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Abstract 

This paper offers two innovations for empirical growth research. First, the paper discusses 
principal components augmented regressions to take into account all available information in 
well-behaved regressions. Second, the paper proposes a frequentist model averaging 
framework as an alternative to Bayesian model averaging approaches. The proposed 
methodology is applied to three data sets, including the Sala-i-Martin et al. (2004) and 
Fernandez et al. (2001) data as well as a data set of the European Union member states' 
regions. Key economic variables are found to be significantly related to economic growth. 
The findings highlight the relevance of the proposed methodology for empirical economic 
growth research. 
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1 Introduction

This paper offers a twofold contribution to the empirical growth literature. First, it advocates

the use of well-behaved principal components augmented regressions (PCAR) to capture

and condition on the relevant information in the typically large set of variables available.

Second, it proposes frequentist model averaging as an alternative to Bayesian model averaging

approaches commonly used in the growth regressions literature. Model averaging, Bayesian

or frequentist, becomes computationally cheap when combined with principal components

augmentation.

The empirical analysis of economic growth is one of the areas of economics in which progress

seems to be hardest to achieve (see e.g. Durlauf et al., 2005) and where few definite results are

established. Large sets of potentially relevant candidate variables have been used in empirical

analysis to capture what Brock and Durlauf (2001) refer to as theory open endedness of

economic growth, and numerous econometric techniques have been used to separate the wheat

from the chaff. Sala-i-Martin (1997b) runs two million regressions and uses a modification

of the extreme bounds test of Leamer (1985), used in the growth context earlier also by

Levine and Renelt (1992), to single out what he calls ‘significant’ variables. Fernandez et al.

(2001) and Sala-i-Martin et al. (2004) use Bayesian model averaging techniques to identify

important growth determinants. Doing so necessitates the estimation of a large number of

potentially ill-behaved regressions (e.g. in case of near multi-collinearity of the potentially

many included regressors) or regressions which suffer from omitted variables biases in case

important explanatory variables are not included. Hendry and Krolzig (2004) use, similar

to Hoover and Perez (2004), a general-to-specific modelling strategy to cope with the large

amount of regressors while avoiding the estimation of a large number of equations. Clearly,

also in a general-to-specific analysis a certain number of regressions, typically greater than

one, has to be estimated.

In a situation in which the potential relevance of large sets of variables is unclear ex ante,

any regression including only few explanatory variables is potentially suffering from large

biases in case that some or many relevant explanatory variables have been excluded from the

regression. However, with the large numbers of variables available it is often infeasible or even

impossible to include all variables in the regression. As an example, for one of the data sets

employed in this paper, originally used in Sala-i-Martin et al. (2004), the reciprocal condition
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number of the full regressor matrix including all available explanatory variables is 9.38×10−20.

Thus, in the full regression not only is there a very small number of degrees of freedom left,

but the coefficients are estimated with additional imprecision due to the numerical (almost)

singularity. Consequently, a trade-off has to be made between parsimony of the regression

(to achieve low variance but potentially high bias) and the inclusion of as many potentially

relevant variables as possible (to achieve low bias at the price of potentially high variance).

In many applications it is conceivable that the researcher has a set of variables in mind whose

effect she wants to study in particular. This choice of variables can e.g. be motivated by a

specific theoretical model or also by the quest of understanding the contribution to growth of

certain factors like human capital related variables. In such a situation, conditional upon an ex

ante classification in core and auxiliary variables, the use of principal components augmented

regressions allows to focus on untangling the effect of the core variables on growth whilst

controlling for by conditioning on the effects of the auxiliary variables. Performing regression

analysis including the core variables and principal components computed from the auxiliary

variables allows to take into account ‘most’ of the information contained in all variables. In

particular including principal components of the auxiliary variables in addition to the core

variables implies that the bias of the resulting regression will be low, since ‘most’ of the

information contained in all available variables is taken into account (see the discussion below

in Section 2). Also, a PCAR typically does not suffer from large estimation variance when the

number of core variables and (mutually orthogonal) principal components is reasonably small

and multi-collinearity is absent.1 The coefficients to the core variables in a PCAR measure

the effect on growth of each of these variables when considered jointly whilst in addition

conditioning out the information contained in the principal components and are in this sense

‘robust’ estimates.

The fact that in a PCAR most of the information of all variables is included, potentially

mitigates the necessity to account for model uncertainty via model averaging. Clearly, how-

ever, PCAR analysis can be combined with model averaging, either Bayesian or frequentist

(classical). Given the separation in core and auxiliary variables, a natural approach to model

averaging is to compute sub-models only with respect to the core variables, whilst including

the principal components in all regressions. This has several advantages: First, including
1As long as the set of core variables are not multi-collinear, multi-collinearity can be controlled by choosing

the number of included principal components accordingly.
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in each regression the principal components minimizes potential (omitted variables) biases

compared to regressions including only small numbers of variables. Up to now in empirical

growth analysis model averaging has been performed mainly over small models, e.g. in the

Bayesian model averaging approach pursued in Sala-i-Martin et al. (2004) the mean prior

model size is 7 for most of the discussion. This may result in the presence of substantial bi-

ases. Second, resorting to PCAR reduces the number of sub-models enormously. If one were

to estimate all sub-models (in case all of them can be estimated) for all k variables, then 2k

regressions are necessary, which amounts to 267 regressions for the Sala-i-Martin et al. (2004)

data and 241 regressions for the Fernandez et al. (2001) data also considered in this paper.

Clearly, these numbers are way too large to estimate all sub-model regressions. The Bayesian

literature tries to overcome this limitation by resorting to MCMC sampling schemes designed

to approximate the posterior densities of all coefficients. The posteriors depend by defini-

tion upon the priors, where as mentioned, large weights are typically put on small models

with potentially large biases. In PCAR analysis, the number of regressions to be computed

to estimate all sub-models is reduced from 2k to 2k1 , where k1 denotes the number of core

variables, which typically (at least in our applications) is a rather small number that allows

for the estimation of all sub-models. For a Bayesian approach this implies that the posterior

distributions can be evaluated exactly, be it analytically or numerically. Furthermore, each

of the estimated sub-model PCARs has comparably small omitted variables bias due to the

inclusion of principal components.

In this paper we perform model averaging in a frequentist framework, using recent advantages

in the statistics literature which allow to perform valid classical inference in a model averaging

context, see in particular Claeskens and Hjort (2008) and the brief description in Appendix C.

In our analysis we consider four different weighting schemes. One, as a benchmark, uses equal

weights for each model and the three others are based on weights derived from information

criteria computed for the individual models. These are Mallows model averaging (MMA)

advocated by Hansen (2007), and smoothed AIC and smoothed BIC weights considered by

Buckland et al. (1997) and studied in detail also in Claeskens and Hjort (2008). Furthermore,

we introduce frequentist analogs to quantities considered to be informative in a Bayesian

model averaging framework. E.g. we introduce, for any given weighting scheme, the so-called

inclusion weight as the classical counterpart of the Bayesian posterior inclusion probability of

a variable. Similarly, we consider the distribution of model weights over model sizes.
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We apply the methodology to three data sets, with two of them taken from widely cited

papers. The first data set is that of Sala-i-Martin et al. (2004), containing 67 explanatory

variables for 88 countries. The second one is the Fernandez et al. (2001) data set, based in

turn on data used in Sala-i-Martin (1997b), which contains 41 explanatory variables for 72

countries. The third data set comprises the 255 NUTS2 regions of the 27 member states of

the European union and contains 48 explanatory variables. These data sets have also been

analyzed in Schneider and Wagner (2008), who use the adaptive LASSO estimator of Zou

(2006), to perform at the same time model (i.e. variable) selection and parameter estimation.

