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Abstract 

We introduce a continuous time overlapping generations demographic model, in which a 
social planner seeks to generate an optimal policy for influencing the demographic change of 
the underlying population in a neoclassical growth model. The model has the notable feature 
that the underlying state space is a continuum, leading to a Hamilton-Jacobi-Bellman PDE 
system which is defined over a Hilbert space generated by the ages of the population 
cohorts. In this technical report the dynamic programming problem is presented and the 
numerical approximation using a finite difference approximation is derived. This analysis is 
part of a larger research program on welfare analysis and policy development for the 
HIV/AIDS global pandemic.  
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1 Introduction

This is a technical report on formulating a continuous time overlapping generations (OLG)

model with an underlying time-varying demographic population, whose growth (positive

or negative) is influenced by policy variables selected by a social planner.

The report is part of a larger research program designed to help uncover the opti-

mal policy decisions and welfare implications of the HIV/AIDS pandemic. There is an

enormous amount of work on the economic effects of the disease in the literature, much

of it focusing on modeling, the measurement of the economic and welfare costs, and the

allocation of resources to treatment vs. prevention investment. Perhaps not surprisingly,

there is at present no consensus on how best to model the economic effects of the disease,

and different sub-disciplines of economic and socio-economic analysis have generated dif-

ferent standards. For example, the International Monetary Fund’s The Macroeconomics

of HIV/AIDS [Haacker 2004] contains a variety of neoclassical models which assess both

the economic and welfare consequences of HIV/AIDS, concluding that the disease has

dire consequences for growth, income, life expectancy, and the development of human

capital (see also Nattrass [2006] for a review of Haacker [2004], where this negative con-

clusion is criticized). The use of growth models to study the effects of HIV/AIDS is also

adopted in Arndt and Lewis [2000] (a Computable General Equilibrium model and sim-

ulation), Robalino, Jenkins and Maroufi [2002] (a calibrated neoclassical growth model),

and McDonald and Roberts [2006], Dixon, McDonald and Roberts [2001] (a linearized

augmented Solow growth model). Generally, all of these modeling environments measure

large negative effects on growth and income from the disease, even if the prevalence of

HIV/AIDS in the population is relatively small.

The effects of the pandemic upon the development of capital are treated in Bell and

Gersbach [2006], who use a discrete time OLG framework to argue for greater targeting

of susceptible subgroups of the population to combat the disease. By contrast, Bonnel

[2000] examines the interplay between physical, human and social capital, and concludes

that HIV/AIDS can destroy the social fabric of an economy, in particular its institutions,
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as well as both the physical and human capital stock of the economy.

Both Arrow [2003] and Kirman, Luchini and Moatti [2003] advocate the use of welfare

analysis to understand the costs of HIV/AIDS, with Kirman et al. [2003] concentrat-

ing upon the possible role of greater treatment of those already infected with HIV/AIDS

(through e.g. anti-retroviral treatment), as this provides a higher quality of life and/or in-

crease longevity for those with the disease. This welfare role is also taken up in Deininger,

Crommelynck and Kempaka [2005] and in Crafts and Haacker [2003], who include in agent

preferences a desire for longer life expectancy to assess the welfare costs of increased

disease mortality. They find, again, that the welfare losses due to HIV/AIDS can be

substantial.

On the ‘prevention vs. treatment’ debate there is no clear-cut conclusion, as the

economic costing which accompanies discussions of prevention are often balanced by the

purely welfare gains from treatment. In an interesting policy prescription, Oster [2005]

highlights the possibility of reducing the impact of HIV/AIDS through prevention, by

targeting the spread of other sexually transmitted diseases (which may then prevent the

spread of the disease). In order to assess whether or not treatment or prevention should

receive most attention, Canning [2006] advocates a greater reliance upon cost-effectiveness

as a strategy to assess the impact of alternative investments into prevention or treatment

of the disease (or of alternative investments between different diseases or health crises),

and Gaffeo [2003] supports its use while also examining the effects of market failure and

HIV/AIDS’ long incubation period on the ability to form a cost-effectiveness strategy. By

contrast, Kumaranayake and Watts [2001] state that data availability (at least for Sub-

Saharan Africa) is too poor to allow cost-effectiveness a role in policy formation, and Dike

[2002] examines many of the challenges facing researchers in collecting both quantitative

and qualitative data (particularly in developing nations).

Nevertheless, some form of cost-effectiveness has been adopted for regional and sectoral

studies, e.g. on the demand for food [Agbola, Damoense and Saini 2004], the impact on

the agricultural sector [Ambert 2002], or on the construction sector [Jayne, Villarreal,
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Pingali and Hemrich 2005]. In the health care sector, DeSimone and Schumacher [2004]

estimate the wage differential which results from the added risk of health care practitioners

(particularly nurses) being exposed to HIV/AIDS.

Finally, substantial resources have been devoted to combating HIV/AIDS by non-

governmental organizations such as the International Monetary Fund, the Organisation

for Economic Cooperation and Development, and the World Bank. In their assessment of

aid effectiveness (see e.g. World Bank Operations Evaluation Department [2005], OECD

Development Assistance Committee and UNAIDS [2004], Over et al. [2004]), it is generally

concluded that effectiveness of aid can be increased by improving the institutions of the

developing nation that is combating the disease, while at the same time improving both

monitoring and evaluation of the aid package. This emphasis on institutional development

is also reinforced by Godinho et al. [2005].

Overall, there are a plethora of modeling environments to choose from, but what

appears to be lacking is a single framework which can make many of questions outlined

above (e.g. cost-effectiveness vs. welfare, prevention vs. treatment) outcomes of the

model rather than modeling choices of the researcher. In addition, few of the above

models use results provided by the mathematical biology and epidemiology literature on

the spread and diffusion of HIV/AIDS–these literatures themselves often compute simple,

sometimes ad hoc estimates of both the economic cost of the disease and its welfare effects.

