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Abstract 

This study utilizes a panel data set from 14 European countries over the period 1990-2004 to 
estimate a dynamic model specification for gasoline and diesel demand. Previous studies 
estimating gasoline consumption per total passenger cars ignore the recent increase in the 
number of diesel cars in most European countries leading to biased elasticity estimates. We 
apply several common dynamic panel estimators to our small sample. Results show that 
specifications neglecting the share of diesel cars overestimate short-run income, price and 
car ownership elasticities. It appears that the results of standard pooled estimators are more 
reliable than common IV/GMM estimators applied to our small data set. 
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1 Introduction

Petroleum products are major ingredients of a growing economy in developed countries.
Gasoline and diesel fuel in particular have become essential for private and economic
mobility. With growing energy and fuel consumption, however, the dependency on these
scarce resources has become striking, as oil crises in the past and recent oil price develop-
ments indicate. In addition, environmental externalities caused by rising fuel consump-
tion, such as emissions of carbon dioxide, nitric oxides, and carcinogenic airborne fine
particulates from diesel engines are becoming a major concern. Hence, policy-makers
have an interest in how expected increases in income and fuel prices would affect fuel
consumption and automobile use over time.

There is a vast literature on estimating gasoline demand at the aggregate level as
well as at micro level1. Many of the previous studies used gasoline consumption per to-
tal passenger cars or per capita as the dependent variable and included total passenger
cars per capita as the explanatory variable2, implicitly assuming a diminishing share of
diesel-powered cars. For some countries, like the USA, for example, this holds true, but
especially in the Western European countries an extensive increase in the number of reg-
istered diesel cars can be observed at the expense of the number of gasoline-powered cars.
Thus, one could expect the estimated coefficients of the equations that explain gasoline
consumption using total passenger cars instead of the number of gasoline-powered cars
to be biased due to an omitted variable. Accordingly, the income, price and car owner-
ship elasticities should be overestimated in dynamic demand models3. The higher the
diesel car share, the more severe the bias should be.

The objective of this paper is to investigate a dynamic fuel consumption equation
adopted from the flow adjustment model by Houthakker and Taylor (1970), which has
been extensively applied in the literature4, but with new data accounting for the omitted
variable problem just mentioned. The balanced panel data set comprises time series of
14 European countries over the period 1990 till 2004 for gasoline and diesel consumption,
the number of gasoline and diesel-powered passenger cars, gross domestic product per
capita, and CPI-adjusted gasoline and diesel retail prices. The panel data stem from
EUROSTAT and were supplemented by data from national statistics institutions.
1 For surveys see Bohi and Zimmermann (1984), Dahl (1986), Dahl and Sterner (1991), and Espey

(1998) for a meta-analysis.
2 See Baltagi and Griffin (1983, 1999) using a panel over 18 OECD countries from 1960 to 1978 and

1960 to 1990, respectively.
3 In the appendix we give a some intuition of the bias direction.
4 See for instance Houthakker et al. (1974), Sweeny (1978), Baltagi and Griffin (1983,1997), and

Baltagi et al. (2003).
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To our knowledge, there exists no other study using such specific time series for
estimation. In a recent pooled study with regional French data, Baltagi et al. (2003)
tried to take account of the observed effect of a shift towards diesel-fueled cars by means
of a constructed petrol price index based on gasoline and diesel fuel prices, but leaving
gasoline consumption per car unadjusted. Our paper contributes to the literature of fuel
demand by producing separate estimates for unbiased income and price elasticities with
respect to the omitted variable of diesel-powered cars in a dynamic gasoline and diesel
demand equation.

Secondly, we compare the estimates of several common dynamic panel data esti-
mators along the lines of previous studies done by Baltagi and Griffin (1983, 1999),
and Baltagi et al. (2003). Due to the short time dimension of the panel, we refrained
from comparing forecast performance. As recent simulation studies revealed5, the bias-
corrected Within estimator (Kiviet (1995)) and IV/GMM estimators according to An-
dersen and Hsiao (1982), Arellano and Bond (1991), and Blundell and Bond (1998) are
supposed to be a practical device which remedies the estimation bias in small dynamic
panels.

In the next section, we give a short overview of the basic facts concerning the evo-
lution of diesel-fueled cars in Europe. Section 3 describes the model specification, the
data set and the applied pooled estimators. In Section 4, results of the estimations are
given and discussed. Section 5 summarizes and concludes.

2 Rising diesel car share in Europe

Diesel engines are up to 30% more efficient in thermodynamic terms than Otto motors
due to higher combustion temperature. Compared on the basis of identical engine ca-
pacity, a diesel motor has less engine power, higher weight and higher production costs
than the gasoline motor. From an environmental point of view, a diesel engine emits
approx. 30% less CO2 than its gasoline counterpart, thus diesel technology is seen as a
major device for meeting the Kyoto commitments (EC-ACEA (2003)). The reverse side
of the coin is the probably harmful diesel exhaust6, which poses a serious air pollution
5 See for instance Kiviet (1995), Judson and Owen (1999), and Bun and Kiviet (2003).
6 In a growing number of scientific studies, diesel exhaust has been linked to respiratory diseases, heart

disease, cancer and premature deaths (EPA (2002), WHO (2003)). Diesel exhaust is a complex
mixture of gases and particles. NOx, CO, SOx and particulate matter consisting of polycyclic
aromatic hydrocarbons (PAH), in particular, are suspected of causing health problems. According
to Künzli et al. (2000), air pollution causes 6% of overall mortality or 40.000 deaths per year in
Switzerland, Austria and France, with half of these deaths attributed to motor traffic emissions.
Pope et al. (2002) found evidence of carcinogenicity of fine particles (PM2.5) from diesel exhaust.
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Figure 1: Diesel share of total passenger cars in percent for 14 European countries in
1990 and 2004

problem despite technological advances in emission control.
Although diesel technology has been available for over 80 years now, the penetration

of the European passenger car markets did not start until the end of the 1980s, when
technological innovations like direct injection and turbo chargers have increased the
torque and power of diesel motors and thus improved the comfort and driveability of
diesel cars. In addition to high oil prices, fuel tax differentiation favouring diesel in most
Western European countries has enhanced the growth of the diesel car share during the
last fifteen years. For instance, the share in France amounted to 4.7% in 1980 compared
to 16%, 35.6% and 45.5% in 1990, 2000 and 2004, respectively. Austria, Belgium and
Spain have also experienced a strong rise in the diesel share of their passenger car fleet,
namely from 13.7%, 26.6% and 10.2% in 1990 to 49.2%, 46.9% and 38.4% in 2004,
respectively (see Fig.1).