For the two well studied data sets, the sets of variables selected in Schneider and Wagner

(2008) correspond closely to the sets of variables found important (measured by posterior

inclusion probabilities) in the original papers. To illustrate the PCAR and frequentist model

averaging (FMA) approaches advocated in this paper we consider for each of the three data

sets the variables selected in Schneider and Wagner (2008) as core variables and all remaining

variables as auxiliary variables. The main finding is that our approach singles out, both when

considering single PCAR estimates as well as model average estimates, core economic variables

as important in explaining economic growth. E.g. for the Sala-i-Martin et al. (2004) data these

are initial GDP, primary education and the investment price. Furthermore, the coefficient to

initial GDP is about twice as large compared to Sala-i-Martin et al. (2004) and hence the

conditional β-convergence speed (see e.g. Barro, 1991) is about twice as high as found in Sala-

i-Martin et al. (2004). Several dummy, political and other variables, most notably the East

Asian dummy having highest posterior inclusion probability in Sala-i-Martin et al. (2004),

are not significant. Qualitatively similar findings prevail also for the Fernandez et al. (2001)

data. For the European regional data in particular human capital appears to be significantly

related to growth. Our findings show the importance of appropriate conditioning, via inclusion

of principal components of the large set of potential explanatory variables, in uncovering

the variables important to explain economic growth. From a computational perspective it

turns out that the specific choice of information criterion based weighting scheme has limited

importance on the model averaging results. This holds true especially for the inclusion weight

ranking of variables but to a large extent also for the estimated model average coefficients.

The paper is organized as follows. Section 2 describes the econometric methods used. Sec-

tion 3 contains the empirical analysis and results and Section 4 briefly summarizes and con-

cludes. Three appendices follow the main text. Appendix A briefly describes the European
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regional data, Appendix B collects some additional empirical results and Appendix C de-

scribes the computation of confidence intervals for frequentist model average coefficients.

2 Description of the Econometric Approach

Let y ∈ RN denote the variable to be explained (in our application average per capita GDP

growth for N countries respectively regions) and collect all explanatory variables in X =

[X1 X2] ∈ RN×k, with the core variables given in X1 ∈ Rk1 and the auxiliary variables in

X2 ∈ Rk2 with k = k1 + k2. Without loss of generality we assume that all variables have zero

mean, since in all growth regressions an intercept is typically included. As is well known,

by the Frisch-Waugh theorem, the regression can equivalently be estimated with demeaned

variables. The regression including all variables is given by

y = X1β1 + X2β2 + u. (1)

The information for regression (1) contained in X2 is equivalently summarized in the set

of (orthogonal) principal components corresponding to X2, i.e. in the set of transformed

variables X̆2 = X2O, with O ∈ Rk2×k2 computed from the eigenvalue decomposition of

ΣX2 = X ′
2X2 (due to the assumption of zero means):

ΣX2 = X ′
2X2 = OΛO′ = [O1 O2]

[
Λ1 0
0 Λ2

] [
O′

1

O′
2

]

= O1Λ1O
′
1 + O2Λ2O

′
2, (2)

where O′O = OO′ = Ik2 and Λ = diag(λ1, . . . , λk2), λi ≥ λi+1 for i = 1, . . . , k2 − 1. The

partitioning into variables with subscripts 1 and 2 will become clear in the discussion below.

From (2) the orthogonality of X̆2 is immediate, since X̆ ′
2X̆2 = Λ.

Let us consider the case of multi-collinearity in X2 first (which e.g. necessarily occurs when

k2 > N) and let us denote the rank of X2 with r. Take Λ1 ∈ Rr×r, hence Λ2 = 0 and

X ′
2X2 = O1Λ1O

′
1. The space spanned by the columns of X2 ∈ RN×k2 coincides with the

space spanned by the orthogonal regressors X̃2 = X2O1 ∈ RN×r, i.e. with the space spanned

by the r principal components. Thus, in this case regression (1) is equivalent to the regression

y = X1β1 + X̃2β̃2 + u (3)

in the sense that both regressions lead to exactly the same fitted values and residuals. Fur-

thermore, in case [X1 X̃2] has full rank, regression (3) leads to unique coefficient estimates
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of β1 and β̃2. Since linear regression corresponds geometrically to a projection this is evident

and of course well known.

Resorting to principal components, however, also has a clear interpretation and motivation

in case of full rank of X2 and hence of ΣX2 . In such a situation replacing X2 by the first r

principal components X̃2 leads to a regression where the set of regressors X̃2 spans that r-

dimensional subspace of the space spanned by the columns of X2 such that the approximation

error to the full space is minimized in a least squares sense. More formally the following holds

true, resorting here to the population level.2 Let x2 ∈ Rk2 be a mean zero random vector with

covariance matrix ΣX2 (using here the same notation for both the sample and the population

quantity for simplicity). Consider a decomposition of x2 in a factor component and a noise

component, i.e. a decomposition x2 = Lf + ν, with f ∈ Rr, L ∈ Rk2×r and ν ∈ Rk2

(for a given value of r). If the decomposition is such that the factors f and the noise ν are

uncorrelated, then ΣX2 = LΣfL′+Σν . Principal components analysis performs an orthogonal

decomposition of x2 into Lf and ν such that the noise component is as small as possible, i.e.

it minimizes E(ν ′ν) = tr(Σν). As is well known, the solution is given by f = O′
1x2, L = O1,

with O1 ∈ Rk2×r and ν = O2O
′
2x2, using the same notation for the spectral decomposition as

above.

Therefore, including only r principal components X̃2 instead of all regressors X2 has a clear

interpretation. The principal components augmented regression (PCAR) includes ‘as much

information as possible’ (in least squares sense) with r linearly independent regressors con-

tained in the space spanned by the columns of X2. We write the PCAR as:

y = X1β1 + X̃2β̃2 + ũ, (4)

neglecting in the notation the dependence upon the (chosen) number of principal components

r but indicating with ũ the difference of the residuals to the residuals of (3). Including only

the information contained in the first r principal components of X2 in the regression when

the rank of X2 is larger than r of course amounts to neglecting some information and hence

leads to different, larger residuals. Thus, in comparison to the full regression (1), if it can be

estimated, the PCAR regression will in general incur some bias in the estimates which has to

be weighed against the benefits of a lower estimator variance. It is immediate that the choice

of r is a key issue. The larger r, the more information is included but the fewer degrees of
2I.e. we now consider the k2-dimensional random vector x2 for which X2, a sample of size N , is available.
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freedoms are left (i.e. a lower bias but a higher variance) and multi-collinearity (since the λi

are ordered decreasing in size) may become a problem.3 Any choice concerning r is based

on the eigenvalues λi, where ‘large’ eigenvalues are typically attributed to the factors and

‘small’ ones to the noise. The literature provides many choices in this respect and we have

experimented with several thereof.4 A classical, descriptive approach is given by the so-called

variance proportion criterion (VPC),

rV PC(α) = min
j=1,...,k2

(
j|

∑j
i=1 λi∑k2
i=1 λi

≥ 1− α

)
, (5)

with α ∈ [0, 1]. Thus, rV PC(α) is the smallest number of principal components such that a

fraction 1−α of the variance is explained. For our applications setting α = 0.2, i.e. explaining

80% of the variance, leads to reasonable numbers of principal components included. In the

context of growth regressions there is no underlying theoretical factor model explaining the

second-moment structure of the auxiliary variables X2 available, thus any choice has to a

certain extent a heuristic character and has to trade off good approximation (necessary to

capture the information contained in all explanatory variables for small bias) with a suffi-

ciently small number of principal components (necessary for well-behaved regression analysis

with low variance).

