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Abstract 

Calibrated models of the business cycle typically assume a certain frequency at which 
economic agents take decisions. In this paper I show that the local stability properties of 
dynamic stochastic general equilibrium macro models may depend on the length of a period 
in the model economy. This leads to the following paradoxical situation: For given 
parameters, and in particular those assigning values of imperfections in the economy, the 
economy may be driven by sunspots at some frequencies while sunspots can have no 
impact at other frequencies. 
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1 Introduction

Recently there has been a growing literature1 pointing to the possibility of business
cycles driven by self-fulfilling beliefs or “animal spirits”. It has turned out that stan-
dard dynamic general equilibrium models of the business cycle can give rise to those
phenomena, if they are augmented by some kind of imperfection, like externalities or
imperfect competition. Typically, the literature studying the theoretical possibility
of sunspots in those models uses a continuous time setup, because the local stability
properties corresponding to the existence of stationary sunspot equilibria are more
easily formulated in such a setting. On the other hand, calibrated models of the
business cycle typically assume a certain frequency at which economic agents take
decisions, which usually corresponds to the frequency at which data is collected, say
quarterly, in order to make comparison with real time series easier. The purpose
of this paper is to study the impact of the modelling frequency on the existence of
sunspots. It turns out that moving along the spectrum between the usually consid-
ered cases of continuous time and quarterly or annual frequency may have interesting
implications for the determinacy properties of an economy.
The model is defined in section 2, and solved in section 3. Section 4 explains the

strategies adopted for calibrating the model economy at different frequencies. Some
analytic results on the dynamics in discrete time are collected in section 5. In section
6 I formulate the main result as a paradox. Section 7 is devoted to highlighting
the frequency dependence of determinacy and its geometric interpretation. Section 8
concludes and resolves the paradox.

2 The Model

The analysis is framed in a discrete time version of the model considered by Benhabib
and Farmer [2].
There is a representative agent maximizing her utility over an infinite lifetime,

choosing sequences of consumption, Ct, and labor supplied to the market, Lt.

Max
∞X
t=0

ψt (logCt − Lt) , (1)

Output is produced using the inputs capital and labor. There are externalities in
production resulting from the fact that individual output also depends on economy-
wide averages of capital, K̄t, and labor, L̄t,employed. This is the only non-standard
feature of the model and may be the cause of indeterminacy or sunspot equilibria.
Each individual firm takes input decisions by the rest of the firms as given. The
restriction a+ b = 1 implies constant returns to scale at the firm level.

1See the recent survey by Benhabib and Farmer [3] for an account of the literature.
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Yt = AK
a
t (ztLt)

b
·
K̄a
t

³
ztL̄t

´b¸θ
, θ > 0 (2)

Hence, aggregating individual production possibilities to a social production function
in a symmetric equilibrium implies increasing returns to scale at the social level, with
an elasticity of scale equal to 1 + θ.
Output can be used for either consumption or investment purposes.

Yt = Ct + It (3)

Capital is accumulated according to

Kt+1 = Kt (1− δ) + It, (4)

where δ is the depreciation rate.
Labor augmenting technological progress evolves over time according to,

log zt = log zt−1 + µ. (5)

3 Solution

The (symmetric) equilibrium conditions are:

Ct = b
Yt
Lt

(6)

1

Ct
= ψ

1

Ct+1

Ã
1− δ + a

Yt+1
Kt+1

!
(7)

Yt = AK
a(1+θ)
t (ztLt)

b(1+θ) (8)

Kt+1 = Kt (1− δ) + Yt − Ct (9)

The growth rate of Yt, Ct and Kt in this economy is

γ = µ
b (1 + θ)

1− a (1 + θ)
, (10)

since the effect of labor augmenting technical progress is magnified by increasing
returns.
Defining the transformed variables

yt =
Yt
eγt
, ct =

Ct
eγt
, kt =

Kt

eγt
, (11)
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we obtain the following system of equations:

ct = b
yt
Lt

(12)

1

ct
=

ψ

eγ
1

ct+1

Ã
1− δ + a

yt+1
kt+1

!
(13)

yt = Ak
a(1+θ)
t L

b(1+θ)
t (14)

eγkt+1 = kt (1− δ) + yt − ct (15)