It would be beneficial, then, to propose a unifying framework which could combine the

relative merits of both approaches, and this research project aims to provide a meaningful

contribution to fill this gap.

The mechanism by which the effects of HIV/AIDS, or indeed of any infectious disease,

is modeled in the current study will be well understood by most (if not all) economists,

but the modeling from epidemiology and its demographic effects may not be. In addition,

the particular welfare measurement environment adopted here, the continuous time OLG

framework, is relatively novel in the literature. The overall goal of this framework is to

allow the following questions to be addressed:
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1. What resources, and in what form, should be dedicated to the fight against the

HIV/AIDS pandemic, if such resources are to come from the productive output of

an economy (an economy defined here as a region, province, nation, or group of

nations)?

2. Because resources are scarce, is there a way to measure the trade-off which must

take place when such resources are devoted to combating HIV/AIDS, that takes into

account not only the effects on the here-and-now, but on future generations to come?

In particular, what is the trade-off between investment in treatment, investment in

prevention, and investment in other alternative resource allocation projects?

3. Can we meaningfully measure the cost (in terms of welfare, production, life ex-

pectancy, per-capita income, health, etc.) of an additional incremental increase in

the funding of policies designed to combat HIV/AIDS?

4. Can these measurements be modularized, i.e. can new innovations in our under-

standing of both the optimal policies and of the disease itself be incorporated into

a modeling framework with a minimum of ‘retooling’ required?

5. Can this model be computed in a time frame which allows policy makers to assess

alternative policy tools, so that in addition to its descriptive capacity the model

also provides predictive power through simulation?

This report will not travel far along the road towards a complete characterization of

the answers to the above questions. But it is hoped that the reader will see how such

a (relatively) simple framework as that described below can be extended to incorporate

more realistic features, and at the same time provide insights on how to eventually use

this framework in actual policy-making decisions of such crucial importance as combating

HIV/AIDS.

The structure of this paper is the following: Section 2 provides a characterization of

the full demographic model, a continuous time OLG framework with population growth

affected by the HIV/AIDS disease. Already here several simplifications are made, e.g.
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capital is absent and there is no subjective discounting performed by the social planner

(so that future generations are valued equally highly as current generations),1 and the

social planner has a finite planning horizon with a known terminal condition.

After introducing the full model, which is analyzed and treated elsewhere, Section 3

develops a much-simplified version of the model in which a single population of agents does

not suffer from disease, but simply from mortality, and the social planner can implement

policy to affect the rate of mortality loss. In a sense this is a super-aggregated version

of the full model, as we could (for example) just think of this single population as ‘the’

population of the economy, and the mortality rate as ‘the’ mortality rate for this overall

population. Policy impacts would thus take place at this super-aggregated level–this

might model, say, the overall impact of an anti-infectious disease campaign on the entire

population’s mortality rate.

Although radically simplified from the full model given in section 2, this single popu-

lation model shares the feature from the full model that the welfare valuation of the social

planner depends upon the entire distribution of individuals according to their age, which

is (in this context) a continuum. The dynamics of this model are most properly studied at

the theoretical level as a Hamilton-Jacobi-Bellman system over a Hilbert space. We defer

this analysis to a later paper, noting in passing that such systems have in fact been studied

in Economics in the past (e.g. Faggian [2005]). What we show in Section 4, and what is

the main result, is that in spite of this complication it is possible to numerically compute

this Hamilton-Jacobi-Bellman system on a computer using finite-difference methods for

solving first-order, nonlinear partial differential equations.

The final section, which is still work in progress, will be a demonstration of the scale

at which the model can be computed using high performance computing resources at

Manchester Computing (the University of Manchester, UK) and the National Center for

Supercomputing Applications (the University of Illinois at Urbana-Champaign). Cur-

rently available desktop solutions (e.g. Linux or other *nix systems running at approx.

1Note, however, that there is discounting in the model, though, as the population suffers from a
mortality rate which cannot be extinguished.
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2Ghz clock speed on dual-core CPUs, with 2GB RAM) indicate that both computation

of the solution and even storage of the results is a serious consideration when solving the

relatively simple problem derived in Section 3. When the high performance computing

results are complete they will be included in an expanded version of this document, which

is always available at http://www.ihs.ac.at/~shorish.

2 A Welfare Model of HIV/AIDS

The following model is a synthesis of what might be termed ‘conventional demographic

growth models’ on the one hand, and ‘models of demographic epidemiology’ on the other,

applied to the HIV/AIDS pandemic. Economic growth models are usually analyzed within

the context of ‘welfare’, which is a way of measuring the preferences of a population of

inhabitants in a well-defined, axiomatic fashion. While there is (and will no doubt always

be) a certain degree of debate over whether or not human welfare can be measured in this

way, it is clear that as long as humans have some structure over how they rank alternatives

(be they alternative decisions, consumption goods, careers, etc.), this structure should not

be ignored if at all possible.

For the current model we adopt a weaker contention than that humans ‘actually’

rank alternatives using a welfare measure such as utility, and instead define a social

planner’s measurement of others’ welfare by such a measure. In the present context, we

think of a social planner as a government or non-governmental agency which has at its

disposal a technology allowing it to affect large sections of the population of agents at a

time, through economic policy. The social planner funds this policy activity by collecting

resources made available in the economy, so that the policy is constrained both by the

sum total of resources available, and also by the alternative uses (e.g. alternative policies

or activities) that those resources could be allocated.

Underlying this social planning problem (as it is known) is the assumption that a

proportion of the population is suffering from HIV/AIDS. We adopt a standard framework

from epidemiology and mathematical biology and suppose that there exist three categories
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of people, those susceptible to infection, those infected with HIV but not expressing AIDS,

and those who have acquired infection and are now expressing AIDS.