When computing the principal components from the regressors X2 ∈ RN×k2 in our growth

application, we split this set of variables in two groups. One group contains the quantitative

or cardinal variables and the other includes the dummy or qualitative variables. We separate

these two groups to take into account their different nature when computing principal com-

ponents. For both groups the principal components are computed based on the correlation

matrix of the variables. Computing the principal components based on the correlation matrix

is especially important for the group of quantitative variables. These differ considerably in

magnitude, due to their scaling which we keep unchanged for the Fernandez et al. (2001) and

Sala-i-Martin et al. (2004) data to use exactly the same data as in these papers. Computing

the principal components based on the covariance matrix leads in such a case to essentially

fitting the ‘large’ variables, whereas the computation based on the correlation matrix corrects
3Note here that multi-collinearity cannot only appear within X̃2 but in the joint regressor matrix [X1 X̃2].

In any empirical application this can, however, be easily verified and if necessary remedied by removing some
variables from the set of orthogonal regressors X̃2 in order to have a well-behaved PCAR.

4In addition to the results reported in the paper the number of principal components has been determined
using the testing approaches of Lawley and Maxwell (1963), Malinowski (1989), Faber and Kowalski (1997),
Schott (2006) and Kritchman and Nadler (2008). In a variety of simulations, however, the VPC criterion and
a simple eigenvalue test based on the correlation matrix (see below) have performed best.
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for scaling differences and leads to a scale-free computation of the principal components. To

be precise, a weighted principal components problem is solved in which the function to be

minimized is given by E(ν ′Qν) = tr(QΣν) with Q = diag(σ−2
x2,1, . . . , σ

−2
x2,k2

), neglecting here

for simplicity the separation of the variables in X2 in quantitative and dummy variables.5

This leads to f = O′
1Q

1/2x2, L = Q−1/2O1 and ν = Q−1/2O2O
′
2Q

1/2x2, i.e. the auxiliary

regressors are given by X̃2 = X2Q
1/2O1.

For a chosen number of principal components, the PCAR (4) allows to estimate the conditional

effects of the variables X1 taking into account the relevant information contained in X2 and

summarized in X̃2. As discussed in the introduction, one can also use (4) as a starting point

to consider model averaging. By resorting to PCAR analysis, the number of regressions to

be computed to estimate all sub-models is reduced from 2k to 2k1 if one computes all sub-

models with respect to the core variables. The number of regressions can be reduced further

by partitioning the set of variables X1 = [X11 X12], with X11 ∈ RN×k11 included in each

regression and X12 ∈ RN×k12 , where k1 = k11 + k12, contains the variables in- or excluded in

the sub-models estimated. This further reduces the number of regressions to be computed to

2k12 and makes it even more likely that all sub-models can be estimated. As already mentioned

in the introduction, the small number of models has the advantage, for both classical and

Bayesian approaches that inference need not be based on estimation results obtained only on

subsets of the model space with a focus on small models.6

We denote the sub-model regressions, based on the partitioning of (4) as

y = X11β11(j) + X12(j)β12(j) + X̃2β̃2(j) + ũ(j). (6)

The sub-models Mj are indexed with j = 1, . . . , 2k12 , where X12(j) denotes subset j of

X12. The corresponding coefficient estimates are given by β̂(j) = [β̂11(j)′ β̂12(j)′ β̃2(j)′]′ ∈
Rk11+k12+r. Here, with some imprecision in notation we include in β̂12(j) ∈ Rk12 zero entries

corresponding to all variables not included in model Mj , whereas in (4) the dimension of

β12(j) equals the number of variables of X12 included. We are confident that this does
5Performing the spectral decomposition on a correlation matrix allows for another simple descriptive crite-

rion concerning the number of principal components. By construction the trace of a correlation matrix equals
its dimensions, i.e. is equal to k2. Therefore, if all k2 eigenvalues were equally large, they all would equal 1.
This suggests to include as many principal components as there are eigenvalues larger than 1, i.e. to consider
the eigenvalues larger than 1 as big and those smaller than 1 as small. The results correspond closely to those
obtained with VPCα with α = 0.2.

6This statement has to be interpreted correctly: Inference is based on a different type of subset of the model
space, since all information contained in X2 is summarized in X̃2 and taken into account. This conditional
model space, after purging the effects of X̃2, however, is then fully exhausted.
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not lead to any confusion.7 Furthermore, note already here that the regression including

all explanatory variables, i.e. all variables in X12, will be referred to as full model in the

empirical application. Model average coefficients β̂w are computed as weighted averages of

the coefficient estimates of the sub-regressions, i.e.

β̂w =
2k12∑

j=1

w(j)β̂(j), (7)

with 0 ≤ w(j) ≤ 1 and
∑2k12

j=1 w(j) = 1. We consider four different weighting schemes:

equal weights, MMA weights as considered in Hansen (2007) and smoothed AIC (S-AIC) and

smoothed BIC (S-BIC) weights considered by Buckland et al. (1997) and discussed in detail

in Claeskens and Hjort (2008). Equal weighting assigns weights w(j) = 1
2k12

to each of the

models. By definition, this model averaging scheme does not allocate model weights according

to any measure of quality of the individual models and thus serves more as a baseline averaging

scheme. The other model averaging schemes base the model weights on different information

criteria to give higher weights to models showing better performance in the ‘metric’ of the

underlying information criterion. Hansen (2007), based on Li (1987), advocates the use of a

Mallows criterion for model averaging that under certain assumptions results in optimal model

averaging in terms of minimal squared error of the corresponding model average estimator

amongst all model average estimators. The MMA model weights are obtained by solving a

quadratic optimization problem. Denote with Û = [û(1), . . . , û(2k12)] ∈ RN×2k12 the collection

of residual vectors of all models and with M = [dim(M1), . . . ,dim(M2k12 )]′ ∈ R2k12 the

dimensions of all models. The dimension ofMj is given by k11+r plus the number of variables

of X12 included in Mj . Further, denote with σ̂2
F the estimated residual variance from the full

model including all variables of X12. Then, the MMA weight vector is obtained by solving

the following quadratic optimization problem, where w = [w(1), . . . , w(2k12)]′ ∈ R2k12 is the

vector of weights corresponding to all models.

min
w

{
w′Û ′Ûw + 2σ̂2

F w′M
}

(8)

subject to: w ≥ 0,
2k12∑

j=1

w(j) = 1.

7Note furthermore that we can, since X̃2 are included in each regression, invoke the Frisch-Waugh theorem
and entirely equivalently consider model averaging only for the regressions of y on X11 and the subsets of
X12 by considering the residuals of the regressions of y, X11 and X12 on X̃2. This equivalent interpretation
highlights again that the inclusion of X̃2 conditions on the ‘relevant’ information contained in X2.
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The remaining two averaging schemes base their weights on the information criteria AIC and

BIC, defined here as AIC(j) = N ln σ̂2
j + 2dim(Mj) and BIC(j) = N ln σ̂2

j + lnNdim(Mj),

where σ̂2
j is the estimated residual variance of Mj . Based on these the corresponding model

weights are computed as w(j) = exp{−1
2AIC(j)}/∑

m exp{−1
2AIC(m)} for S-AIC weights

and as w(j) = exp{−1
2BIC(j)}/∑

m exp{−1
2BIC(m)} for S-BIC weights.