Hence, the balanced growth path is defined as the solution to the equations:

c̄ = b
ȳ

L̄
(16)

1 =
ψ

eγ

µ
1− δ + a

ȳ

k̄

¶
(17)

ȳ = Ak
a(1+θ)

L
b(1+θ)

(18)

eγ k̄ = k̄ (1− δ) + ȳ − c̄ (19)

Let hats over variables denote relative deviations from their steady state values.
Then a linear approximation of the equilibrium conditions is as follows:

ĉt = ŷt − L̂t (20)

−ĉt = −ĉt+1 +
"
1− ψ

eγ
(1− δ)

#
ŷt+1 −

"
1− ψ

eγ
(1− δ)

#
k̂t+1 (21)

ŷt = a(1 + θ)k̂t + b(1 + θ)L̂t (22)

eγ k̂t+1 = (1− δ) k̂t+

"µ
1

a

¶Ã
eγ

ψ
− 1 + δ

!#
ŷt−

"µ
1

a

¶"
eγ
Ã
1

ψ
− a

!
− (1− δ) (1− a)

##
ĉt

(23)
The linearized system can be formulated as:

A1xt +A2zt = 0, (24)

A3xt +A4zt +A5xt+1 +A6zt+1 = 0, (25)
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where xt denotes the vector of state variables (k̂t, ĉt)0, and zt denotes the vector
of subsidiary variables (L̂t, ŷt)0. Then the reduced form of the dynamic system can be
expressed as:

xt+1 =Mxt, (26)

with
M = −(A5 −A6A−12 A1)−1(A3 −A4A−12 A1). (27)

The matrices A1 through A6 are defined as follows:

A1 =

"
0 −1

a (1 + θ) 0

#
(28)

A2 =

" −1 1
b (1 + θ) −1

#
(29)

A3 =

"
0 1

(1− δ) −
h³
1
a

´ h
eγ
³
1
ψ
− a

´
− (1− δ) (1− a)

ii # (30)

A4 =

"
0 0

0
³
1
a

´ ³
eγ

ψ
− 1 + δ

´ # (31)

A5 =

" − h1− ψ
eγ
(1− δ)

i
−1

−eγ 0

#
(32)

A6 =

"
0

h
1− ψ

eγ
(1− δ)

i
0 0

#
(33)

4 Calibration Strategy

When modelling a specific economy at different frequencies, a choice has to be made
about how to adjust the parameters of the model to the modelling frequency.
I take the steady-state ratios ȳ

k̄
and c̄

k̄
as the starting point. These have certain

values for a the benchmark quarterly modelling frequency. In order to reparametrize
the model at higher frequencies, first these steady-state ratios are adjusted for con-
sistency across frequencies. Let n be the number of subdivisions required to change
from the low (quarterly) frequency to a higher frequency. So n would be 13 for a
weekly model, 91 for a daily model, 2190 for an hourly model, etc. Let

ȳnk and c̄nk (34)

denote the steady-state ratios ȳ
k̄
and c̄

k̄
corresponding to a model at frequency n.
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Since output and consumption are flows while capital is a stock, we impose the
following conditions:

ȳnk =
1

n
ȳ1k, (35)

and
c̄nk =

1

n
c̄1k. (36)

This ensures consistency of steady-state ratios across frequencies under time aggrega-
tion. For instance, if ȳ13k is the steady state output/capital ratio in the weekly model
then ȳ13k is required to be 1/13 times the output/capital ratio in the quarterly model,
denoted ȳ1k.
Second, given these values we solve equations (17) and (19) for the parameters

defined per unit of time: the discount rate contained in ψ and the depreciation rate
δ. The solution is

δ = 1− eγ + ȳnk − c̄nk , (37)

ψ =
eγ

1− δ + aȳnk
. (38)

It seems worth pointing out that the parameter for the imperfection (externality), θ,
does not affect the calibration of δ and ψ over frequencies.
For exogenous growth the change in the modelling frequency corresponds to

stretching the time line. Therefore γ is adjusted as γ = γ∗/n, where γ∗ denotes
the growth drift at the basic (quarterly) frequency. This approach will be called
“consistent calibration”2 or “method 1” in the rest of the paper, since I consider it
the preferred method.
A number of authors have calibrated high-frequency models of the business cycle,

e.g. Christiano [5], Cogley and Nason [6], and Chari, Kehoe and McGrattan [4]. They
use simple transformation rules to adjust parameter values across frequencies. In our
model this would correspond to the following: Let δ∗ and ψ∗ denote the quarterly
depreciation rate and discount factor, respectively. Then this “standard” method
amounts to solving, at each frequency n, the equations