Transitions between these populations are the main mechanism by which the disease

progresses, and are the target of any economic policy designed to combat this progression.

For example, HIV carries with it a force of infection, which indicates how (over a small time

interval) susceptible population members become infected with HIV. In this transition

is usually included the transmission of HIV through sexual contact (heterosexual and

homosexual), intravenous drug use (needle sharing), and mother-to-child transmission of

the virus during pregnancy. Economic policies which are targeted to one or more of these

transmission mechanisms, then, are directly targeting the force of infection.

In addition, there is a force of expression of HIV into AIDS, which indicates how many

HIV-infected population members express AIDS. Here again there is scope for economic

policy, because of the use of e.g. anti-retroviral drug therapy can delay the onset of AIDS

many years after an HIV infection, leading to a higher quality of life through increased

longevity.

Finally, there is a latent mortality rate for all three categories which humans can do

nothing about, or which are affected by other factors not represented by economic policy

prescriptions against HIV/AIDS. These terms are present in the demographic evolution

of all three populations, and are dependent not only upon the population type but also

upon their age.

2.1 A Mathematical Formulation

The demographic model of infectious disease adopted here is based upon a class of mod-

els introduced in 1927 by Kermack and McKendrick [1991] which are a standard of the

epidemiology literature. This model is extended to allow age-dependent disease incidence

and progression, as in Inaba [2006] (see also Bacaër and Ye [2006], Garnett and Anderson

[1993], Anderson [1991], Inaba [1990, 1989], Tudor [1985] and Hoppensteadt [1974] for an

overview of the progression of similar models in the epidemiology literature). The popu-
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lation is classified according to the stage of the infection–in the literature on HIV/AIDS

there are commonly three categories, or ‘compartments’ which any individual will be

classified, and individuals move between categories according to certain transitions (or

transition probabilities). This analysis focuses upon three categories:

1. Susceptibles: these population members are currently uninfected by the disease,

but may catch the disease in the future. They are given by a density s(t, x) of the

population at time t and age x, with x ≤ t always.

2. Infecteds: these members are infected with the HIV virus, but do not yet exhibit

acquired infections, i.e. they do not exhibit the symptoms of AIDS. There is a

density i(t, τ, x) of infecteds, which indicates at time t the proportion of population

members who were infected with HIV at age x, τ periods earlier. Obviously it must

be that x + τ ≤ t, since here the age of the individual is x + τ .

3. Acquireds: these members are infected with HIV and moreover exhibit the symp-

toms of AIDS–their quality of life and mortality are sufficiently different from HIV-

infected-only agents that they have a category of their own. The density of acquireds

a(t, τ, x) defines the fraction of the population at time t who began exhibiting AIDS

at age x, τ periods ago. As before, x + τ ≤ t.

As the population is measured in terms of densities it must be true that

∫ t

0

(
s(t, x) +

∫ x

0

i(t, τ, x − τ)dτ +

∫ x

0

a(t, τ, x − τ)dτ

)
dx = 1 ∀t, (2.1)

since i(t, τ, x − τ) and a(t, τ, x − τ) represent the density of individuals at t of infecteds

and aquireds, respectively, who were infected x − τ periods before, i.e. who are of age x

at t.

Each of these densities (s, i and a) evolves according to the transition from one state

to the next (s → i → a) and also to the absorbing state “death”, represented by mortality

rate transitions. We take as given the following full specification of the transitions between
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states, where certain transitions may be influenced by a vector of policy variables denoted

p(t):

d

dt
s(t, x) =

(
∂

∂t
+

∂

∂x

)
s(t, x) = − [µ(x) + λ(x, p(t))] s(t, x), (2.2)

d

dt
i(t, τ, x) =

(
∂

∂t
+

∂

∂τ

)
i(t, τ, x) = − [µ(x + τ) + γ(τ, x, p(t))] i(t, τ, x), (2.3)

d

dt
a(t, τ, x) =

(
∂

∂t
+

∂

∂τ

)
a(t, τ, x) = − [µ(x + τ) + δ(τ, x, p(t))] a(t, τ, x), (2.4)

s(0, x) = S0(x), s(t, 0) = B(t). (2.5)

In the above system the ‘instantaneous mortality rate’ µ(x) denotes that part of the

population’s mortality rate which is independent of policy and is uninfluenced by disease.

In (2.2) µ(x) depends upon the age of the population x, while in (2.3) and (2.4) µ(x + τ)

denotes those population members who were of age x when infected τ periods, before, i.e.

those who are of age x + τ now.

There is also an additional mortality rate term δ(τ, x, p(t)) in (2.4), which is introduced

because those population members who exhibit AIDS are more likely to die (given their

age) than either HIV infected or uninfected individuals. This term depends upon the

time AIDS has been exhibited (τ), the age at which the individual first exhibited AIDS

(x), and the policy variable p(t)–the latter dependence is due to the possibility of e.g.

anti-retroviral treatment extending the lifespan of those with AIDS.

The terms λ(x, p(t)) and γ(τ, x, p(t)) are forces of infection and acquisition, indicat-

ing the likelihood of a susceptible becoming infected with HIV and the likelihood of an

HIV-infected person exhibiting AIDS, respectively. It is in these two terms, along with

δ(τ, x, p(t)), that policy devoted to combating HIV/AIDS has its greatest impact–it is

also in these terms that modern epidemiology, sociology, and economics have the most

to say. Indeed, entire research agendas (not just individual research articles) are devoted

to understanding these rates, and no full explanation of the ability of a social planner

to influence the progression of such a disease can be considered realistic without this un-
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derstanding. We shall unfortunately not treat this question in the current analysis, as

our focus is on the general welfare analysis methodology once λ(x, p(t)), γ(τ, x, p(t)), and

δ(τ, x, p(t)) are completely specified. But these are absolutely vital for our understanding

of how to combat the disease.