Each of the variables in X12 is included in exactly half of the models considered. The model

average coefficient corresponding to each of the variables X12,i, i = 1, . . . , k12 can be written

as

β̂w
12,i =

2k12∑

j=1

w(j)β̂12,i(j) (9)

=
∑

j:X12,i /∈Mj

w(j)0 +
∑

j:X12,i∈Mj

w(j)β̂12,i(j).

This shows the shrinkage character of model averaging. This is most clearly seen for equal

weighting, for which the inclusion weight of variable i, i.e.
∑

j:X12,i∈Mj
w(j), is exactly 1/2 for

all variables X12,i. Hence for equal weighting the average coefficient is given by 1
2k12

times the

sum of all coefficient estimates over only 2k12−1 (i.e. half of the) models. More generally, for

any given weighting scheme the inclusion weight of variable i indicates the importance of this

particular variable, in the ‘metric’ of the chosen weighting scheme. Thus, the inclusion weight

is in a certain sense the classical alternative to Bayesian posterior inclusion probabilities. If

the inclusion weight of a certain variable is high, this means that the 50% of the models in

which this variable is included have a high explanatory power or good performance for e.g.

with respect to AIC or BIC.

Given model average coefficients proper inference concerning them, e.g. to test for significance,

is important. Correct statistical inference has to take into account that model averaging

estimators are (random) mixtures of correlated estimators. Frequentist (or classical) inference

taking these aspects into account has been developed in Hjort and Claeskens (2003) and is

discussed at length in Claeskens and Hjort (2008, Chapter 7). A brief description of the

computational aspects is contained in Appendix C and for further conceptual considerations

we refer the reader to the cited original literature.
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3 Empirical Analysis

As mentioned in the introduction, the empirical analysis is performed for three different data

sets. These are the data sets used in Sala-i-Martin et al. (2004), in Fernandez et al. (2001) and

a data set covering the 255 NUTS2 regions of the 27 member states of the European Union.

In the discussion below we retain the variable names from the data files we received from

Gernot Doppelhofer for the Sala-i-Martin et al. (2004) data and also use the original names

used in the file downloaded from the homepage of the Journal of Applied Econometrics for

the Fernandez et al. (2001) data to facilitate the comparison with the results in these papers.

The selection of core and auxiliary variables considered in this paper is based on the results

obtained with the same data sets in Schneider and Wagner (2008). That paper follows a

complementary approach to growth regressions in terms of obtaining point estimates of the

coefficients to the relevant variables by resorting to adaptive LASSO estimation (see Zou,

2006). This estimation procedure performs at the same time consistent parameter estimation

and model selection. We include (all respectively a subset of) the variables found important

in that paper in our set X1. For the Sala-i-Martin et al. (2004) and Fernandez et al. (2001)

data sets the sets of variables found important in Schneider and Wagner (2008) are very

similar to the sets of variables found important in the original papers based on Bayesian

model averaging techniques, see the discussion in the respective subsections below. Thus, the

sets X1 include for these two data sets variables found to be important by studies using very

different methods and thus constitute a potentially relevant starting point for applying the

approach outlined in the previous section. Note that the choice of variables to be included in

X1 is here based on statistical analysis rather than being motivated by a particular economic

theory model or question. By definition the results obtained with our approach depend upon

the allocation of variables in the sets X1 and X2. Consequently, this is a key issue that

deserves attention and our allocation based on the statistical analysis performed in Schneider

and Wagner (2008) implies that the analysis performed and the results reported in this paper

have to a certain extent illustrative character.

3.1 Sala-i-Martin, Doppelhofer and Miller Data

The data set considered in Sala-i-Martin et al. (2004) contains 67 explanatory variables for 88

countries. The variables and their sources are described in detail in Table 1 in Sala-i-Martin

et al. (2004, p. 820–821). The dependent variable is the average annual growth rate of real

11



per capita GDP over the period 1960–1996.

As core variables (i.e. as regressors X1) we consider 12 out of the 67 explanatory variables of

the data set. In the list of variables to follow we include whether the estimated coefficients,

the point estimates in Schneider and Wagner (2008, Table 2) and the posterior means of

Sala-i-Martin et al. (2004, Table 4, p. 830), are positive or negative. The signs of the point

estimates and the posterior means coincide for all variables. Furthermore we also include

the rank with respect to posterior inclusion probability as given in Sala-i-Martin et al. (2004,

Table 3, p. 828–829). Given that the largest part of the discussion in Sala-i-Martin et al.

(2004) is for the results based on priors with mean model size 7 we compare our results

throughout with these results of Sala-i-Martin et al. (2004). The variables are in alphabetical

order of abbreviation: BUDDHA (fraction of population Buddhist in 1960, positive, 16),

CONFUC (fraction of population Confucian in 1960, positive, 9), EAST (East Asian dummy,

positive, 1), GDP (log per capita GDP in 1960, negative, 4), GVR61 (share of expenditure on

government consumption of GDP in 1961, negative, 18), IPRICE (investment price, negative,

3), LAAM (Latin American dummy, negative, 11), MALFAL (index of malaria prevalence in

1966, negative, 7), P (primary school enrollment rate, positive, 2), REVCOUP (number of

revolutions and coups, negative, 41), SAFRICA (sub-Saharan Africa dummy, negative, 10),

TROPICAR (fraction of country’s land in tropical area, negative, 5).8

We consider 3 out of the 12 variables to be included in all regressions, i.e. X11 = [EAST GDP P].

The East Asian dummy and the primary school enrollment rate are the two variables with

the highest inclusion probabilities in Sala-i-Martin et al. (2004). Initial GDP is also found

to be important and is by definition the central variable in the conditional β-convergence

literature. Thus, in total only 29 = 512 regressions are estimated for this data set. The total

computation time is just a few minutes on a standard PC, showing that from a computational

point of view also all 212 = 8 × 512 = 4096 sub-model regressions could be estimated. The

computationally most intensive part is actually the solution of the quadratic optimization

problem to obtain the MMA weights. Out of the 55 variables in X2, 11 are dummy variables

(see Appendix B). Using the VPC criterion with 80%, 13 principal components are included
8In Schneider and Wagner (2008) 14 variables are selected by the adaptive LASSO algorithm. However,

the coefficients for two of them are not significant, with standard errors computed as described in Zou (2006),
in the final equation and have therefore been not included in X1. These are GDE (average share of public
expenditure on defense, positive, 45) and GEEREC (average share of public expenditure on education, positive,
48). As can be seen also their ranks with respect to posterior inclusion probability are rather high. Hence,
these two variables are included in X2.
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Figure 1: Empirical coefficient densities over all estimated models where the respective vari-
ables are included for the Sala-i-Martin et al. (2004) data set. The solid vertical lines display
the means and the dashed vertical lines display the medians.

13



for the 44 quantitative variables and 6 principal components for the 11 dummy variables.

Thus, in total 19 variables are included in X̃2. Together, with 12 variables in X1 the full

regression includes 31 variables.9 The smallest regression includes 22 variables, the three

variables in X11 and the 19 principal components.

Figure 1 displays the empirical coefficient densities for the coefficients to the variables in

X1, ordered (alphabetically within groups) as first those in X11 and then those in X12. All

empirical coefficient densities displayed in this paper are based on Gaussian kernels with the

bandwidths chosen according to Silverman’s rule of thumb, see Silverman (1986) for details.

