

evolution of the likelihood of adopting one or another strategy can be influenced by a

‘collective memory’ that affects the population as a whole.

This interpretation of memory allows one to specify a continuous approximation to the

underlying discrete system, using standard techniques in a novel way. In this fashion, we

have shown how memory can be incorporated into the framework introduced in Dorofeenko

and Shorish [2005]. In addition, the introduction of memory also transfers characteristics

of one strategy to the population of the other–and if this rate of transfer is high enough,

the distinction between the evolution of the two strategies over time becomes blurred.

Even though each strategy still carries with it payoffs which are different from the other

strategy, the system as a whole behaves, in some sense, as though it were governed by a

single composite strategy with characteristics of both.

It is unclear whether the interpretation of memory as we have defined it is the most

efficient method of applying continuous approximation methods to discrete systems. It

is also not known how the global, asymptotic properties of the system behave (although
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work on negentropy is providing one possible direction for future research). We can

argue, at least, that simulation results with some form of analytical representation of the

underlying system, as we have presented here, are more useful to the researcher than such

simulations results presented as a ‘black box’ outcome. Being able to formulate a memory

model in terms of a system of probability densities sheds new light on the effects we might

expect to see in real-world interactions of this sort. After all, it is very unlikely that real-

world interactions can be measured at the individual level–rather, it is the statistics of a

population of agents which proves to be most relevant to the researcher. Explaining the

evolution and dynamics of these statistics, then, is of prime importance when attempting

to understand the behavior of a complicated collection of heterogeneous agents.

Future research is now focusing upon developing this paradigm for use in a wide

class of interaction models over a discrete space–in particular, applying our technique

to endogenous network formation seems like a natural next step, as until now the local

interaction properties have been specified ex ante. In addition, we shall free ourselves from

one particular game theoretic specification (the repeated prisoner’s dilemma problem) and

attempt to examine more complicated interaction and payoff environments. In this we

shall most likely need to draw upon methods of analysis which belong to the ‘mesoscopic’

scale as defined in the natural sciences, whereby individual interactions are too numerous

to completely specify, but the system taken as whole is still too small for population

aggregation to provide the dynamics of interest.

At the present moment, our tool is still of limited use–it may be likened to a rather

dim and wavering flashlight beam that we use to tread, step by step, upon a darkened

path strewn with those small problems we can illuminate. The goal is to see not just this

path, but the entire landscape of complex, dynamic, decentralized heterogenous agent

interaction models, in a way which allows us to make meaningful analytical statements

about the global and aggregate properties of the system. It is true that to achieve this goal,

we may very well need a lighthouse–but our small flashlight may have scaling properties

which have hitherto been unexploited.
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Appendices

A Perturbation Expansion for the Two Strategy Ap-

proximation

The dynamical system (2.7) is first rewritten in terms of ϕ and ϕ̃), and expressed as

expansion terms in those perturbations which are of smaller order than the relaxation

time:

∂

∂t
(nϕ) +

∂

∂w

(
V nϕ +

ncnd

n
(Vc − Vd) ϕ̃

)
−
(

M
∂2

∂w2
+

∂2

∂x2

)
(nϕ) = (A.1)

νbneβng(w)− dnϕ,

∂ϕ̃

∂t
+

∂

∂x

(
2ϕ̃

∂

∂x
ln
(ncnd

n

)
− ∂ϕ̃

∂x

)
= −λnϕ̃ + h, (A.2)

h= 2ϕ̃
∂2

∂x2
ln
(ncnd

n

)
− ∂

∂w

(
ncVd + ndVc

n
ϕ̃ + (Vc − Vd) ϕ

)
+ M

∂2ϕ̃

∂w2
+

2
∂ϕ

∂x

∂

∂x
ln

nc

nd

+ νbne

(
β̃g(w)− β̃ϕ− βϕ̃ +

nc − nd

n
β̃ϕ̃

)
+ (A.3)

M

(
nc − nd

n
ϕ̃

(
∂ϕ̃

∂w

)
w=0

− ϕ̃

(
∂ϕ

∂w

)
w=0

− ϕ

(
∂ϕ̃

∂w

)
w=0

)
,

where (similar to the previous approximation (3.11))

β =
n1

n
=

∫ ∞

w1

ϕ dw,

and the associated difference is

β̃ = βc − βd =

∫ ∞

w1

ϕ̃ dw.

The probability transition for ϕ̃ given in (A.2) depends upon the large parameter λ,
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which drives the overall dynamics. The parameter h, on the other hand, which is defined

by the expression (A.3), is a small perturbation–its effects are negligible at this level of

the approximation of the general system.

Equation (A.2) can be simplified by the transition to new variables (x, t) → (x0, t):

∂

∂t

(
ϕ̃

∂x

∂x0

)
= −λnϕ̃

∂x

∂x0

+ h, (A.4)

∂x

∂t
= 2

∂

∂x
ln
(ncnd

n

)
−
(

ϕ̃
∂x

∂x0

)−1
∂ϕ̃

∂x0

. (A.5)

Equation (A.5) represents the definition of the variable transformation x = x(t, x0),

while and equation (A.4) is derived from (A.2) by the substitution of that definition into

it.