Finally, S0(x) and B(t) indicate the initial distribution of susceptibles at time t = 0

and the reproduction rate for every period t, respectively.

The innovation we have introduced into the age-weighted demographic model is to

include the policy variable p(t), which may be a vector of policy tools, explicitly into

the forces of infection and acquisition, and into the mortality rate adjustment for those

exhibiting AIDS.2 We next turn to how a social planner selects p(t) in an optimal fashion.

The continuous time nature of the infectious disease lends support to the adoption

of a continuous time OLG growth model framework, with an endogenous labor supply

(see Brito and Dilao [2006] for an example of a continuous time OLG model of demo-

graphic population growth for an exchange economy). This allows the social planner to

use standard tools in optimal control theory to solve the following resource allocation

problem: given a specification for the economy, what is the optimal resource investment

towards combating HIV/AIDS? Notice that the natural response, ‘as much as possible’,

is uninformative on its own, but is exactly what we wish to know–how much is ‘as much

as possible’, exactly?

The social planner arrives at an answer by measuring the welfare of the population,

and constructing trade-offs between benefits that the population would receive directly

from an economy’s production (by consuming goods), and benefits received by forgoing

consumption and battling the disease instead (these benefits are measured both for pre-

vention, by lowering the risk of infection of future generations, and also for treatment, by

improving the current quality of life of those already infected).

2Lloyd [1991] derives optimal policy instruments in a simpler model where HIV infected agents respond
to policy decisions on the part of a social planner. While we feel this policy response is an important
determinant of the overall impact of policy decisions upon the evolution of the disease, we incorporate
this effect into the force of infection and acquisition terms given above–one might term these the ‘net
policy effects’ after agent responses are incorporated.
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This welfare measure is assumed to be time separable and additive:

U =

∫ T

t

∫ v

0

[
us(cs(v, x))s(v, x) + ui(ci(v, x))

∫ x

0

i(v, τ, x − τ)dτ (2.6)

+ ua(ca(v, x))

∫ x

0

a(v, τ, x− τ)dτ

]
dxdv.

The social planner measures an individual’s welfare with the utility functions us, ui and ua,

for susceptibles, infecteds and acquireds, respectively, which take as respective arguments

the per capita consumption levels cs, ci and ca. The above welfare measure U is simply

a weighted average of the welfare of everyone in the economy over all three types, for all

overlapping generations which exist between time t and the finite horizon of the social

planner, T . As usual, we assume that the utility functions are at least C1, strictly

increasing and concave in consumption.

The economic trade-offs for the social planner’s decision problem are captured in

the economy’s resource constraint. This is a neoclassical aggregate resource constraint,

and states that in any time period, the sum of current population consumption and

the funding devoted to reducing the mortality rate of the population cannot exceed the

available resources of the economy:

∫ t

0

[
cs(t, x)s(t, x)dx + ci(t, x)

∫ x

0

i(v, τ, x − τ)dτ+ (2.7)

ca(t, x)

∫ x

0

a(v, τ, x − τ)dτ

]
dx + C(p(t)) ≤ F

(∫ t̄

t

s(t, x)dx

)
,

where C(p(t)) is the resource cost of selecting the policy vector p(t), F (·) is the production

function of the economy (assumed to be either constant or decreasing returns to scale),

and [t, t̄] is the interval between which agents are of working age (and thus contribute to

production).

Finally, we can state the full optimal control problem of the social planner. The

planner selects a set of consumption levels for every individual in the economy at every

time period, as well as a vector of policy variables (also at every time period) to maximize
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the welfare of the population. This is expressed as an optimal control problem, where the

solution, the optimal value function, is given by:

V := max
{cs,ci,ca,p}

∫ T

t

∫ v

0

[
us(cs(v, x))s(v, x) + ui(ci(v, x))

∫ x

0

i(v, τ, x − τ)dτ (2.8)

+ ua(ca(v, x))

∫ x

0

a(v, τ, x− τ)dτ

]
dxdv,

such that (2.2) - (2.5) and (2.7) hold, and it is understood that by e.g. ‘cs’ we mean the

entire family of values cs(v, x) for all times v ∈ [t, T ] and all ages x ∈ [0, v].

The formulation of this problem is similar to previous studies on the optimal con-

trol (treatment) of infectious disease age-structured models studied in, for example, Fe-

ichtinger, Tragler and Veliov [2003] and Faggian and Gozzi [2004], with the additional

complexity of an overlapping generations framework and a resource allocation problem.

The model is complicated by the dependence of the value function upon the current state

of the population s(t, x), which makes the resulting dynamic programming problem (see

below) infinite dimensional. Both Feichtinger et al. [2003] and Faggian and Gozzi [2004]

tackle the necessary conditions for similar problems, while Faggian [2005] outlines regular

solutions for a general class of convex boundary control problems over a Hilbert space

(this builds upon earlier research on the Hamilton-Jacobi system in infinite dimensional

spaces from Crandall and Lions [1985]). It is not known at present if these results can be

extended in a straightforward fashion to demonstrate the existence of regular solutions to

the above system.

3 The Simplified Model

For this report we shall make several further assumptions that will help simplify the

analysis, and (it is hoped) significantly improve expositional clarity. Strictly speaking,

these simplifications will recast the demographic problem away from infectious disease, as

there will be only a single population of uninfected agents s(t, x). This population will,
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nevertheless, have its mortality rate influenced by economic policy, so that the economic

tradeoff between greater current living conditions for the present or a lower mortality

rate in the future is still present. Moreover, passing from this simplified model to the full

model just described preserves both the numerical approximation methodology and the

computational implementation strategy–this is, of course another way of saying that even

this simplified model has as much complexity as the full model.