For all coefficients to variables in X11 the densities are computed based on all 2k12 available

estimates, and for the coefficients to variables in X12 the densities are, of course, based on only

the 2k12−1 estimates in the models where the respective variables are included. Numerical

information (mean, standard deviation and quantiles) concerning these empirical distributions

is contained in table format in Table 9 in Appendix B. For some of the variables (BUDDHA,

CONFUC, GVR61) bimodality occurs over the set of models estimated. It is important to

note that these densities cannot be interpreted in a similar fashion as posterior densities in a

Bayesian framework. The empirical densities merely visualize the variability of the estimated

coefficients over all estimated models. These individual coefficients are then weighted with

several weighting schemes to obtain model average coefficients. It is the unknown densities

of the model average coefficients that are the classical counterparts to posterior densities.

The means displayed in Figure 1 correspond by construction to the model average estimates

for the equal weights weighting scheme for the coefficients to the variables in X11 and are

twice the means for the coefficients to the variables in X12 when the means are computed

over all models, i.e. not conditional upon inclusion. Figure 2 displays the distribution of

model weights over the model sizes for the four discussed model averaging schemes, see also

Table 10 in Appendix B. This figure, as well as the similar ones for the other two data sets,

displays for simplicity the model size ranging from 0 to dim(X12), i.e. 1 (for the intercept)

plus the number of variables in X11 and the number of principal components included are not

added on the horizontal axis. The ‘real’ model sizes are 1 + k11 + r = 23 (i.e. the intercept,

the variables X11 and the principal components) plus the numbers indicated in the figure.
9Using 31 explanatory variables, or 32 if the intercept (i.e. the demeaning) is counted as well, for 88

observations could be seen as too large a number. The number of variables can be reduced by explaining a
smaller percentage than 80% of the variance of the auxiliary variables or by computing the principal components
from all 55 variables together. We have experimented with both possibilities and have found that the results
are very robust.
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Figure 2: Distribution of model weights over model sizes for the Sala-i-Martin et al. (2004)
data set. The weighting schemes displayed are: Equal (upper left graph), MMA (upper right
graph), S-AIC (lower left graph) and S-BIC (lower right graph).

Alternatively, the numbers in the figure are the model sizes in the second regression, using

again the Frisch-Waugh interpretation, after demeaning all variables and after conditioning

on the information contained in X̃2. For valid inference the real model size needs to be

considered. By construction, the upper left graph simply displays the corresponding binomial

weights but the other graphs are more informative. E.g. MMA averaging allocates all weights

to model sizes ranging from 1 to 4 with 39% allocated to models with 4 variables included.

The lower two graphs, corresponding to S-AIC and S-BIC model averaging, display that as

expected S-BIC weighting allocates more weight on smaller models than S-AIC weighting.

The model size with largest weight is 4 (30%) for S-AIC and 2 (39%) for S-BIC.

Table 1 displays the inclusion weights for the 9 variables in X12. Two observations can be

made. First, the numerical values of the inclusion weights differ across the three weighting

schemes but the rankings almost perfectly coincide. The highest inclusion weight is obtained

for IPRICE and is, depending upon weighting scheme, between 79% for MMA weights and

94% for S-AIC weights. The lowest inclusion weights are 0 for MMA weights for the variables

GVR61, REVCOUP and SAFRICA. Second, the rankings differ from the ranking of these

variables according to posterior inclusion probabilities in Sala-i-Martin et al. (2004). For
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BUDDHA CONFUC GVR61 IPRICE LAAM MALFAL
MMA 0.543 (3) 0.516 (4) 0.000 (7) 0.792 (1) 0.099 (6) 0.208 (5)
S-AIC 0.552 (3) 0.447 (4) 0.197 (8) 0.938 (1) 0.258 (6) 0.327 (5)
S-BIC 0.238 (3) 0.150 (5) 0.068 (8) 0.811 (1) 0.107 (6) 0.196 (4)

REVCOUP SAFRICA TROPICAR
MMA 0.000 (7) 0.000 (7) 0.569 (2)
S-AIC 0.252 (7) 0.196 (9) 0.588 (2)
S-BIC 0.080 (7) 0.063 (9) 0.389 (2)

Table 1: Inclusion weights and ranks in brackets for the variables that are in- respectively
excluded in model averaging for the three data dependent model averaging schemes for the
Sala-i-Martin et al. (2004) data.

about half of the variables the same ranking as in Sala-i-Martin et al. (2004) (when ranking

only these 9 variables) is found, namely for CONFUC (for MMA and S-AIC), GVR61 (for S-

AIC and S-BIC), IPRICE, LAAM and TROPICAR. Note for completeness that the posterior

inclusion probabilities of Sala-i-Martin et al. (2004) are for most variables relatively similar to

the numbers reported in Table 1, in particular to the inclusions weights obtained with MMA

or S-BIC weights, indicating that at the outset quite different approaches lead to rather

similar results with respect to the importance of the inclusion of certain variables.

The next question addressed is now the contribution of the individual variables in terms

of their coefficients. The estimation results for the full regression and the model average

coefficients are displayed in Table 2. Significance for the full equation estimates is computed

using OLS standard errors. For the model average coefficients inference is performed as

developed in Claeskens and Hjort (2008) and as described briefly in the previous section and

in Appendix C. Both in the full equation as well as for the model average coefficients only few

variables are significant. In the full equation these are log per capita GDP in 1960 (GDP),

the primary school enrollment rate (P) and the investment price (IPRICE). Furthermore

two religion variables, the fraction of Buddhist in the population in 1960 (BUDDHA) and

the fraction of Confucian in the population in 1960 (CONFUC), are significant at the 10%

level in the full equation. When considering model average coefficients only GDP, P and

IPRICE are significant, with the latter being significant only at the 10% level when using

equal weights. Thus, only three key economic variables are found to be significantly related

to economic growth when including the information contained in the auxiliary variables by

including principal components. Note that the significance of variables is highly related to
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EAST GDP P BUDDHA CONFUC GVR61
Full 0.006681 -0.010399 0.021586 0.015432 0.036302 -0.032472
Equal 0.013071 -0.010273 0.022839 0.006994 0.014720 -0.016476
MMA 0.012274 -0.010362 0.023435 0.009770 0.016824 0.000000
S-AIC 0.012248 -0.010556 0.023508 0.008714 0.013572 -0.004972
S-BIC 0.014706 -0.010672 0.024268 0.003625 0.004117 -0.001787
SDM04 0.017946 -0.005849 0.021374 0.002340 0.011212 -0.004594
SW08 0.013874 -0.001452 0.016097 0.012027 0.025531 -0.041727

IPRICE LAAM MALFAL REVCOUP SAFRICA TROPICAR
Full -0.000066 -0.005742 -0.004173 -0.008964 -0.006988 -0.008287
Equal -0.000033 -0.002533 -0.004214 -0.003212 -0.002737 -0.005824
MMA -0.000054 -0.001078 -0.002521 -0.000000 -0.000000 -0.006852
S-AIC -0.000062 -0.001925 -0.002445 -0.001682 -0.000863 -0.006821
S-BIC -0.000054 -0.000873 -0.001826 -0.000481 -0.000246 -0.004844
SDM04 -0.000065 -0.001901 -0.003957 -0.000205 -0.002265 -0.008308
SW08 -0.000071 -0.002593 -0.001841 -0.002174 -0.002010 -0.005398

Table 2: Coefficient estimates for the Sala-i-Martin et al. (2004) data. Full displays the coef-
ficient estimates corresponding to the full model; Equal the estimates corresponding to equal
model weights; MMA the estimates using the weights as discussed in Hansen (2007); S-AIC
the estimates computed with smoothed AIC weights and S-BIC the estimates computed with
smoothed BIC weights. Bold typesetting indicates significance at the 5% significance level
and italic numbers indicate significance at the 10% level, computed as discussed in Claeskens
and Hjort (2008).
The rows labelled SDM04 display the unconditional posterior means of the coefficient esti-
mates computed from Sala-i-Martin et al. (2004, Table 3, p. 828–829) and Sala-i-Martin et
al. (2004, Table 4, p. 830) for mean prior model size 7. The rows labelled SW08 display the
adaptive LASSO point estimates of Schneider and Wagner (2008, Table 2).