(1− δ)n = 1− δ∗, (39)

ψn = ψ∗, (40)

for the depreciation rate δ and the discount factor ψ. The simplicity of this method
comes at the cost of a fundamental inconsistency: Nothing guarantees that the steady

2Aadland and Huang [1] use the same expression for their approach, which is similar to mine.
However, instead of using the output-capital ratio and the consumption-capital ratio as the starting
point, they impose the consistency requirement across frequencies directly on levels of all the vari-
ables, which, depending on the model, may lead to an identified system in the parameters or not.
Matching the two ratios in the model considered here leads to an exactly identified system, and can
cope with situations where there is steady state growth, which cancels out in the ratios.
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state around which we evaluate the model is the same at two different frequencies;
“the same” in the sense that steady state values would be consistently aggregated
over time. So comparing properties (e.g. stability properties) of models at different
frequencies may not really be “comparing like with like”, but maybe rather “compar-
ing apples with pears”. The latter approach will be called “standard calibration” or
“method 2” in what follows.
The baseline quarterly calibration is according to the values given in Schmitt-

Grohé [7]: a = 0.3; b = 0.7; γ = 0.004;ψ = 0.994; δ = 0.026.
The following tables shows the calibrated values for the depreciation rate and the

discount factor at annual, quarterly, monthly, weekly, daily, and hourly frequencies.

Depreciation rate, δ
Frequency per quarter Method1 Method2

0.25 0.10388990 0.10000000
1 0.025996254 0.025996254
3 0.0086671707 0.0087416110
13 0.0020002717 0.0020241125
91 0.00028575881 0.00028941008
2190 1.1874034e-005 1.2027384e-005

Discount factor, ψ
Frequency per quarter Method1 Method2

0.25 0.97738476 0.97692308
1 0.99418016 0.99418016
3 0.99804735 0.99805628
13 0.99954825 0.99955111
91 0.99993542 0.99993586
2190 0.99999732 0.99999733

The differences between the methods appear rather small in absolute terms. Cer-
tainly the numbers are not the same if we depart from the baseline quarterly cali-
bration, and it is not clear, a priori, what those differences imply for the stability
properties of the model, which we are interested in. Hence, for all results about in-
determinacy regions given below, I will perform sensitivity analysis checking the two
methods against each other.
Figures 1 and 2 illustrate how the relation between parameters obtained by meth-

ods 1 and 2 changes, as the frequency increases from annual to hourly. Figure 1
gives the ratio between the depreciation factors (1− δ) obtained by the two different
methods of frequency adjustment. Figure 2 does the same for the discount factor ψ.
For both parameters, the biggest relative differences occur for very low frequencies.
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Figure 1

Figure 2
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5 Analytic Conditions

Starting from the solution of the model, conditions under which the dynamics of the
economy become indeterminate can be derived. What needs to be checked are the
local stability conditions of the reduced form of the dynamic system

xt+1 =Mxt. (41)

The economy is indeterminate if and only if both eigenvalues are less than one in
modulus. An equivalent formulation is the following:

−1 < Det(M) < 1 (42)

−(1 +Det(M)) < Trace(M) < (1 +Det(M)) (43)

The analytic expressions for the trace and the determinant of the discrete time system
are:

Det(M) =
1

ψ

Ã
1 +

θ (eγ − ψ(1− δ))

τ

!
, (44)

where τ = eγ − bψ(1 + θ)(1− δ). (45)

Trace(M) =
1

eγ

1− δ +
eγ

ψ
− (1− δ)

1− b(1 + θ)

+ eγ
τ
(1− b(1 + θ)) ... (46)

...+
θ (eγ − ψ(1− δ))

eγτ

1

a

Ã
(1− δ) (1− a)− eγ

Ã
1

ψ
− a

!
−
Ã
eγ

ψ
− 1 + δ

!
b (1 + θ)

1− b(1 + θ)

!
Considering the expression for the determinant, the following two remarks become
straightforward:

Remark 1 If θ = 0, i.e. if there is no imperfection in the economy, equilibrium is
determinate, since 1/ψ > 1.