We make the following assumptions. First, we assume that there is only one type of

population, the uninfected (no longer ‘susceptible’ since there is no threat of infection).

This population density, which will be denoted (as before) by s(t, x), has an associated

mortality rate µ(x, p(t)) which is influenced by policy. There is no birth rate and the

mortality rate is always positive, so in this model the initial distribution of agents S0(x)

always declines over time. The social planner may mitigate this decline by an optimal

choice of p(t), as described below.

To keep policy analysis simple we suppose that p(t) is a scalar and C(p(t)) = p(t).

Moreover, we let F (x) = x ∀x, t = 0 and t̄ = t, so that the resource constraint may be

simplified to ∫ t

0

c(t, x)s(t, x)dx + p(t) ≤
∫ t

0

s(t, x)dx = 1. (3.1)

The policy variable p(t) influences the demography of the economy only by impacting

the mortality rate of the population. In a full compartment model of infectious disease

this may be a vector of policy variables (as defined earlier), and different stages of a

disease will be impacted by one or more of these variables. Here we assume that there is

only one ‘compartment’, which is a population of generic individuals who age over time.

We model the demographic change of the population as:

d

dt
s(t, x) =

∂s

∂t
dt +

∂s

∂x
dx = −µ(t, x)s(t, x)dt,
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which (since dx = dt) can be written as the partial differential equation (PDE) system

(
∂

∂t
+

∂

∂x

)
s(t, x) = −µ(x, p(t))s(t, x). (3.2)

The term µ(x, p(t)) is the instantaneous mortality rate of the population–given a policy

p(t) at time t, the fraction of the population of age x will be adjusted downward at the

rate −µ(x, p(t)). One form of the mortality rate will be specified in the modeling section

below, but for now we note that it is the impact of the policy variable upon the transition

rate of the population, in this case the mortality rate, which is the demographic impact of

economic policy. Although in a more complete model the impact of e.g. high consumption

on mortality or on reproduction could be considered, we abstract away from this in what

follows.

Finally, we suppose that there is in the current model no new births in the population,

i.e. the population of the economy is at its maximum at t = 0, with an initial population

distribution s(0, x) := S0(x). This assumption is for exposition only, and a full model

would include a birth rate that could be influenced by economic policy.

3.1 The Optimal Control Problem

With these assumptions in hand, for the remainder of this analysis we consider the fol-

lowing optimal control problem:

v(t, s) := max
c,p

∫ T

t

∫ v

0

u(c(v, x))s(v, x)dxdv (3.3)
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such that

∫ t

0

c(t, x)s(t, x)dx + p(t) ≤ 1, (3.4)

ds

dt
=

∂s

∂t
+

∂s

∂x
= −µ(x, p(t))s(t, x), (3.5)

v(T, ·) = VT (x), s(0, x) = S0(x) (3.6)∫ t

0

s(t, x)dx = 1 ∀t. (3.7)

This class of optimal control problems represents the decision problem facing a social

planner with a finite planning horizon and a continuum of agents indexed by age. The

instantaneous utility function u(c) is assumed to be increasing and strictly concave–in

the numerical computations below the functional form is given the standard u(c) := ln(c)

specification. This utility function is assumed to be the same for every age cohort, an

assumption made for exposition only and which can be safely dispensed with in more

realistic models.

The resource constraint (3.4) has been likewise simplified–we assume a closed economy,

so that the policy maker only has at their disposal the output of a domestic economy.

There is no capital, so only the available labor supply influences production. To keep our

attention focused upon the problem of computation, the production function is assumed

to be linear in aggregate labor and the linear multiplier is set equal to one without loss of

generality. It should also be emphasized that although s(t, x) is a density function (i.e.,

the number of agents in a small age-interval (x, x+dx) at time t is equal to s(t, x)dx), the

consumption levels c(t, x) are aggregate per-capita levels and not densities. This means,

for instance, that the resource constraint has the equivalent form

Es(t,·)c(t, ·) = 1 − p(t). (3.8)

The problem is non-standard because the value function v(t, s) depends upon every

value of the density of susceptibles s(t, x) for each x–the state space is thus a continuum.

Naturally in any computation using a finite state machine the state space will have to be
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discretized, and the nature of the discretization will be addressed in the upcoming section.

The convergence properties of the numerical approximation to the true value function is

a subject of future research, however, and caution should be used in mapping numerical

computational results back to the theoretical problem at hand.

To render the problem easier to treat numerically we can recast the problem as a

Hamilton-Jacobi-Bellman first order nonlinear partial differential equation. We arrive at:

−∂v

∂t
= max

c,p

{∫ t

0

u(c(t, x)s(t, x)dx +

∫ t

0

∂v

∂s
· (−µ(x, p(t)))s(t, x)dx

}
(3.9)

such that constraints (3.4), (3.6) and (3.7) are satisfied. We have slightly abused notation

here to highlight that there is a continuum of partial derivatives of v with respect to s in

the last term of (3.9), so the second integral may be considered as an inner product on

an Hilbert space between the gradient of the value function defined over the space of all

probability densities over x, and the representative draw from this space labeled s(t, x)

(multiplied by µ(x, p(t)). The proper definition of this derivative will be presented below,

when passing to the discretization for numerical computation.

3.2 Deriving s(t, x) when the Policy Function is Known

If the trajectory of p(t) is known for all t (or is irrelevant for the time evolution of s(t, x))

then solving for the density function of susceptibles s(t, x) is straightforward using the

method of characteristics to convert the partial differential equation (3.5) into a set of

ordinary differential equations. This separates the time evolution of the demographic

component from the policy decisions, as is often performed in standard economic models

with (say) an exogenously defined rate of population growth. We next briefly outline how

the population of susceptibles would evolve in the absence of policy–for further references

on the method of characteristics see e.g. John [2005].