the inclusion weights, since amongst the variables in X12 the variable IPRICE has the highest

inclusion weight.10

How do these findings relate to those in Sala-i-Martin et al. (2004)? Considering again

model average coefficients, the three variables with significant coefficients are highly ranked

in terms of posterior inclusion probability in Sala-i-Martin et al. (2004): GDP (4), P (2)

and IPRICE (3). A key difference is that the variable with the highest inclusion probability,

the East Asian dummy is not found to be significantly related to economic growth.11 Also

several other political, religious or health variables found to be important in Sala-i-Martin et

al. (2004) are not significant in our results. Furthermore, the β-convergence speed implied by
10In supplementary material, available upon request, we provide for all three data sets also the model average

estimates conditional upon inclusion.
11To be precise, the corresponding model average coefficient is significant at the 10% level for both equal

and S-BIC weights.
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our results is about twice as high as found by Sala-i-Martin et al. (2004), since our coefficient

estimates for initial GDP are about twice as high in absolute value.

The differences in findings by construction originate in the differences in the approaches used.

First, Sala-i-Martin et al. (2004) perform Bayesian model averaging over a different subset

of the model space with small prior model sizes. Our PCAR approach controls for 80% of

the variation in the auxiliary variables in every considered model. Thus, in each model the

effect of the auxiliary variables is taken into account. This implies that those variables found

to be insignificant in our results do not have high additional explanatory power relative to

the information already taken into account in the auxiliary variables. At this point it is

important to briefly discuss the selection of variables in X1. Schneider and Wagner (2008)

use the adaptive LASSO estimator, which is a specific penalized least squares estimator, to

perform simultaneously model selection and parameter estimation. Thus, all variables in

X1 are variables that are found to be significantly related to GDP in a penalized regression

framework. The variables in X1 are typically also correlated with the principal components

X̃2, where e.g. the regression of EAST on the principal components leads to an R2 of about

0.6. Using once again the Frisch-Waugh interpretation this implies that the residuals of a

regression of EAST on the principal components are not significantly related to the residuals

of the regression of GDP growth on the principal components in regressions where subsets of

the other variables in X1 are also included (or to be precise the residuals of regressions of these

variables on the principal components are also included). Thus, with our approach exactly

those variables are found to be significant that are related to GDP growth after conditioning

on the auxiliary variables. These are the variables whose effect on growth is – in the sense

discussed – well-distinguishable from the effects of other variables on growth. In slight abuse

of commonly used notation, we can coin these variables as being ‘robustly’ related to economic

growth.

Another important (computational) observation is that the choice of the weighting scheme

(in particular MMA, S-AIC or S-BIC weights) has minor impact on both the significance

as well as the numerical value of model average coefficients. The overall key finding of the

application of our approach to the Sala-i-Martin et al. (2004) data is that we find three

key economic variables significantly related to economic growth over the period 1960-1996,

namely the logarithm of per capita GDP in 1960, the primary school enrollment rate and the

investment price. These variables are significantly related to growth when controlling for the
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information contained in the auxiliary variables and are so in a model averaging framework

where up to 9 additional variables, found to be important in Sala-i-Martin et al. (2004) and

Schneider and Wagner (2008), are included as well.

3.2 Fernandez, Ley and Steel Data

The data set used by Fernandez et al. (2001) is based on the data set used in Sala-i-Martin

(1997b). In particular Fernandez et al. (2001) select a subset of the Sala-i-Martin data that

contains the 25 variables singled out as important by Sala-i-Martin (1997b). These variables

are available for 72 countries. They add 16 further variables which are also available for these

72 countries, which gives a total of 41 explanatory variables. The dependent variable is the

average annual growth rate of real per capita GDP over the period 1960–1992. A detailed

description of the variables and their sources is contained in the working paper Sala-i-Martin

(1997a, Appendix 1).

The choice of core variables is again based on Schneider and Wagner (2008). In the list of

variables we include the sign of the point estimates obtained in Schneider and Wagner (2008,

Table 4) and the ranks with respect to posterior inclusion probabilities from Fernandez et al.

(2001, Table 1, p. 569).12 In alphabetical order of abbreviation the list of variables in X1

is: Confucius (share of population Confucian, positive, 2), EquipInv (equipment investment,

positive, 4), EthnoLFrac (ethnolinguistic fractionalization, positive, 28), GDPsh560 (log of

per capita GDP in 1960, negative, 1), HighEnroll (enrollment rates in higher education, neg-

ative, 34), LatAmerica (dummy for Latin America, negative, 13), LifeExp (life expectancy in

1960, positive, 3), Mining (fraction of GDP in mining, positive, 11), Muslim (share of popu-

lation Muslim, positive, 6), NEquipInv (non-equipment investment, positive, 12), PrScEnroll

(primary school enrollment in 1960, positive, 14), RuleofLaw (rule of law, positive, 7) and

SubSahara (dummy for sub-Saharan Africa, negative, 5).

We include 4 out of the 13 variables in all regressions: Confucius, EquipInv, GDPsh560

and LifeExp. These are the four variables with the highest posterior inclusion probabilities

in Fernandez et al. (2001). As before in total only 29 = 512 regressions are estimated for

this data set and again also all sub-model regressions could have been computed in terms of

necessary computer time. Out of the 28 variables in X2, 6 are dummies (see Appendix B)

for which 4 principal components are included and 22 are quantitative variables for which 9
12Fernandez et al. (2001) do not report the posterior means of the coefficient estimates.
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principal components are included, based again on the VPC criterion with 80%. Thus, for

this data set 13 principal components are included and the real model sizes vary between 18

and 27 (counting also the intercept, i.e. the demeaning).

The discussion of results has the same structure as that in the previous subsection. Thus,

we display in Figure 3 the empirical coefficient densities with the corresponding numerical

information provided in Table 11 in Appendix B. In the figure first the 4 variables in X11 are

displayed in alphabetical order and then the 9 variables in X12 are displayed in alphabetical

order.
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Figure 4 displays the model weights over model sizes, with the corresponding numerical

information provided in Table 12 in Appendix B. With MMA weights all mass is allocated to

models with sizes ranging from 2 to 4 and 6, with 54% of the weight given to models of size

4. S-AIC averaging allocates 33% to models of size 5 and S-BIC averaging allocates 46% to

models of size 3.
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Figure 4: Distribution of model weights over model sizes for the Fernandez et al. (2001) data
set. For further explanations see the caption of Table 2.

EthnoLFrac HighEnroll LatAmerica Mining Muslim NEquipInv
MMA 0.454 (4) 0.000 (9) 0.191 (7) 0.846 (1) 0.776 (2) 0.705 (3)
S-AIC 0.543 (4) 0.157 (9) 0.228 (7) 0.961 (3) 0.986 (1) 0.977 (2)
S-BIC 0.243 (4) 0.057 (9) 0.092 (7) 0.861 (3) 0.982 (1) 0.972 (2)

PrScEnroll RuleofLaw SubSahara
MMA 0.295 (6) 0.104 (8) 0.328 (5)
S-AIC 0.371 (5) 0.214 (8) 0.356 (6)
S-BIC 0.144 (5) 0.075 (8) 0.123 (6)

Table 3: Inclusion weights and ranks in brackets for the variables that are in- respectively
excluded in model averaging for the three data dependent model averaging schemes for the
Fernandez et al. (2001) data.