The initial conditions at t = 0 have the form: x(0, x0) = x0, ϕ̃(0, x0) = ϕ̃0(x0), where

ϕ̃0(x) is the initial condition for ϕ̃(t, x) in (A.2).

The estimate for ϕ̃(x, t) can be derived from equation of (A.4) when considering the

term h as an external function:

ϕ̃
∂x

∂x0

= ϕ̃0 (x0) exp

(
−λ

∫ t

0

n (x (x0, t
′) , t′) dt′

)
+ (A.6)∫ t

0

h (t1) exp

(
−λ

∫ t

t1

n (x (x0, t
′) , t′) dt′

)
dt1.

Taking into account that λ is a large parameter and replacing the second integral by its

asymptotic estimate, we obtain:

ϕ̃
∂x

∂x0

' ϕ̃0 (x0) exp

(
−λ

∫ t

0

n (x (x0, t
′) , t′) dt′

)
+ λ−1 h(t)

n(x, t)
+ O

(
λ−2
)
. (A.7)

Thus for the time period of order τ ∼ λ−1 the value ϕ̃ ∂x
∂x0

is decreasing up to order

∼ λ−1.

To make the same statement about the function ϕ̃ itself, we also need to make sure
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that the partial derivative ∂x
∂x0

is not vanishing for that time period and remains of the

same order as it initially was. To do that, substitute the first term of estimate (A.7) into

equation (A.5):

∂x

∂t
= λ

(
∂x

∂x0

)−1 ∫ t

0

∂n

∂x

∂x

∂x0

dt′ −
(

∂x

∂x0

)−1
∂

∂x0

ln ϕ̃0 + (A.8)

∂2x

∂x2
0

(
∂x

∂x0

)−2

+ 2
∂

∂x
ln
(ncnd

n

)
.

Keeping in (A.8) only the main asymptotic term ∼ λ, we obtain after differentiation

by t:

∂

∂t

(
∂x

∂x0

∂x

∂t

)
' λ

∂n

∂x

∂x

∂x0

. (A.9)

The substitution τ = λ1/2t into (A.9) removes the explicit dependence of λ, so that

x(t, x0; λ) = x(λ1/2t, x0). (A.10)

This implies that the function x as well as its derivative ∂x
∂x0

changes substantially at the

time order ∼ λ−1/2, which is much greater than the relaxation time τ ∼ λ−1. Thus, the

estimate (A.7) can finally be rewritten as:

ϕ̃ ' ϕ̃0(x) exp (−λn0(x)t) + O
(
λ−1
)

(A.11)

When writing (A.11), we take into account the obvious relation
(

∂x
∂x0

)
t=0

≡ 1 and that

the spatial density n(x, t) obeys the “slow” equation (3.8)–in this case it does not change

substantially for the relaxation time τ , and can be replaced by its initial value n0(x).
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B Simulation Initial Conditions and Parameters

The simulations were run using Mathematica 5, by numerically solving the partial differ-

ential equation system 2.7. In order to do so, several parameters were fixed. First, Table

1 shows the game payoffs for the repeated Prisoner’s Dilemma:

Game Payoffs

C D

C (1.0,1.0) (-1.8,2.0)

D (2.0,-1.8) (-1.3,-1.3)

Table 1: Payoff matrix for the Prisoner’s Dilemma game.

(c) = cooperate, (d) = defect

The probability distribution g(w) for the wealth of a cloned agent was set to

g (w) :=
15

16∆w0

[
1−

(
w − w0

∆w0

)2
]2

ϑ (∆w0 − |w − w0|) , (B.1)

where the mean parameter w0 = 0.5, the spread ∆w0 = 0.5/3, and ϑ (x) is an indicator

function taking the value 1 when its argument is positive, and 0 otherwise.

The initial joint probability density f0(s, w, x, ) for a strategy s was decomposed into

two marginal densities–this substantially simplified the numerical analysis. The marginal

densities were the initial wealth density fs(w), and the initial spatial density fs(x), so

that f0(s, w, x) := fs(w)fs(x).

The initial wealth probability densities of cooperators and defectors were identical, i.e.

fc(w) = fd(w), and had the same functional form as the wealth density for a cloned agent

g(w). The mean parameter was w0 = 1, while the spread was again ∆w0 = 0.5/3.

The initial spatial densities of the cooperators and defectors, fc(x) and fd(x), were

different–the population of cooperators was given a larger (probabilistic) concentration

than defectors in a centralized region of space, to compare and replicate earlier work

in Dorofeenko and Shorish [2005] and to examine the metastability of any cooperator
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structure which might emerge. The initial defector density was uniform over the interval.

For the cooperator density,

fc(x) := 0.5 + 0.25 cos

(
2π

L
x

)
, (B.2)

while the initial defector density was set to

fd(x) := 0.2. (B.3)

Other parameters: the spatial interval was defined as [−25, 25] with endpoints identi-

fied, so that L = 50. Wealth was defined over the interval [0, 60]. The threshold level of

wealth for cloning was w1 = .67. The wealth diffusion parameter M = 0.04. The cloning

rate of new agents νb = 1, while the death rate for all agents was d = 0.01.
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