Remark 2 The discrete time analogue of the Benhabib-Farmer [2] necessary condi-
tion is

τ = eγ − bψ(1 + θ)(1− δ) < 0. (47)

The latter statement follows from the fact that otherwise, given that (eγ − ψ(1− δ)) >
0, the determinant could not be less than unity. However, as the frequency goes to
infinity, and γ, δ → 0,ψ → 1, their well known slope condition (labor demand sloping
up steeper than labor supply)

b (1 + θ)− 1 > 0

is obtained for the limiting continuous time case.
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As will also be emphasized below when discussing the results for different fre-
quencies, in the discrete time case the qualification of this condition as a necessary
one becomes crucial. Unlike in the continuous time case the greatest lower bound of
the indeterminacy region (in the space of the imperfection, as parametrized by the
externality θ) is not necessarily obtained by just solving for τ = 0. On top of the
necessary condition (47) it is the entire system of inequalities in (42) and (43) that
matters. Especially at low frequencies the gap between values for θ that make this
necessary condition hold and those which actually satisfy all inequalities, as necessary
and sufficient for indeterminacy, can be considerable.
The main message is that at frequencies smaller than infinity effects from parame-

ters defined per unit of time, such as growth, depreciation and discounting, become
relevant.

6 The Paradox

Now let’s take the natural step of combining the previous two sections: First, take
the methods for recalibrating the model at different frequencies. Second, given this
recalibration of parameters across frequencies, check for indeterminacy at all frequen-
cies. In particular, check for the range of the indeterminacy region in the space of the
parameter θ, which can be interpreted as the magnitude of externalities or, equiv-
alently, returns to scale for which the economy becomes a sunspot economy. The
paradoxical outcome can be formulated as the following

Remark 3 Let economies A and B be defined by the preferences and technology as
given in the model above. The only difference between economy A and B being that
they are calibrated at different frequencies, nA and nB. Then there are values for the
imperfection, as parametrized by θ, such that economy A is an indeterminate (sunspot)
economy, while equilibrium in economy B is determinate.

This is illustrated in the following Figure 3. The x-axis refers to the value of θ and
the y-axis to the frequency of the model on a logarithmic scale. So the horizontal lines
correspond to indeterminacy regions at annual, quarterly, monthly, weekly, daily, and
hourly frequency of the model calibrated as explained above. We see that we could
put vertical lines for θ equal to some value which would hit some of the horizontal
lines but not others. Figure 3 also shows two further results, mentioned in the section
on analytic conditions above:
First, there is a dashed vertical line, that shows the bifurcation point between

determinate and sunspot economies for the continuous time case. We see that the in-
determinacy region in discrete time converges to this value as the frequency increases.
Second, there are crosses denoting at each frequency the value for the externality

parameter θ where the frequency-adjusted necessary condition in (47) starts to hold.
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It turns out that there is a gap between this point and the point where the indeter-
minacy region actually starts. The gap gets smaller as the frequency increases and
vanishes for the limiting continuous time case.

Figure 3

Figure 4 shows the same under the assumption that recalibration across frequen-
cies is performed according to method 2 instead of method 1. The pattern looks very
similar. This means that the frequency dependence of indeterminacy region is not a
consequence of the specific recalibration method used. This is not surprising keeping
in mind the analytic conditions above, which suggested that growth, depreciation and
discounting matter as absolute magnitudes for indeterminacy in discrete time mod-
els. The magnitude of those parameters follows immediately from the frequency and
was already shown in section 4 to be quite independent of the calibration strategy
adopted.
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Figure 4