For the inclusion weights of the variables in X12, displayed in Table 3, again a large sim-

ilarity in terms of ranking is observed for three considered weighting schemes. The ranks
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obtained with S-AIC weights and S-BIC weights coincide perfectly. Comparing these ranks

with the posterior inclusion probability ranks reported in Fernandez et al. (2001) reveals some

marked differences. The variable with highest posterior inclusion probability in Fernandez et

al. (2001), SubSahara, is only ranked 5th (with MMA) or 6th with an inclusion weight of 36%

for S-AIC weighting and even lower weight for the other weighting schemes. The third highest

ranked variable in Fernandez et al. (2001), RuleofLaw, is ranked 8th. The three highest rank-

ing variables (considering all three weighting schemes) are Mining, Muslim and NEquipinv.

For this data set substantial differences occur between the inclusion weights computed here

and the posterior inclusion probabilities of Fernandez et al. (2001).

Confucius EquipInv GDPsh560 LifeExp EthnoLFrac HighEnroll
Full 0.067374 0.120139 -0.017297 0.000781 0.007952 -0.015508
Equal 0.061269 0.148415 -0.016205 0.000776 0.003744 -0.009845
MMA 0.065054 0.131601 -0.016833 0.000845 0.003657 0.000000
S-AIC 0.067676 0.122169 -0.016956 0.000898 0.003852 -0.000400
S-BIC 0.066851 0.123147 -0.016823 0.000913 0.001603 0.000158
SW08 0.056205 0.162509 -0.011495 0.000698 0.000373 -0.022536

LatAmerica Mining Muslim NEquipInv PrScEnroll RuleofLaw
Full -0.002668 0.038775 0.015167 0.048025 0.011947 0.006376
Equal -0.002913 0.019149 0.007497 0.032829 0.004046 0.002643
MMA -0.002332 0.033658 0.012843 0.046004 0.005954 0.000840
S-AIC -0.000893 0.036223 0.015166 0.059591 0.004180 0.000919
S-BIC -0.000391 0.031506 0.014977 0.063554 0.001559 0.000285
SW08 -0.007402 0.019676 0.000222 0.000467 0.002728 0.005808

SubSahara
Full -0.008730
Equal -0.004624
MMA -0.003909
S-AIC -0.002512
S-BIC -0.000762
SW08 -0.018189

Table 4: Coefficient estimates for the Fernandez et al. (2001) data. The rows labelled SW08
display the adaptive LASSO point estimates of Schneider and Wagner (2008, Table 4). For
further explanations see the caption to Table 2.

The estimation results displayed in Table 4 bear some qualitative resemblance to the findings

of the previous subsection. First, there are only small differences across the different weight-

ing schemes, with respect to both significance and numerical values of the coefficients. For

this data set furthermore the findings from the full equation are quite similar to the model
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averaging results. Seven variables are found to be significantly related to economic growth.

These are the four variables in X11, namely Confucius, EquipInv, GDPsh560 and LifeExp.

From the variables in X12 the three variables with the highest inclusion weights are signifi-

cant, i.e. Mining, Muslim and NEquipInv. On the other hand some variables that have high

inclusion probabilities in Fernandez et al. (2001) are not significant, most notably SubSahara

ranked 5th in Fernandez et al. (2001). Thus, several key economic variables, equipment in-

vestment, initial GDP, the share of mining in GDP and non-equipment investment are found

to be significantly related to economic growth.

Similarly to the Sala-i-Martin et al. (2004) data analyzed in the previous subsection our

approach leads to insignificance of geographical dummies, here LatAmerica and SubSahara

and EAST, LAAM and SAFRICA above. Again also several political or institutional variables

are not found to be significant with our method, contrary to their alleged importance in

Fernandez et al. (2001). Hence, as for the Sala-i-Martin et al. (2004) data also for the

Fernandez et al. (2001) data our approach finds mainly key economic variables significantly

related to growth, where for the latter data set additionally two religion variables, Confucius

and Muslim, are significant.

3.3 European Regional Data

The third data set we analyze contains 48 explanatory variables for the 255 NUTS2 regions

in the 27 member states of the European Union. The data and variables are described

in Appendix A. The dependent variable is the average annual growth rate of per capita

GDP over the period 1995–2005. On a regional level it is more difficult to obtain core

economic data, hence many of the variables listed in Table 8 in Appendix A are related

to infrastructure characteristics (meant in very broad sense including also dummy variables

whether the regions are located on the seaside or at country borders) and labor market

variables (unemployment and activity rates, as well as some broad education characteristics

in the working age population). Given that there are large inter-country differences in the

economic performance of the European regions we also include country dummies for the 19

out of the 27 countries that consist of more than just one region, see Table 7 in Appendix A.

As for the other two data sets, the set of core variables is taken from Schneider and Wagner

(2008). In alphabetical order these are given by: AccessRail (measure of accessibility by

railroad, negative), ARL0 (activity rate of low educated in 1995, negative), Capital (dummy
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Figure 5: Empirical coefficient densities over all estimated models where the respective vari-
ables are included for the European regional data set. For further explanations see caption
to Table 1.

for capital city, positive), GDPCAP0 (log of per capita GDP in 1995, negative), ShSH (share

of high educated in labor force, positive), ShSM (share of medium educated in labor force,

positive) and URT0 (unemployment rate total in 1995, negative). Furthermore, three coun-

try dummies are included: DUMc6 (dummy for Germany, negative), DUMc14 (dummy for

Ireland, positive) and DUMc27 (dummy for UK, negative). Positive respectively negative
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indicates the sign of the estimated coefficients in Schneider and Wagner (2008). For this data

set we only include GDPCAP0 in all regressions and thus estimate again 29 = 512 sub-model

regressions. Out of the 57 variables in X2, 23 are dummies (see Appendix B) for which 14

principal components are included and 34 are quantitative variables for which 10 principal

components are included again based on the VPC criterion with 80%. Thus, for this data set

for 255 regions 24 principal components are included and the real model sizes vary between

26 and 35 including the intercept.

Figure 5 displays the empirical coefficient densities and numerical information is provided

in Table 13 in Appendix B. Bimodality occurs most markedly for the dummy variable for

Germany (DUMc6) and to a lesser extent for the activity rate of low educated (ARL0) and

the capital city dummy (Capital).

0 1 2 3 4 5 6 7 8 9
0

0.1

0.2

0.3

0.4

0.5

Equal

0 1 2 3 4 5 6 7 8 9
0

0.1

0.2

0.3

0.4

0.5

MMA

0 1 2 3 4 5 6 7 8 9
0

0.1

0.2

0.3

0.4

0.5

S−AIC

0 1 2 3 4 5 6 7 8 9
0

0.1

0.2

0.3

0.4

0.5

S−BIC

Figure 6: Distribution of model weights over model sizes for the European regional data set.
For further explanations see the caption of Table 2.

With MMA weights only models of sizes 4, 6 and 7 have positive weights, as displayed in

Figure 6 and Table 14 in Appendix B, with 56% allocated to models of size 6. S-AIC and

S-BIC model averaging allocates all weights to models of sizes 4 and larger. The model size

with highest weight share is 7 for S-AIC with 47% and 6 for S-BIC with 54%. As for the other

two data sets the inclusion weights for the variables in X12 are in terms of ranking very similar

for all three averaging schemes, see Table 5. The differences between MMA weighting on the
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one hand and S-AIC and S-BIC weighting on the other are a bit larger than the differences

between S-AIC and S-BIC. The highest inclusion weights occur for the capital city dummy

(Capital), the dummy for Germany (DUMc6) and the dummy for Ireland (DUMc14). Low

inclusion weights are given to rail accessibility (AccessRail), the activity rate of low educated

in 1995 (ARL0), the share of medium educated in the working age population (ShSM) and the

total unemployment rate in 1995 (URT0). In addition to the three mentioned dummies also

the share of high educated in the working age population (ShSH) has inclusion probability of

above 80% with each of the weighting schemes.