The characteristic curve defines a mapping from a parameter z ∈ R to (x(z), t(z)),

values for which the unknown density S is unchanging over time. Hence,
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ds

dz
=

∂s

∂t

dt

dz
+

∂s

∂x

dx

dz
. (3.10)

But from (3.5) we can match coefficients, yielding

dt

dz
= 1, (3.11)

dx

dz
= 1, (3.12)

ds

dz
= −µ(x(z), p(t(z)))s(x(z), t(z)). (3.13)

The first two ordinary differential equations may be integrated to yield

t(z) = z + t0, (3.14)

x(z) = z + x0. (3.15)

We choose the constant of integration t0 = 0, which allows us to write

x(z) = x(t, x0) = t + x0. (3.16)

Meanwhile, the last ODE can also be integrated, choosing as the limits of integration

(0, t):

ln(s) = −
∫ t

0

µ(x(z), p(t(z)))dz + S0, (3.17)

with S0 a constant.

To determine the constant of integration we use (3.16) and the initial condition for

s(0, x) from (3.6):

s(0, x(0, x0)) = S0(x0). (3.18)

Finally, we know that x = t + x0 → x0 = x − t, so that
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s(t, x) = exp

[
−
∫ t

0

µ(z + x0, p(z))dz

]
+ S0(x0),

or

s(t, x) = exp

[
−
∫ t

0

µ(z + x − t, p(z))dz

]
+ S0(x − t). (3.19)

The susceptible population at t is thus determined when the policy function p(t) is

known for every time period up to t. Unfortunately, the value of the policy function is

itself determined by the time evolution of the susceptible population, and for the actual

optimal control problem the standard technique outlined here cannot be used.

3.3 First Order Conditions

The first order necessary conditions to solve system (3.3) - (3.7) rely upon slightly refor-

mulating the HJB system (3.9) using a Lagrange multiplier to incorporate the resource

constraint. The Lagrangian is defined as:

L(c, p, s, λ) :=
∂v

∂t
+ max

c,p

{∫ t

0

u(c(t, x))s(t, x)dx +

∫ t

0

∂v

∂s
· (−µ(x, p(t)))s(t, x)dx (3.20)

+ λ

[
1 −

∫ t

0

c(t, x)s(t, x)dx − p(t)

]}
,

such that (3.6), (3.7) hold. Note that at the optimum, the Lagrangian is equal to zero.

Provided that the problem carries an interior solution for points off the boundary, the

first order necessary conditions associated with this problem may be written as:

∂u

∂c

∣∣∣∣
(t,x)

=
∂v

∂s

(
−∂µ

∂p

)∣∣∣∣
(t,x)

,

∫ t

0

c(t, x)s(t, x)dx + p(t) = 1. (3.21)

If we assume that u(c) := ln(c), the conditions may be rewritten in terms of the
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optimal policies c∗(t, x) and p∗(t) as

c∗(t, x) =

[
∂v

∂s

(
−∂µ

∂p

)∣∣∣∣
(t,x)

]−1

,

p∗(t) = 1 −
∫ t

0

[
∂v

∂s

(
−∂µ

∂p

)∣∣∣∣
(t,x)

]−1

s(t, x)dx. (3.22)

4 Numerical Dynamic Programming

4.1 Fixing the Mortality Rate µ

The analytical treatment of the first order conditions and the existence of a solution are

treated in a companion paper. The focus of this report is to determine how to compute

the solutions of (3.21) on a computer, given the functional forms for production and

utility assumed above. In order to embark upon computation an additional functional

form assumption must be made for µ(x, p). In a sense this expression is the ‘heart’ of the

economics, for all policy effects to change the progression of the demographic population

variable s(t, x) are given by this term.3

To keep the exposition as clear as possible we assume that µ(x, p) has a simple form

which represents the following stylized qualities:

1. the mortality rate is decreasing and convex in the policy variable p, i.e.

∂µ

∂p
≤ 0,

∂2µ

∂p2
≥ 0,

2. the mortality rate is maximized when p = 0, i.e.

µ(x, 0) > µ(x, p) ∀p,

3As mentioned earlier, in the complete model of the epidemiology of infectious disease, economic
policy will have an impact upon non-disease-related mortality, disease-related mortality, and the ‘force
of infection’, i.e. the rate at which those susceptible to disease are actually infected.
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3. the mortality rate tends to a lower bound as p goes to infinity, i.e.

lim
p→∞

µ(x, p) =: µ̄(x) < µ(x, p) ∀p.

These stylized qualities are designed to capture the effects of a policy with clearly-

defined effects on the mortality rate, without externalities or distortions. Naturally in

the real world policy effects are less clear-cut, and some ambiguity will obtain regarding

not only the optimal policy level with respect to aggregate consumption (as here) but

also with respect to deleterious (or unanticipated) effects that the policy might have upon

mortality. Without such externalities, the qualities given above state that increased pol-

icy spending decreases mortality, but does so at a declining rate. For every age cohort,

the mortality rate is maximized when no policy spending is implemented, while if pol-

icy spending were totally unconstrained (so that an infinite amount could be allocated)

then the mortality rate would decline to a fixed (age dependent) minimum. The latter

assumption prevents the ‘eternal youth’ problem of allowing the mortality rate to decline

to zero with unbounded policy spending, which retains the common-sense intuition that

regardless of what we do, there are uninsurable risks which cannot be eliminated by policy

spending.

For computation, we further restrict µ(x, p) to an explicit functional form that respects

the stylized qualities defined above:

Assumption 4.1. The instantaneous mortality rate µ(x, p) is defined as:

µ(x, p) := (1 + x2)(1 + e−p). (4.1)

Note that in addition to satisfying the qualities required for the policy function, this

functional form also states that mortality is increasing and convex in age (x). Although

plausible, it is worth noting here that this functional form assumption is made for ease

of computation only (that is, it facilitates the calculation of an exact gradient of µ).