The observed shift to diesel cars in most European countries stems from the fact
that diesel fuel is more efficient in economic terms (approx. 2 litres per 100 km) and
cheaper than gasoline due to lower taxes in most European countries, thereby offsetting
the higher purchase costs of diesel cars and the slightly higher production costs of diesel
fuel. Figure 2 shows the retail fuel price differences in five European countries. In
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Figure 2: Fuel retail prices of five European countries and USA, Nov 2005 (source:
International Energy Agency)

contrast to the USA, where stringent regulations for motor car emissions as well as low
and equal fuel taxing de facto excluded diesel cars from the market, European policies
focused on fuel economy and reduction of CO2 emissions (EC-ACEA (2003)). Also,
lobbying by the commercial transport sector contributed to the lower diesel taxes. The
average of the difference between gasoline and diesel retail prices from 1990 till 2004
over all EU-countries7 in our data amounts to 18 cents per litre. The relative diesel
price is an important factor in the recently observed strong growth in diesel cars in most
European countries, a trend which has probably been amplified by the recent oil price
increase. The correlation between the average price of diesel relative to gasoline and the
growth in the diesel car share from 1990 to 2004 amounts to 0.5 in our data set.

However, the fuel economy of diesel engines combined with the lower diesel retail
price is not the whole story. The consumer’s decision to purchase a certain type of a
car is also influenced by the latter’s acquisition costs and non-fuel running costs8. The
7 Except Switzerland, because it is the only country considered with higher retail prices for diesel

than for gasoline.
8 Driving comfort, which encompasses greater car safety, engine power, air conditioning, GPS, etc.,

is also an important issue. The rising demand for these amenities has led to an increased market
share of bigger, heavier and faster diesel vehicles (SUV - sports utility vehicles) in Europe. Together
with higher traffic density leading to uneconomic driving habits, this has considerably reduced the
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manufacturing costs for diesel cars are higher than those for gasoline cars, resulting in
approx. 5% higher net purchasing costs for cars with comparable engine power (Proost
and Mayeres (2000)). Taxation of car purchases varies between European countries. In
car producing countries, such as France, Germany, Italy and the United Kingdom, the
normal value-added tax is applied with other registration fees being of minor importance.
Other fiscal policies target the level of fuel consumption by taxing vehicle price, weight,
engine capacity or power (Orfeuil (2001)). The progressivity of such tax schemes favours
gasoline cars leading to a smaller diesel car share in countries like Denmark, Finland,
Ireland, the Netherlands and Norway (see Fig.1).

Non-fuel running costs comprise for instance the annual tax on car ownership, in-
surance and maintenance costs, and road user charges. The tax on car ownership is
relevant to the consumer’s decision between a gasoline and a diesel car, because in most
European countries it is indexed to the engine’s power or capacity, thus favouring gaso-
line cars (Orfeuil (2001)). In Finland, gasoline-powered vehicles are exempted from the
annual motor vehicle tax. A switch to CO2-based taxation systems is currently being
discussed in European countries. In contrast, by 2006 Sweden had introduced a CO2-
related annual road tax on passenger cars, which has immediately increased the diesel
share of new car registrations (ACEA (2006)).

Passenger car owners who have above-average annual driving distances are thus more
inclined to choose diesel over gasoline cars9. The money saved from lower fuel costs and
higher efficiency makes up for the more expensive upfront cost of the vehicle. Formally,
the total life-cycle costs of a car can be written as A + ΣT

t=1(1 + r)−t(ptqt + ct), with
the acquisition costs A, operating life expectancy T , retail fuel price p, annual fuel
consumption q, interest rate r and non-fuel operating costs c. By assuming constant
kilometrage km, constant gasoline and diesel consumption10 of 8.8 and 7 liters per 100
km, respectively, and a constant price mark-up ω to equal diesel price to gasoline price
one derives the kilometrage break-even, where a rational individual opts for the diesel
car given equivalent engine power and vehicle size:

km =
100(f−1∆A + ∆c)

(8.8ω − 7)pd
, f =

(1 + r)T − 1
r(1 + r)T

(1)

gains in fuel economy obtained due to technology improvements and the observed dieselisation
of European car fleets (see Zachariadis (2006) and the references therein). As a side effect, the
discrepancy between official driving cycles measuring fuel efficiency and real-world driving records
has increased during the last decade.

9 In 2000, for instance, Austrian households drove an average of 12.000 and 16.000 km with their
gasoline- and diesel-powered cars, respectively (Statistics Austria (2001)).

10 See Statistics Austria (2001).
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with the total discounting factor f , the difference in acquisition costs, ∆A, and annual
non-fuel running costs, ∆c, of a diesel and gasoline car, respectively. The current diesel
price pd is assumed to grow in line with the inflation rate, hence r is the net interest
rate. Due to the higher efficiency of diesel in terms of distance driven per liter, the
gasoline retail price could be approx. 80% of the diesel price and one would still observe
the process of substitution by diesel-powered cars, ceteris paribus. The kilometrage
break-even km decreases with increasing diesel prices and net interest rate as well as a
lower spread of the acquisition and annual running costs. Accordingly, lower diesel car
shares can be found in those countries (see Fig.1) where a relatively higher tax has been
imposed on the purchase and ownership of diesel cars (Denmark, Finland, Netherlands,
Norway, Sweden) or where the difference in retail fuel prices is relatively small (Ireland,
Switzerland, United Kingdom)11.

3 Model specification

3.1 Description

According to Sweeny (1978), and Baltagi and Griffin (1983, 1997), fuel consumption is
calculated on the basis of a vehicle’s utilization, its fuel efficiency, i.e. fuel consumption
per distance driven, and the stock of cars in use:

Gasoline consumption =
] km
] cars

· Gasoline consumption
] km

· ] cars. (2)

Data limitations require a representation in which gasoline consumption per passenger
car GAS is explained by variables reflecting utilization and efficiency, leading to the
following log-linear demand equation:

(GAS)∗ = α(Y )γ(PG)β(CAR)δ (3)

Estimation of the gasoline demand per car is thus based on real income per capita Y ,
real gasoline price PG and stock of passenger cars per driver CAR. All these variables
are supposed to influence vehicle utilization. CAR aims to capture reduced utilization
caused by the rising number of cars per household12 and - by using the number of
11 Proost and Mayeres (2000) found the break-even annual kilometrage for medium capacity diesel

cars in 10 EU countries to be highest in Finland and lowest in France.
12 A family owning two cars does not drive twice the distance of a one-car family. The average annual

kilometrage of the Austrian households, for instance, amounts to 14.153 km for the first and 9.942
km for the second gasoline-powered car in 2000 (Statistics Austria (2001)).
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drivers instead of total population as the denominator - avoid demographic effects13.
Fuel efficiency, on the other hand, is not observable on an aggregated data level and over
the chosen time horizon for all countries. It is determined by the technical characteristics
of a car’s engine, driving habits, traffic density, geographical conditions, the vehicle’s
weight, usage of air conditioning, etc. Since the vehicle stock has a gestation period
which itself is expected to vary with economic growth, fuel efficiency can be expressed by
distributed lags of the economic variables (see Baltagi and Griffin (1983)). Including the
lagged dependent variable as regressor instead mirrors this distributed lag specification
(see Baltagi et al. (2003)).