7 Frequency Dependence

While in the previous section the focus was on the indeterminacy region for given
frequencies, we now turn to the impact of frequency change on stability properties,
given a certain calibration, in particular a given value of the externality parameter
θ. Let’s first consider a result for a specific case, and then take a look at the more
general principle of frequency change, and what it means for the geometry of stability
conditions.
Figure 5 shows how the moduli of the eigenvalues of the linearized dynamic system,

as represented by the matrix M, change, as the frequency changes. We use the
benchmark calibration defined above and set θ = 0.5. The only change to the model
made is that parameters defined per unit of time, i.e. γ, δ,ψ, are adjusted to the
frequency as described in the section on the calibration strategy (according to method
1). We consider a broad spectrum of frequencies, moving continuously from the
annual frequency to the hourly frequency.
The striking result is that a single model can display a great variety of dynamics,

depending on the frequency at which it is evaluated. For low frequencies there is
one root outside the unit circle and one root inside, indicating saddle path stability,
or determinacy. As the frequency increases, both roots move inside the unit circle,
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meaning that there is indeterminacy. If frequency is increased even further, the both
roots remain stable but become (conjugate) complex, which shows in the picture as
the part of the graph, where there is just one line (since conjugate complex eigenvalues
have the same modulus). In order to avoid the trivial result that eigenvalues simply
converge to the unit root as frequency increases, they are rescaled by raising them to
power n, where n denotes the (quarterly) frequency.

Figure 5

When changing the frequency of a linear dynamic system and studying its sta-
bility properties, the geometric interpretation of such a frequency change becomes
very useful. In particular, this interpretation explains how the limiting continuous
time stability conditions arise as we let frequency go to infinity. Equation (26) is
transformed to difference form and rescaled by the frequency n.

xt+1 − xt = n(M − I)xt (48)

The stability region, as expressed in terms of trace and determinant, for this system is
not the centered triangle described by (42) and (43) anymore, but rather a distorted
triangle with corners at (0, 0); (−2, 0); (−4, 4). As the frequency changes away from
1, the trace is rescaled linearly by n, while the determinant grows by n2. This is
illustrated in Figure 6.
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Figure 6

Hence, as the frequency goes to infinity the stability triangle explodes to the entire
(−/+) quadrant, nesting the limiting continuous time case where sink stability is
equivalent to negative trace and positive determinant. Let’s now apply this principle
to the present model.
Figure 7 shows the combinations of trace and determinant of (48) for a sequence

of frequencies, ranging from annual to hourly. A subsequence of elements is labeled
P1 to P6 in the picture, to facilitate explanation. We use the same calibration as
mentioned above for the eigenvalues. Combinations for those frequencies that do
not correspond to indeterminate equilibria are indicated by a plus sign, while in-
determinate frequencies are indicated by a solid circle. Combinations for very low
frequencies (starting at P1 for the annual frequency) are closely spaced in the (+/−)
quadrant, and as the frequency increases points (take as an example P2) still remain
determinate. At a certain frequency the trace/determinant combination jumps from
P3 to P4 in the (−/+) quadrant. The jump occurs at the frequency that makes
the adjusted necessary condition in (47) hold true. But equilibrium is still not in-
determinate at P4, as indicated by the plus sign. This illustrates graphically the
gap between necessity and sufficiency for those discrete time models. As frequency
increases further, combinations move (take as an example P5), and, importantly, at
the same time the triangles corresponding to areas of sink stability increase in size.
There is a frequency, in this case it is 0.94539896, at which the trace and determinant
just enter their corresponding triangle. (Note that this can be checked to correspond
to the frequency at which both eigenvalues become less than one in modulus in Figure

13



5.) The dotted lines correspond to the triangle of the frequency corresponding to P5.
It is smaller, since the frequency is lower, and does not fit P5. At this point trace and
determinant which are still too far out with respect to the appropriate triangle. It is
only at the next (higher) frequency that the combination of trace and determinant
enters the corresponding stability triangle.

Figure 7

8 Conclusion

This exercise has shown that indeterminacy regions of economic models of the business
cycle may depend on the modelling frequency. The results are robust to the method
by which reparametrization across frequency is performed. Among those methods one
seems preferred to the other, since it guarantees that steady state ratios are consistent,
if time aggregated over frequencies. The frequency dependence of stability conditions
gives rise to a paradoxical situation, where identical economies can be determinate
or sunspot economies, depending on the frequencies at which decisions of agents
are modelled. I conclude that the paradox is one which falls into the category of
“insufficient distinction”: The paradox is resolved by recognizing that the economies
are just not identical because agents face different decision frequencies. The length
of a period turns out to be a fundamental parameter.
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