Indeed, recall that all of the important demographic effects are captured by µ, and so the
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functional form of µ with respect to x is most properly a data-driven specification rather

than a modeling specification. It is assumed that when the model is implemented as a

full-scale policy engine, the researcher will identify precisely that µ(x, p) which best fits

the data on age-weighted and policy-influenced mortality. In the final analysis, discovering

the true specification of µ(x, p) is an econometric question which can only be given by

the data.

4.2 Computing the Value Function

As with most finite horizon dynamic programming problems we begin at the end and

work backwards. Starting from the terminal condition v(T, ·) = VT (x) we solve

c∗(T, x) =

[
∂VT

∂s

(
−∂µ

∂p

)∣∣∣∣
(T,x)

]−1

,

p∗(T ) = 1 −
∫ T

0

[
∂VT

∂s

(
−∂µ

∂p

)∣∣∣∣
(T,x)

]−1

s(T, x)dx, (4.2)

for every possible s(T, x) such that
∫ T

0
s(T, x)dx = 1. Of course, here we run immediately

into the problem that no matter how many s(T, x) families we compute, there are always a

continuum more waiting in the wings. On a finite state computing machine, unfortunately,

we must approximate the entire space of possible populations by a finite grid, and ‘only’

compute values on the grid.

To this end, we first define the range of the population density function s(t, x) by the

interval [0, s̄], and define a set Ps of ns grid points from this set. Note that the upper

limit s̄ can prevent sharply-peaked probability density functions from being considered–

but in demographic models with birth and death processes there are normally fairly widely

dispersed distributions. For notational exposition we shall denote a typical value from Ps

by sj ∈ Ps, for j = 1, . . . , ns.

Thus, each possible value of s(t, x) is constrained to lie on the grid of dimension ns

over [0, s̄]. But there is a second complication which is potentially more serious than

constraining the values of s(t, x), and that is the problem that the dimension of the state
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space as required for v(t, s) is given by the mapping between the underlying age x and

s(·, x). The age space must also be partitioned–since in a finite horizon problem the

maximum age for the economy is T , we assume that from X := [0, T ] a set Px of nx

grid points is selected. Again, denote for exposition a typical element of Px by xk ∈ Px,

k = 1, . . . nx.

With these partitions, a given state s for v(t, s) is actually an nx-dimensional vector

s = (s1, s2, . . . , snx) ∈ (Ps)
nx .

To compute the solutions (4.2) requires that s(T, x) be specified for all (ns)
nx possible grid

points. This allows the integrals in the first order conditions to be computed with respect

to s(T, xk) at each point xk ∈ Px, which allows in turn the computation of c∗(T, xk) and

p∗(T ).

We shall return to the now obvious ‘curse of dimensionality’ problem just stated in a

moment, and will assume that the optimal controls c∗ and p∗ have been found. The next

step in the dynamic programming problem is to solve (3.9), i.e.

−∂v

∂t
=

∫ T

0

u(c∗(T, x)s(T, x)dx +

∫ T

0

∂v

∂s(T, x)
· (−µ(x, p∗(T ))s(T, x)dx (4.3)

for the value function v(t, s). This can be performed in a variety of ways–one may approx-

imate the PDE itself using finite difference methods (as we do here), or use the integral

form of the expression for finite volume methods, or approximate the solution of the PDE

instead and use finite element methods. We choose to use finite difference methods here

simply because they are straightforward to implement, and preliminary simulation results

indicated that they are less prone to spurious oscillations (as occurred with finite volume

methods).

The simplest finite difference approximation of the above system approximates the

derivatives appearing in the expression by small changes along the predefined grid points

for s, x and t. We partition the time interval [0, T ] into a grid, and use the Hamilton-

22



Jacobi-Bellman equation to approximate a small time step backward. To this end, define

the set of grid points over [0, T ] by Pt, with nt points, and a typical element of Pt by

tn ∈ Pt, n = 1, . . . , nt.

For added simplicity, we presume that all grid partitions are equidistant, so that we

can use the standard notation for expression finite differences on grid points. For example,

the partition of [0, T ] is into nt − 1 equal subintervals of width ∆t = T
nt−1

, and we can

express the nth interval by n∆t, with n = 1, . . . , nt − 1. A function value defined on a

time grid point n will carry a superscript, so that if e.g. y is a function of time, then yn is

the value of the function at grid point n. We assume that both grid partitions for s and

x are also equidistant, and that the policy function p(t) is partitioned over Pt.

Note again a feature not common for standard finite difference models–as described

before, s(t, x) is defined for all x, so that there are (ns)
nx grid points which represent the

discrete approximation of the continuous state space. Thus, a function y which is defined

over (t, s) will carry the indices yn
k1,...,knx

, where each of the ki takes represents a grid point

from Ps. This means that as the grid over x becomes finer, the number of dimensions of

the problem increases. This is different from a standard finite difference model, where an

increasingly fine grid means that more computations must be performed per dimension,

but not that the number of dimensions itself increases.

Armed with this notation we begin with a backward difference approximation to the

time derivative of the value function, i.e.

∂v

∂t
� vn

k − vn−1
k

∆t
, n = T, T − 1, . . . , 2,

where k represents an nx-dimensional vector of indices for the point s(·, xj), j = 1, . . . , nx.

Notice that because we are working in a dynamic programming environment, the dis-

cretization of s(t, x) is independent of t—we are forming the closed-loop policy functions

c∗(t, x) and p∗(t), so we must compute the value function for every admissible point in the

state space (regardless of whether or not actual state trajectories achieve these points).