From a model viewpoint, lagging gasoline consumption per car is justified by adopting
a flow adjustment model according to Houthakker et al. (1974). Utilization is adapted
to desired utilization via a habit-persistence mechanism. Applied to our case, this means
that adjustment of realized gasoline consumption GAS to the desired level of gasoline
consumption (GAS)∗ over time is assumed to follow a first-order process:

GASt

GASt−1
=

(
GAS∗t

GASt−1

)θ

, 0 < θ < 1 (4)

where θ is the adjustment coefficient.
After plugging equation (3) into (4), log linearizing, and pooling the data for country

i and time t, one obtains the frequently used dynamic demand equation for gasoline:

lnGASi,t = θ lnα + (1− θ) ln GASi,t−1 + θβ lnYi,t + θγ lnPGi,t +

+θδ lnCARi,t + ui,t (5)

where the disturbance term ui,t is specified as a two-way error component model:

ui,t = µi + λt + εit, i = 1, . . . , I, t = 1, . . . , T (6)

with country-specific effect µi, time-specific effect λt and white noise εi,t. The individual
and time effects can be modeled as fixed or random. The specification of the error term
can be generalized to be correlated over the cross-sections and/or over time.

Under formulation (5), the short-run elasticities of gasoline demand per car with
13 Schmalensee and Stoker (1999) pointed out that using the number of licensed drivers instead of

population heavily reduces estimated income elasticity with US data. They conclude that many
studies ignoring demographic changes overstate income elasticities. As a proxy for the number of
licensed drivers we took population aged between 18 and 69 (see the data appendix). The Within
estimator applied to our panel set gives approx. 20% higher income and price elasticities when
using total population instead, confirming the above findings.
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respect to per capita income, real price and total cars per driver are θβ, θγ and θδ,
respectively. The corresponding long-run responses are given by β, γ and δ, with the
speed of adjustment to the long-run equilibrium (1− θ). For the short-run and long-run
transformed elasticities of total gasoline demand relative to per capita income, real price
and total car fleet the results are (1−θβ), (1−θγ), (1−θδ), and (1−β), (1−γ), (1−δ),
respectively.

The short-run effect of gasoline price works primarily through adjustment of car
utilization, while in the long-run consumers adapt their car fleet to long-run changes in
gasoline prices. In the event of gasoline price increases there will not only be a shift to
more efficient gasoline-fueled cars but also one to diesel-fueled cars, as long as diesel fuel
and diesel car ownership costs are relatively low. Looking at the recent developments
in the composition of the passenger car stock, exactly the latter has happened in most
European countries (see Fig.1). Gasoline-powered cars with higher utilization rates will
be replaced first. The underlying shift towards diesel cars over time can be thought of
as a kind of selection mechanism. Those individuals with higher car utilization are more
likely to switch to diesel cars than others. Because the acquisition costs of diesel cars
are higher than for gasoline-powered cars, there will be a certain economic threshold
for engine substitution depending on car utilization, diesel prices and non-fuel operating
costs (see the discussion in section 2). Gradually, the less intensive car users are left
with the gasoline-powered car fleet, which certainly decreases gasoline consumption per
gasoline car.

The demand equation defined in (5) is afflicted with two shortcomings. First, it
ignores the just mentioned indirect effect of the steadily increasing number of diesel
cars on per car gasoline consumption. On the other hand, equation (5) relates gasoline
consumption to total passenger cars and uses total cars per driver as an explanatory
variable, even though diesel-fueled vehicles are operated by diesel and not gasoline fuel.
As it is shown in the appendix, this specification of the gasoline demand equation neglects
variables. Hence, the elasticity estimates do suffer from an omitted variabel bias leading
to overestimation of the elasticity estimates.

In order to correct these defects of the common gasoline demand equation, we restate
equation (5) by using gasoline consumption per gasoline-powered car GASG as the
dependent variable and the number of gasoline-powered passenger cars per driver CARG

as a regressor variable. In addition, the regressor variable diesel-powered passenger cars
per driver CARD is appended to get:
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lnGASGi,t = θ lnα + (1− θ) ln GASGi,t−1 + θβ lnYi,t + θγ lnPGi,t +

+θδ lnCARGi,t + θφ lnCARDi,t + ui,t (7)

where the coefficient φ measures the long-run elasticity of diesel car substitution. An
F -test of the joint significance of included variables rejects the null of the redundancy
of the CARG variable in both one-way and two-way fixed or random effects models.

Along the same lines, the diesel consumption demand equation is derived by means
of an error component model:

lnDIESDi,t = θ lnα + (1− θ) ln DIESDi,t−1 + θβ lnYi,t + θγ lnPDi,t +

+θδ lnCARGi,t + θφ lnCARDi,t + ui,t (8)

Here, the dependent variable is diesel consumption per diesel-fueled car (DIESD). The
exogenous regressors are income per capita Y , diesel price PD, and numbers of gaso-
line and diesel-fueled passenger cars per drivers, CARG and CARD, respectively. The
CARG variable is included to capture the opposite substitution effect away from gaso-
line towards diesel cars. Again, an F -test clearly rejects the null of the redundancy of
the CARG variable.

Besides diesel-powered passenger cars there are other road vehicles that consume
diesel fuel, such as trucks and buses for transporting goods and persons. These could
also be expected to influence diesel consumption. However, the added variables truck
per diesel car or truck per capita proved to be insignificant, being in line with the results
obtained by Baltagi and Griffin (1983). One explanation for this result is that the
variable truck per capita, in particular, captures the economic activity that is already
modeled by the variable income per capita Y .

In order to decide between a one-way or two-way and fixed or random effects model
for the postulated fuel demand equations, the following tests were conducted (see Bal-
tagi (2005)). First, a Hausman-type specification test rejects the null of no systematic
difference between the Within and GLS coefficient estimates in both the one- and two-
way models in each demand equation14, supporting a fixed effects model. Next, we
conducted a likelihood ratio and F -test to distinguish between the one- and two-way
14 The χ(5)-statistic amounts to 44.3 and 34.3 respectively in the one-way and two-way error com-

ponent model of the gasoline demand equation given in (5), and 53.3 and 53.2 respectively in the
diesel demand equation.

9



model. Both statistics clearly point to the individual fixed effects model15. Hence, we
decided to use the one-way fixed effects model when applying the Within and related es-
timators described in the following section16. Correspondingly, when applying standard
GLS to equations (7) and (8) for reasons of comparison, only country-specific effects
were considered.

Further, in both fuel demand equations with fixed effects a Wald test reveals cross-
sectional heteroskedasticity. In addition, several tests for serial correlation indicate first-
order autocorrelation of the residuals after estimating fixed and random effects models.
We thus add to the selection of estimators a feasible GLS, allowing for country-specific
AR(1) autocorrelation, cross-sectional correlation and heteroskedasticity (see section 3).