Discretizing the rest of the system is more involved, and requires a re-examination of
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the first order conditions (4.2). First, we note that in the expression for c∗(T, x), there is

a partial derivative of the value function VT and a partial derivative of the mortality rate

µ. The latter partial derivative is straightforward, but the former partial derivative is a

functional derivative with respect to s(t, x). In other words, considering any perturbation

h(t, x) of s(t, x) such that

‖h(t, ·)‖ :=

∫ t

0

h(t, x)dx = 1 ∀t,

we define the (Gâteaux) derivative of v(t, s) with respect to s by

∂v

∂s
:=

d

dα
v(t, s + αh)

∣∣∣∣
α=0

,

where α ∈ R is a scalar. The reason we denote this derivative by ∂v
∂s

instead of dv
ds

, as is

mathematically correct, is that in order to approximate this derivative on a discretized

grid, we must take the derivative for every point in Px, i.e. for each of nx different points

there exists a different derivative. We could have specified this derivative as e.g. dv
dsj

,

but the partial derivative notation is more suggestive–it represents the fact that in reality

the dependence of one function upon another, which in turn depends upon an underlying

continuous space, is actually a dependence of one function upon a continuum of functions

(‘indexed’, if you will, by the points in the underlying space). To compute a meaningful

variation in the value function v for variations in s on a computer, then, requires that the

discretization keep track of how many points in the underlying space (here X) are used

for its approximation (here Px).

Armed with this intuition we can proceed to the actual discretization of the partial

derivative ∂v
∂s

. The discretized version is:

∂v

∂s

∣∣∣∣
(t,x)

� ∆sv
n
kj :=

vn
k − vn

k−1j

∆js
, (4.4)
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where the notation k−1j means

k−1j := (k1, . . . , kj−1, kj − 1, . . . , knx), j = 1, . . . , nx,

and ∆jS represents

∆jS := Skj
− Skj−1.

(The notation for the finite difference approximation ∆sv
n
kj of ∂v

∂s
will be used below.)

Approximation (4.4) is a backward partial difference operation, where the value func-

tion v at time t is evaluated first at a grid point (Sk1, . . . , Sknx
), and then at a neighboring

point (Sk1, . . . , Skj−1
, Skj−1, Skj+1

, . . . , Sknx
). These values are subtracted and then divided

by ∆jS, so that the total represents the jth partial derivative of v(t, s) at the underlying

grid point xj .

The backward difference approximation for ∂µ
∂p

is more straightforward:

∂µ

∂p
� ∆pµ

n
j :=

µn
j − µn−1

j

∆p
, (4.5)

where ∆p is the interval from partitioning the grid for values of the policy function p. As

above, ∆pµ
n
j represents this finite difference approximation to ∂µ

∂p
.

The functional form of µ given by Assumption 4.1 admits a closed-form solution for

the exact derivative, and this is what is used in the numerical computations here. But

when the functional form of µ is an outcome of an underlying model, which may not

admit a closed-form solution, the use of a numerical derivative such as that in (4.5) will

be necessary.

The finite difference approximation for c∗(t, x) for any period t can now be specified:

c∗(t, x) � cn
kj =

[−∆sv
n
kj∆pµ

n
j

]−1
, n = nt, . . . , 1. (4.6)

In similar fashion, the policy function p∗(t) may be approximated, using the solution

(4.2)–we express the numerical integral which must be computed in a generic format
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below, but any numerical integration method (quadrature, rhomberg, trapezoidal, etc.)

may be used. The approximation is:

p∗(t) � pn
k = 1 −

nx∑
j=1

cn
kjskj∆xj , n = nt, . . . , 1. (4.7)

Once the optimal policies have been discretized the Hamilton-Jacobi-Bellman equation

can also be approximated. Recall that for the left hand side of (4.3) we have

∂v

∂t
� vn

k − vn−1
k

∆t
. (4.8)

The right hand side of (4.3) is another numerical integral (again, this is a generic

template for the integral):

∫ t

0

[
u(c∗(t, x)) − ∂v

∂s
· (µ(x, p∗(t))

]
s(t, x)dx �

nx∑
j=1

[
ln
(
cn
kj

)− ∆sv
n
kjµ(xj , p

n
k)
]
skj∆xj . (4.9)

Finally, we can combine (4.8) and (4.9) to yield

vn−1
k = vn

k +
nx∑
j=1

[
ln
(
cn
kj

)− ∆sv
n
kjµ(xj , p

n
k)
]
skj∆xj∆t, (4.10)

with cn
kj and pn

k defined as in (4.6) and (4.7), respectively.

4.3 The algorithm

The algorithm proceeds in standard fashion, starting from the terminal period T :

1. the grid sizes nt, ns and nx are chosen, and the grid partitions are formed. For x,

the age space [0, T ] is used at the beginning, defining ∆x = T
nx−1

. Let an index

counter i = 1, let n = nt, and vn
kj := VT (xj).

2. Compute optimal policies cn
kj and pn

k for every state sk and (in the case of consump-
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tion) underlying index grid point j. This involves the computation of ∆sv
n
kj and

∆pµ
n
j .

3. The next iteration vn−1
k is computed from (4.10).

4. The age space is redefined to [0, T − i∆t] and new grid points for x are chosen, with

∆x = T−i∆t
nx−1

.4 Let n = nt − i. Finally, let i = i + 1.

5. Repeat algorithm from 2 until i = nt.

5 Algorithm Convergence, Viscosity Solutions

Algorithm convergence is an open question and will be addressed in future research, as will

the relative merits of the ‘naive’ finite differencing outlined above vs. a more sophisticated

solution method using the viscosity approach (see. e.g. Crandall and Lions [1984, 1983]

for a comprehensive treatment of this method for solving HJB systems).

4This can be automated in the computation of the numerical integrals, where this partition is used.
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