3.2 Data

The annual data set comprises 14 European countries ranging from 1990 till 2004: Aus-
tria (AT), Belgium (BE), Switzerland (CH), Germany (DE), Denmark (DK), Spain
(ES), Finland (FI), France (FR), Ireland (IE), Italy (IT), the Netherlands (NL), Nor-
way (NO), Sweden (SE) and the United Kingdom (UK). The basic data were obtained
from EUROSTAT. The panel was then revised and supplemented by data from national
statistical institutions17. Fuel consumption is measured in tonnes per year. Income per
capita is calculated as PPP-adjusted real GDP in US$ per total population and real
fuel prices as CPI-adjusted retail prices in EURO per liter18. In order to account for
demographic changes, the stock of car series are divided by the population aged 18 to
69 rather than by total population as a proxy for adult drivers.

Table 1 summarizes the extent of inter- and intra-country data variation for the vari-
ables. There is more between than within variation in the data, suggesting a pooled
estimation procedure. The common pooled estimators assume homogeneity of the para-
meters across the countries and time, i.e. the parameters are assumed to be constant for
15 The unrestricted model included country and time-specific effects, while the restricted version ex-

cluded the time effects. For the gasoline and diesel demand equation the tests yield F (13, 164) = 1.3
and χ(13) = 18.7, and F (13, 164) = 0.9 and χ(13) = 14.0 respectively, being below the corre-
sponding distribution with the degrees of freedom given in brackets. If the individual effects are
additionally restricted, the statistics clearly reject redundancy of the effects in both equations.

16 At the first glance, it seems counterintuitive not to take time effects into account in the data
generating process given the strong shift towards diesel-powered cars in most countries over time.
Indeed, if we drop the CARDA variable from the gasoline demand equation, we obtain significant
test statistics advocating the incorporation of time effects. We conclude that the country-specific
variable CARDA captures these time trends better than country-unspecific time dummies.

17 For details see the data appendix.
18 The conversion factor between tonnes and liters of a specific fuel type, which is implied in then

regression of fuel consumption in tonnes on fuel price per liter, will be captured by the regression
constant.
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Table 1: Analysis of Variances of the variables in the data set (I=14, T=15, 1990-2004)

ln GASG ln DIESD ln Y ln PG ln PD ln CARG ln CARD
Overall 9.279 84.804 6.009 5.145 11.097 6.493 144.156
Between 95.6% 86.4% 56.4% 63.9% 65.6% 87.2% 79.7%
Within 38.4% 16.9% 43.6% 36.1% 34.4% 12.8% 20.3%

all i, t in equations (5), (7) and (8), enabling poolability of country data. However, this
assumption was doubted and alternative estimators proposed19. Indeed, homogeneity is
rejected in our data set20. Nevertheless, given the dominance of between variation in
the independent variables, one might expect heterogeneous estimators to perform less
favorably than homogeneous estimators. A comparison study concerning forecast per-
formance of homogeneous and heterogeneous estimators was conducted by Baltagi and
Griffin (1997) and Baltagi et al. (2003) using a similar data set to ours. They showed
that heterogeneous estimators could not outperform homogeneous ones. In this study
we therefore concentrate on homogeneous estimators, which are briefly described in the
next section.

4 Estimators

The following standard pooled estimators are applied to our data set, assuming exogene-
ity of the regressors: pooled OLS, ignoring any effects, the Within estimator LSDV,
which allows for individual fixed effects, and GLS, where the country-specific effects
are assumed to be random. In addition, a feasible GLS estimator GLS-HC, allowing
for heteroskedasticity with cross-sectional correlation and a panel-specific AR(1) error
structure, is estimated with individual fixed effects, having a richer error structure than
the latter GLS estimator.

Since our model is dynamic with individual country effects, the lagged dependent
variable is correlated with the error term and thus leads to inconsistent estimates of
OLS, Within21 and GLS. As a remedy, the literature builds on the instrumental vari-
able estimation method providing consistent but not necessarily efficient estimates of
the model parameters. The instruments are the exogenous variables and their lagged
19 See Maddala et al. (1994,1997) for their shrinkage estimator, and Pesaran and Smith (1995).
20 Applied to equation (7), a Chow-test for the equality of slope coefficients across countries and time

with varying intercepts yields an F -value of 4.04, which is distributed as F (78, 126). The null
hypothesis is clearly rejected. However, standard poolability tests are known to overreject.

21 The well-known Nickell bias is given in the appendix.
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values. In our study we report the Within-2SLS, which transforms the data around
the country means, and the first-difference 2SLS estimator (FD-2SLS) proposed by
Anderson and Hsiao (1982). The latter estimator eliminates unobserved country het-
erogeneity by first-differencing, but this leads to autocorrelation with the error term.
In order to preserve consistency, the second lag of the dependent variable in levels is
used as an instrument for the differenced lagged dependent variable. Further, following
Arellano and Bond (1991), we used their one-step GMM estimator (AB1). The en-
dogenous variable in first differences is instrumented here with suitable lags of its own
levels and differenced exogenous regressors. Because it incorporates more orthogonality
conditions, the Arellano-Bond estimator is more efficient than FD-2SLS. Blundell and
Bond (1998) state that with persistent data differenced IV and GMM estimators suffer
from small sample bias due to weak internal instruments. As a solution they suggest
a system GMM estimator (sys-GMM) with first-differenced instruments for the equa-
tion in levels and instruments in levels for the differenced equation. In their simulation
study, the small sample properties of this estimator seem to be preferable in comparison
to other IV and GMM estimators. However, with increasing number of regressors the
moment conditions get close to the number of observations in small samples, as in our
case. Too many instruments produce over-fitting of the instrumented variable and the
resulting estimates are biased toward those of the OLS (see for instance Baltagi (2005),
p.153). This is exactly what we observed for our sample. We therefore used a subset of
the instrument matrices22 in order to avoid this small sample bias.

A weakness of all IV, GMM and system GMM estimators is that their desirable
properties only hold asymptotic for large N . Thus, in samples with a small number
of cross-sectional units, as in our case, the estimates can be biased and inefficient (see
Bun and Kiviet (2006)). An alternative based on the bias-corrected Within estimator
(LSDVc) has recently been used in the econometric literature. The Within estimator,
although inconsistent, has a smaller variance compared to IV and GMM estimators. By
correcting for the Nickell (1981) bias via approximation terms developed in Kiviet (1995),
one obtains an estimator with favorable properties in small samples. Monte Carlo studies
done by Kiviet (1995), Judson and Owen (1999), and Bun and Kiviet (2003) demonstrate
that the bias-corrected Within estimator (LSDVc) indeed often outperforms IV and
GMM estimators in samples with small N,T . In our study, we applied the corrected
Within estimator using an approximation term up to the order of T−1 (see for instance
Bun and Kiviet (2003), formula B1). Initial values of the true coefficients were obtained
22 For the implementation in STATA see Roodman (2005).
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Table 2: Elasticity estimates of gasoline demand equation without diesel (5)

Short-run Long-run
GASt−1 Yt PGt CARt Yt PGt CARt

Exogenous regressors
OLS 1.003 0.003 0.015 -0.061 - - -

(84.47) (0.14) (0.59) (2.87) - - -
Within 0.788 0.257 -0.107 -0.696 1.209 -0.502 -3.277

(17.11) (4.03) (3.49) (5.78) (4.27) (4.13) (6.45)

LSDVc 0.822 0.231 -0.097 -0.620 1.296 -0.543 -3.471
(24.25)b (3.88)b (3.27)b (6.01)b (3.72)b (3.29)b (6.22)b

GLS 0.980 0.0174 -0.005 -0.112 0.876 -0.236 -5.666
(49.43) (0.63) (0.17) (3.21) (0.66) (0.17) (1.21)

GLS-HC 0.750 0.270 -0.122 -0.81 1.077 -0.489 -3.257
(401.68) (97.89) (101.58) (171.88) (89.29) (64.28) (204.35)

Endogenous regressors
Within-2SLS 0.573 0.407 -0.171 -1.142 0.953 -0.400 -2.674

(6.66) (4.42) (4.07) (5.59) (5.82) (5.45) (9.89)

FD-2SLS 0.922 0.471 -0.207 -0.934 6.056 -2.664 -12.011
(2.44) (2.67) (4.55) (2.34) (0.20) (0.20) (0.22)

FD-GMM 0.736 0.416 -0.143 -1.007 1.576 -0.542 -3.819
(7.46) (4.41) (3.82) (4.97) (2.36) (2.50) (3.62)

sys-GMM 1.138 0.005 -0.109 0.116 - - -
(13.51) (0.80) (1.62) (1.07) - - -

Numbers in parenthereses denote t-statistics from panel robust standard errors
bBootstrapped

via the consistent FD-GMM estimator23.
We computed a total of 9 estimators for each fuel demand equation given in (5),

(7) and (8). Anticipating the results, the estimated coefficients reveal the expected
signs: positive income, negative price, and negative car-ownership effects. The results
are discussed in more detail in the next section.

5 Discussion

5.1 Omitted variable bias

In order to quantify the bias caused by omitting diesel cars, we in addition estimate the
gasoline demand equation (5) where the total car series is used instead of the correct
gasoline-powered cars series (see Tab.2). As outlined in the appendix, this is expected
to lead to overestimated coefficients in absolute terms compared to the gasoline demand
23 Bruno (2005) implemented the routine xtLSDVc in STATA.
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specification (7) because it ignores the increasing share of diesel-powered cars in Europe
over the last ten years (see Fig.1). The resulting bias is due to an omitted variable bias.

Under the assumption that equation (7) comprehensively describes the major fac-
tors determining gasoline demand, we see from comparing Table 2 and 3 that there is
clear overestimation of the short- and long-run elasticities in the misspecified gasoline
specification (5) with few exceptions. For illustration, the Within estimator of the mis-
specified equation gives short-run estimates for the lagged dependent variable GASt−1,
income Yt, gasoline price PGt, and total cars per driver CARt of 0.788, 0.257, -0.107
and -0.696 respectively, whereas these of the correctly specified equation (7) yield 0.705,
0.075, -0.106, and for the gasoline-fueled cars per driver series CARGt -0.228. Income
and car ownership in particular are heavily overestimated in the short-run as well as in
the long-run. In contrast, the difference in the short-run price elasticities is negligible.
Generally speaking, the higher the share of diesel cars in the investigated countries the
worse the overestimation of income, price and car ownership elasticities.

It may be of interest whether our estimates of the gasoline demand equation (5),
which is misspecified with respect to omitting diesel cars, correspond to previous studies
neglecting the growing share of diesel-fueled passenger cars, too. Baltagi and Griffin
(1997) used a dynamic panel model with lagged income and car stock as additional re-
gressors from 1960 to 1990 consisting of 18 OECD countries with 13 European countries.
Best accordance was achieved by the estimates of the Within estimator. The short-run
estimates for lagged gasoline consumption per car, income, price and car ownership were
0.87, 0.39, -0.11 and -0.74 respectively, which are largely in line with our results (see
Table 1). Taking into account the fact that in some European countries like France the
diesel car share was already substantial before 1990, we conclude that the estimates of
the elasticities obtained by Baltagi and Griffin (1997) are to some extent overestimated.
The same should hold true for the results obtained by Baltagi et al. (2003) using a panel
from 21 French regions over the period 1973-1998.

5.2 Gasoline demand

We now turn to the parameter estimates of the gasoline demand in equation (7), including
the diesel car series. The task is to compare the results for the different applied estimators
in order to retrieve information about their usefulness in small samples.

The pooled OLS estimator is included for reasons of comparison. It yields the highest
coefficient for the lagged dependent variable, which is in line with Baltagi and Griffin
(1997) and Baltagi et al. (2003) because it is biased due to the omitted country-specific
effects. The same holds true for the random effects estimator GLS assuming uncorrelated
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effects which was rejected by a Hausman-type test. Here we find a coefficient of 0.918.
Both OLS and GLS yield insignificant income and price effects. In addition, the short-run
elasticities of car ownership seem to be underestimated compared to the other estimators,
and the long-run elasticities overestimated due to the higher dynamic coefficient.

The Within estimator cancels out the country-specific effects and their possible cor-
relation with the explanatory variables. It is therefore a widely applied estimator. All
coefficients are reasonable in magnitude as well as sign and are significant24 except for the
coefficient of income. The coefficient of lagged gasoline consumption shows pronounced
habit persistence yielding a long-run response of 3.4 times the short-run elasticities25.
The short-run price elasticity of 0.106 is quite low, which corresponds to previous stud-
ies. In contrast, the long-run response to gasoline price increase is much more inelastic
than previously stated26. Further, the short-run coefficient of CARGt is below previous
results. It may not capture the shift towards diesel-powered cars that was observed
during the last few years in most European countries. Hence, a one percent increase in
the number of gasoline-powered cars per driver will lower gasoline demand per gasoline
car by only 0.23 percent, but in the long-run it will decrease by 0.77 percent. Since the
stock of gasoline-fueled cars enters the equation both as a dependent and an independent
variable, one can calculate the long-run transformed elasticity of gasoline consumption
with respect to the gasoline car fleet (1 + δ), i.e. when a household purchases a second
gasoline car ceteris paribus, total gasoline consumption will increase by approx. 23%,
which is only half of the findings of Dahl and Sterner (1991) and Baltagi and Griffin
(1997)27. Next, the coefficients of the variable diesel-powered passenger cars per driver,
CARD, yield -0.05 and -0.17 for short-run and long-run responses. As mentioned earlier,
the negative elasticity may stem from a kind of selection mechanism. Consumers and
firms in most European countries have switched their car fleets to cheaper diesel-fueled
cars over the last few years. The higher the car utilization, the more likely is the switch
to a diesel auto, leaving more low-level users with gasoline-powered cars.

Due to serial correlation found in the residuals of standard models, the GLS-HC esti-
mator introduced in the previous section is expected to perform well. The estimates are
24 However, one has to take into account the fact that the size of the t-statistics is distorted for all

considered estimators.
25 This corresponds to the findings of Bohi and Zimmermann (1984) and Dahl and Sterner (1991),

i.e. approx. 3.3, but not to those of Baltagi and Griffin (1997), 7.7, and Baltagi et al. (2003), 4.7.
One explanation could be that in studies covering older periods the share of diesel-powered cars
was negligible even in European countries, whereas in the latter studies the omitted variable bias
became substantial.

26 Except for the results of Baltagi et al. (2003), which were in our range.
27 Baltagi et al. (2003), see Table 2 there, find a decrease of approx. 13 percent, which is obviously

due to their omitting the diesel-powered car series.
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highly significant and correspond in magnitude to those of the Within estimator. The
coefficient of the lagged dependent variable, 0.61, is somewhat smaller than the Within
and LSDVc estimates but in line with the consistent FD-GMM estimates, though the
latter also suffer from a negative small sample bias. Owing to its very small standard
errors, this GLS estimator accounting for a flexible error structure seems to be appro-
priate for our panel model, confirming the findings of Baltagi and Griffin (1997). As
Bun and Kiviet (2006) demonstrate, the small sample bias of the standard errors of a
feasible GLS estimator is in line with that of other estimators considered.

In order to account for the endogeneity problem of the lagged gasoline consumption
variable GASGt−1, four common instrumental variable estimators were applied. The
Within-2SLS estimator yields a low estimate of the lagged dependent variable, whereas
the short-run elasticities reveal some overestimation compared to the standard Within
counterpart28. The same holds true for the Anderson-Hsiao estimator FD-2SLS, where
the dynamic coefficient is indeed negative and insignificant.

In contrast, the one-step Arellano-Bond estimator (FD-GMM) yields reasonable es-
timates. The coefficient of the lagged gasoline demand, 0.676, is somewhat lower than
that obtained with the LSDV counterparts, whereas the estimated short-run elasticities
of income and car stock are higher. This leads to higher long-run elasticities than the
LSDV and GLS-HC counterparts but remains reasonable29.

Turning to the Blundell-Bond estimator (sys-GMM), we observed a high dynamic
coefficient when applying the full set of moment conditions, which quickly increases
with the number of regressors. In small samples this may cause an overfit of the instru-
mented variable, biasing the estimates towards that of OLS. We therefore restricted the
instrument set, which decreased the estimate of the dynamic coefficient to a reasonable
value, 0.797, however the standard errors of the estimated elasticities still remained high,
leading to insignificant estimates.

Alternatively, one can exploit the efficiency property of the Within estimator by
using a bias-corrected version. Because the FD-2SLS estimator revealed unreasonable
estimation results, we used the FD-GMM estimator for the initial values in the LSDVc
approximation procedure. Comparing LSDVc with the Within estimator in Table 3, one
can see that Nickell bias correction leads to a higher coefficient estimate of the lagged
dependent variable and to somewhat lower short-run elasticity estimates in absolute
values, resulting in higher long-run elasticities. The estimates are realistic and in line

28 Similarly, Baltagi and Griffin (1997) found that 2SLS pooled estimates of this coefficient are gener-
ally lower than pooled OLS, GLS or LSDV.

29 Except the long-run elasticity of CARG, -1.109, which yields a negative transformed long-run
elasticity of gasoline consumption with respect to gasoline-powered cars per driver.
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with Within and GLS coefficient estimates with one exception: the long-run elasticity
of gasoline car ownership amounts here to -0.94, which results in an implausibly low
transformed elasticity of 0.06, substantially lower than the uncorrected counterpart.

Recapitulating, the IV/GMM estimators considered in this small sample dynamic
panel model produce somewhat unstable estimates. The one-step Arellano-Bond esti-
mator is the only one of the four IV/GMM estimators that seems to perform well in our
setting. Our results show that good candidates for estimating small dynamic panel data
sets are the Within estimator, its bias-corrected version LSDVc, GLS with heteroscedas-
tic, cross-sectional correlation and/or AR(1) error structure, and the Arellano-Bond
estimator FD-GMM.

5.3 Diesel demand

Next, we apply the set of standard panel estimators to the above-specified diesel demand
in equation (8) (see Table 4). Again, the estimates of the IV/GMM estimators vary
considerably. The dynamic coefficient estimate of the Within-2SLS estimator tends
towards zero, that of the system GMM estimator, like OLS, towards one, and the FD-
2SLS estimate lies outside the unit circle but is insignificant. Only the Arellano-Bond
estimator provides elasticities in the range of the preferable Within, LSDVc and GLS-HC
estimates. However, the estimated dynamic coefficient, 0.32, appears to be unrealistically
low, therefore we compare the estimates of the diesel and gasoline demand equations on
the basis of the Within estimator.

First, the estimated coefficient of the lagged diesel consumption variable amounts to
0.511, which entails a lower habit persistence than for the gasoline demand equation.
The long-run responses are only twice the size of the short-run elasticities. Whereas
the estimated income elasticities of the gasoline demand equation are low and mostly
insignificant, the estimates given in Table 4 suggest a strong dependence of diesel con-
sumption on income. Because the variable Y is measured as GDP per capita, income
can be interpreted as economic income or activity, so Y captures the effect of the number
of diesel-powered trucks, buses and other heavy-load vehicles on diesel demand31.

The short-run diesel price elasticity is higher than that of the gasoline price but still
quite inelastic. This makes sense if we assume a higher share of diesel cars in the stock
of vehicles with intensive utilization due to economic activities. Firms are expected to
react more economically to a fuel price increase than consumers with low car usage. In
contrast, the long-run response to gasoline price increases is more elastic in the gasoline
31 This could explain why the inclusion of the trucks per capita series affords no improvement in

estimating the diesel demand equation. See also Baltagi and Griffin (1983), footnote 5.
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demand equation (see Table 3) than the response to diesel price increases as defined in
the diesel demand equation (8), being in accordance with economic behaviour. In the
long-run, high-usage consumers and firms shift their car fleets towards lower cost engines
with increasing fuel prices. After switching, the users react to changes in income and
diesel price with more elastic short-run and more inelastic long-run responses than those
for the gasoline demand specification.

6 Summary and conclusions

The share of diesel-fueled passenger cars in the total car stock has continuously increased
during the last decade especially in Europe. Previous studies on gasoline demand have
not accounted for this fact by relating gasoline consumption to the total number of
cars. This paper argues that estimates based on such a misspecified demand equation
are biased owing to the related omitted variable problem. We thus expect estimates of
income, price and car ownership elasticities reported in recent studies covering gasoline
demand to be overstated. In particular, the elasticity of gasoline consumption with
respect to car ownership is overestimated when no distinction is made between gasoline
and diesel-powered cars.

To our small 14x15 panel data set we applied 9 common dynamic panel estimators.
Three of the four IV/GMM estimators considered conveyed unreliable estimates. The
quite good performance of the Andersen-Hsiao (1982) estimator in small samples32 could
not be affirmed by our study. The Blundell-Bond (1998) estimator suffers from a too
large set of instruments relative to the sample size. Only the one-step Arellano-Bond
(1991) estimator seems to perform well in our small sample setting. Our results show that
good candidates for estimating small dynamic panel data sets with a dynamic coefficient
close to one are the standard Within estimator, its bias-corrected version LSDVc, GLS
with heteroscedastic, cross-sectional correlation and/or AR(1) error structure, and the
Arellano-Bond estimator FD-GMM.

The qualitative results of the estimation of the gasoline demand equation correspond
to those obtained by previous studies like Baltagi and Griffin (1983, 1997) and Baltagi
et al. (2003). The income elasticity is positive, the price effect is negative, and the effect
of increased car ownership on gasoline consumption is negative. Comparing the Within
estimates of these studies, however, the coefficient estimates in this paper are found to
be somewhat lower in absolut terms, depending on the specified model and the included
countries, as well as on time period. This is accredited to the omitted variable bias
32 See for instance Kiviet (1995) and Judson and Owen (1999).
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effect, from which the estimate of the gasoline-fueled cars per driver variable especially
suffers. We interpret its low value together with an inelastic short-run gasoline price
response as such that car owners react to increasing fuel prices by gradually replacing
their gasoline-powered cars with diesel-powered ones. In most European countries such
a shift towards diesel cars can be observed since the 1990s. When fuel supply tightens,
the income and price elasticities of diesel consumption should therefore display relatively
more elastic responses than in the gasoline case. Exactly this can be observed in the
estimation results.
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A Appendix

A.1 Data description

The data framework originates from EUROSTAT. We completed or substituted individ-
ual items of data whenever necessary and available from national statistics agencies and
ministries as well as local automobile associations. Due to data limitations, Greece and
Portugal were excluded from the panel set. The final balanced panel comprises data
for the period 1990 till 2004 from 14 European countries: Austria (AT), Belgium (BE),
Switzerland (CH), Germany (DE), Denmark (DK), Spain (ES), Finland (FI), France
(FR), Ireland (IE), Italy (IT), the Netherlands (NL), Norway (NO), Sweden (SE) and
the United Kingdom (UK).

The stock of passenger cars is given as an annual average or for a certain point
during the year, mainly per end of December. The official data of the car series for
Germany suffer from breaks due to the German reunification in 1991 and a switch in the
reference date in 2001. We reconstructed our time series out of data from DESTATIS
and EUROSTAT, smoothing out the switch and updating the series backwards from
1991 using the growth rates of the original series.

As a proxy for the average annual number of drivers within a country we used end-
of-year numbers from EUROSTAT population data for the 18 to 69 age group. The use
of the number of drivers instead of the country’s total population avoids demographic
effects.

Annual data series for purchasing power parity (PPP ) in US dollars and real GDP
adjusted by PPP , basis 2000, for each investigated country in US dollars were taken
from the OECD Economic Outlook No. 76 and Annual National Accounts.

For annual gasoline and diesel consumption we used EUROSTAT-data on final energy
consumption of road traffic in thousand tonnes per year.

EUROSTAT also provided data on gasoline and diesel retail prices per 100 liters
inclusive of taxes, averaged per year. In order to account for the gradual displacement
of leaded gasoline fuel by unleaded (the first showing a price mark-up) in most European
countries during the early 1990s, we constructed the gasoline price series by means of a
stepwise changing weighted average of the two fuel sorts from 1990 to 1994. By the end
of 1999, leaded fuel had been withdrawn in most European countries.

The relative fuel prices were calculated with the help of national consumer price
indices (CPI), basis 1995, retrieved from AMECO, the annual macro-economic database
of the European Commission’s Directorate General for Economic and Financial Affairs
(DG ECFIN). Note that we do not adjust relative fuel prices for PPP, as we presume
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that consumer decisions are affected by local prices rather than by those that prevail in
a reference country.

Out of this we constructed the series for estimation: gasoline consumption per total
number of cars in logarithm ln(GAS), gasoline consumption per gasoline-powered car in
logarithm ln(GASG), diesel consumption per diesel-powered car in logarithm ln(GASD),
PPP-adjusted real output per capita in US$ in logarithm ln(Y ), number of total cars
per capita in logarithm ln(CAR), number of gasoline-powered cars per capita in loga-
rithm ln(CARG), number of diesel-powered cars per capita in logarithm ln(CARD), the
relative price of gasoline to other goods ln(PG), and the relative price of diesel to other
goods ln(PD).

A.2 Omitted variable bias

Here, we illustrate the omitted variable bias effect of the Within estimator due to the
incorrect use of the number of total passenger cars C instead of gasoline-powered cars
CG in the variables gasoline consumption per gasoline-powered car GASG and gasoline
cars per adult CARG in the gasoline demand specification given in equation (7).

First, we define Dt = Ct/CGt capturing the growth in the numbers of diesel-fueled
passenger cars over time as the ratio between total number of cars and number of gaso-
line passenger cars. In other words, D is the inverse of the share of gasoline-powered
cars. Substituting CG for C/D in the variables GASG and CARG in equation (7) and
rearranging the terms, one gets:

lnGASi,t = α lnGASi,t−1 + β lnYi,t + γ lnPGi,t + δ lnCARi,t + µi + εi,t +

φ lnCARDi,t + α lnDi,t−1 − (1 + δ) ln Di,t (9)

where the variable GAS is gasoline consumption per total cars. Comparing equation (5)
with (7) one notes that the term in the second line of equation (9) captures the effect
of the omitted variables CARDt and D, hidden in the dependent variable as well as in
the two regressors GASt−1 and CAR, total cars per driver. Note that (9) differs from
(7) by a slight change in the coefficient notation.

Further, applying within transformation in order to eliminate the individual fixed
effects, stacking the observations over time and across countries, and collating the loga-

rithmized exogenous variables into the NTxK matrix X̃ = [Ỹ
...P̃G

...C̃AR] yields:

ỹ = W̃κ + ε̃ + φ ˜CARD + (αL− 1− δ)D̃ (10)
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with the coefficient vector κ = (α, β, γ, δ)′, the lag-operator L, the NTx1 matrices

ỹ = (IN
⊗

(IT − iT i
′
T /T ) ln GAS, ε̃ and D̃, and the NTx(K + 1) matrix W̃ = [ỹ−1

...X̃],
respectively.

Applying OLS to the above equation without the last term yields the Within or
least-square-dummy-variable estimator LSDV:

κ̂LSDV = (W̃ ′W̃ )−1W̃ ′ỹ

= κ + (W̃ ′W̃ )−1W̃ ′ε̃ + (W̃ ′W̃ )−1W̃ ′
[
φ ˜CARD + (αL− δ − 1)D̃

]
(11)

with the true parameters κ. Equation (11) implies that the LSDV estimator is biased
due to the so-called Nickell bias given by the second term on the RHS, and in addition
through the correlation of the omitted variables ˜CARD and D̃ with the regressor matrix
W̃ represented by the third term.

Nickell (1981) examines the bias of the LSDV estimator with exogenous regressors
for N →∞ and finite T :

plimN→∞(α̂− α) = (plimN→∞
1
N

ỹ′−1MX̃ ỹ−1)−1plimN→∞
1
N

ỹ′−1ε̃ (12)

and
plimN→∞(β̂ − β) = −plimN→∞[(X̃ ′X̃)−1X̃ ′ỹ−1]plimN→∞(α̂− α) (13)

with the projection matrix MX̃ = I − X̃(X̃ ′X̃ ′)−1X̃ ′ and β = (β, γ, δ)′. The bias of α

given in equation (12) is of order O(T−1) and negative for positive values of α. For the
AR(1) panel model the simplest bias approximation is given by33

− 1 + α

T − 1
, (14)

Hence, the absolute value of the bias in estimating α increases with α and gets quite large
as α → 1. The presence of exogenous regressors influences the bias given by equation
(12) and (13). Phillips and Sul (2004) proved that the inconsistency of the parameter
estimates is decreased in absolute values when exogenous variables are present. This
result is in contrast to Nickell (1981). Also, the bias on β̂ depends on the relationship
between the transformed exogenous variables and ỹ−1. If there is positive (negative) cor-
relation between the projected variables, then equation (13) indicates that its coefficient
will be upward (downward) biased. For our data set, this means that the Nickell-bias
33 See Nickell (1981), formula (19). With α = 0.9 and T = 15 this amounts to -0.136.
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induces the estimated income, price and car ownership elasticities in the demand models
of equations (7) and (8) to be over-, under- and over-estimated, respectively, in absolute
terms.

Kiviet (1995) derived approximation formula for the bias of the LSDV estimator
with strictly exogenous regressors but when both N and T are small. Subtracting the
approximated bias from the LSDV estimate one arrives at the corrected LSDV estimator
which performed well in simulation studies34. This estimator has also been applied to
our data set (see section 5).

The following discusses the effects of neglecting the diesel car series on the parameter
estimates, as it is stated in the text. Extending the third term on the right hand side of
equation (11), the omitted variable bias of the estimates in the specific gasoline demand
equation (9) is given by:

φ(W̃ ′W̃ )−1W̃ ′ ˜CARD + α(W̃ ′W̃ )−1W̃ ′D̃−1 − (1 + δ)(W̃ ′W̃ )−1W̃ ′D̃ (15)

To size up the direction of the expected bias of the estimated coefficients in our specific
data set we have to evaluate the covariances between the omitted variables and the
corresponding transformed regressor. For instance, in equation (15) the first element
of the last term is equivalent to cov(MX̃ ỹ−1,MX̃D̃)/var(MX̃ ỹ−1) = −0.54, with the
projection matrix MX̃ defined above. Because the true value of δ probably lies around
-0.2, the bias of the estimated coefficient α, which is due to the omission of D̃ in the
demand equation, is positive. Calculating the empirical counterparts of all expressions
in (15) along the same lines and assuming true values for α = 0.8 and φ = −0.05, we are
able to evaluate the direction of the omitted variabel bias for each estimated coefficient.
Depending on the resulting sign this bias augments or reduces the Nickell bias given by
equation (12) and (13).

The omitted variable bias of the lagged dependent variable coefficient α̂ is small and
positive, and thus moderately mitigates the negative Nickell bias given in equation (14).
The omitted variable effect by itself results in an overestimation of α̂. In the case of the
coefficient estimate of the gasoline price variable, the low and negative omitted variable
bias only marginally reduces the Nickell bias and hence can be ignored. In contrast,
the omitted variable bias causes a considerable overestimation in absolute terms of the
negative coefficient of the variable cars per driver C̃AR and to a lesser extent that of the
positive coefficient of the income variable Ỹ . Consequently, this augments the negative
and positive Nickell bias of δ̂ and β̂, respectively.
34 See for instance Kiviet (1995), Judson and Owen (1999), and Bun and Kiviet (2003).
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Alternatively, the extent and direction of the omitted variable bias and the small
sample bias in dynamic panels can be read off from the Within and corrected LSDV co-
efficient estimates of the gasoline demand equations (5) and (7). Given that the LSDVc
estimator fully corrects for the Nickell bias, the latter can be extracted from the differ-
ence between the Within and LSDVc estimates of the correct specified gasoline demand
equation (7). For instance, the difference in the estimates of the lagged dependent vari-
able yields -0.075 (see Table 3), which is nearly half of the Nickell bias calculated by the
approximation formula in equation (14). The pure omitted variable bias is obtained by
taking the differences between the LSDVc estimates of the equation (5) and (7). For
the coefficients α, β, γ and δ one obtains 0.042, 0.166, -0.007 and -0.412, respectively
(see Table 2 and 3). Thus, by not taking into account the recent strong development of
the diesel-fueled cars in the common dynamic gasoline demand equation, the resulting
omitted variable bias causes an overestimation in absolute terms of all coefficient esti-
mates. The elasticity of the car fleet per driver is in particular affected, whereas that of
the gasoline price is negligible. Further, the omitted variable bias mitigates the Nickell
bias in the case of the lagged dependent variable. In contrast, the overall bias of the car
fleet elasticity is considerably aggravated by its omitted variable bias.
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Vergnaud, J.C., Sommer, H. (2000): Public-health impact of outdoor and traffic-
related air pollution: a European assessment. The Lancet, 356,9232: 795-801.

28

http://www.acea.be/ASB20/axidownloads20s.nsf/CategorizedOverviewACEA?OpenForm&Language=English&cat1=2&cat2=7&cat3=15
http://www.acea.be/ASB20/axidownloads20s.nsf/CategorizedOverviewACEA?OpenForm&Language=English&cat1=2&cat2=7&cat3=15
http://epa.gov/ttn/atw/dieselfinal.pdf


[23] Maddala, G.S., Srivastava, V.K., Li, H. (1994): Shrinkage estimators for the esti-
mation of short-run and long-run parameters from panel data models. Ohio State
University, Columbus, Working Paper.

[24] Maddala, G.S., Trost, R.P., Li, H., Joutz, F. (1997): Estimation of short-run and
long-run elasticities of energy demand from panel data using shrinkage estimators.
Journal of Business and Economic Statistics, 15, 90-100.

[25] Nickell, S. (1981): Biases in dynamic models with fixed effects. Econometrica, 49,
1417-1426.

[26] Orfeuil, J. (2001): Tax regimes on cars and CO2 emissions in European coun-
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