AccessRail ARL0 Capital ShSH ShSM URT0
MMA 0.491 (7) 0.000 (9) 0.851 (3) 0.804 (4) 0.288 (8) 0.712 (6)
S-AIC 0.520 (7) 0.191 (9) 1.000 (1) 0.980 (4) 0.334 (8) 0.925 (6)
S-BIC 0.151 (7) 0.054 (9) 1.000 (1) 0.844 (5) 0.094 (8) 0.870 (4)

DUMc6 DUMc14 DUMc27
MMA 0.971 (1) 0.933 (2) 0.804 (4)
S-AIC 1.000 (1) 1.000 (1) 0.975 (5)
S-BIC 1.000 (1) 1.000 (1) 0.791 (6)

Table 5: Inclusion weights and ranks in brackets for the variables that are in- respectively
excluded in model averaging for the three data dependent model averaging schemes for the
European regional data.

The results obtained for the inclusion weights of the variables translate for this data set very

clearly into significance of the estimated coefficients, with only small differences emerging

between the different estimates. The coefficients corresponding to the two variables with the

lowest inclusion probabilities, ARL0 and ShSM are both insignificant. The single exception

being significance of ShSM when using MMA weights. Next to conditional convergence (due

to the significant negative coefficient of initial GDP) at the speed of about 2% per year,

important factors are being a capital city and – more policy relevant – a high share of high

education in the labor force.

4 Summary and Conclusions

This paper offers two innovations for the empirical analysis of economic growth. First, it

proposes the use of principal components augmented regressions (PCAR) for empirical growth

analysis. This has several advantages, which include: First, PCAR analysis results in well-

behaved regressions that include a large part of the information contained in the typically
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GDPCAP0 AccessRail ARL0 Capital ShSH ShSM
Full -0.019748 -0.006189 0.009345 0.010931 0.064444 0.015783
Equal -0.017046 -0.009724 -0.035950 0.013520 0.057723 0.002732
MMA -0.019100 -0.008067 -0.033232 0.012289 0.065752 0.027556
S-AIC -0.020046 -0.006138 -0.001989 0.011672 0.058074 0.015685
S-BIC -0.019726 -0.006147 -0.012906 0.012535 0.056207 0.017672
SW08 -0.014707 -0.001074 -0.004472 0.008078 0.0587 0.016212

URT0 DUMc6 DUMc14 DUMc27
Full -0.100283 -0.012069 0.028863 -0.009459
Equal -0.097582 -0.008916 0.029797 -0.009341
MMA -0.115694 -0.010924 0.029372 -0.009878
S-AIC -0.105123 -0.011198 0.029038 -0.008947
S-BIC -0.115052 -0.010833 0.029430 -0.008426
SW08 -0.005371 -0.007998 0.002764 -0.002237

Table 6: Coefficient estimates for the European regional data. The rows labelled SW08
display the adaptive LASSO point estimates of Schneider and Wagner (2008, Table 6). For
further explanations see the caption to Table 2.

large sets of available variables. Second, this implies that the empirical analysis is based

on regressions that suffer only from minor omitted variables bias and thus allows for more

precise estimation of the conditional effects of the core variables on economic growth. Thus,

well-defined estimates that take into account the theory open endedness of economic growth

by conditioning on a large information set are obtained.

The second innovation of this paper is to consider frequentist model averaging instead of

the usually employed Bayesian model averaging approaches. Inference for frequentist model

average coefficients is based on recent advances in the statistics literature, in particular on

Claeskens and Hjort (2008). We introduce amongst other quantities, the frequentist coun-

terpart to the Bayesian posterior inclusion probability, which we term inclusion weight. In

conjunction with PCAR model averaging becomes computationally very cheap, in either a

Bayesian or a frequentist framework. The computations performed in this paper require only

few minutes on standard PCs.

The proposed methodology is illustrated and implemented for three data sets, namely the data

used in Sala-i-Martin et al. (2004), in Fernandez et al. (2001) and a data set covering the 255

NUTS2 regions of the 27 European Union member states. The selection of core variables is

for all three data sets based on the findings of Schneider and Wagner (2008), who use the

adaptive LASSO estimator to study the determinants of economic growth. The findings are
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very favorable and indicate that the proposed methodology is able to uncover economically

relevant growth determinants with plausible coefficient estimates. For the example of the

Sala-i-Martin et al. (2004) data, initial GDP, primary school enrollment and the investment

price are found to be significant. The implied conditional convergence speed is about twice as

high as found in Sala-i-Martin et al. (2004). Favorable findings are also obtained for the other

two data sets. For the Fernandez et al. (2001) key economic variables found to be important

are equipment investment, initial GDP, the share of mining in GDP and non-equipment

investment. For both data sets several geographic dummy variables as well as other ‘non-

standard’ economic variables (e.g. health and institutional variables), found to be important

in the original studies, are not significant. This highlights that the improved estimation based

on large sets of auxiliary conditioning variables results in plausible, economically relevant

findings. For the European regional data set, for which only few key economic variables are

available, the results highlight the importance of human capital for economic growth.

The findings in this paper forcefully illustrate that the proposed two methodological innova-

tions, considered separately or together, are important additions to the toolkit of the empirical

growth research community.
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Appendix A: Description of Regional Data Set

In Table 7 we display the 27 EU member states, the abbreviation we use for the countries

as well as the number of NUTS2 regions in each of the countries. The list of variables is de-

scribed in Table 8. The base year for price indices is 2000. All variables described as “initial”

and whose variable name ends with 0 display 1995 values. Most of the variables for which

we report Eurostat as source have been constructed by subsequent calculations based on raw

data retrieved from Eurostat.

AT Austria (9) FI Finland (5) MT Malta (1)
BE Belgium (11) FR France (22) NL Netherlands (12)
BG Bulgaria (6) GR Greece (13) PL Poland (16)
CV Cyprus (1) HU Hungary (7) PT Portugal (5)
CZ Czech Rep. (8) IE Ireland (2) RO Romania (8)
DE Germany (39) IT Italy (21) SE Sweden (8)
DK Denmark (1) LT Lithuania (1) SI Slovenia (1)
EE Estonia (1) LU Luxembourg (1) SK Slovak Rep. (4)
ES Spain (16) LT Latvia (1) UK United Kingdom (35)

Table 7: Country abbreviations, names and number of NUTS2 regions in brackets.
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Appendix B: Additional Empirical Results

Sala-i-Martin et al. (2004) Data

Dummy variables, 0−1 unless stated otherwise, contained in X2: BRIT, COLONY, ECORG

(0, 1, ..., 5), EUROPE, LANDLOCK, NEWSTATE (0, 1, 2), OIL, SCOUT, SOCIALIST, SPAIN,

WARTORN

Variable Mean StdDev 5 10 25 50 75 90 95
EAST 0.013071 0.003405 0.006856 0.008415 0.010802 0.013349 0.015624 0.017295 0.018171
GDP -0.010273 0.000575 -0.011287 -0.011034 -0.010668 -0.010276 -0.009802 -0.009481 -0.009374
P 0.022839 0.001283 0.020806 0.021162 0.021890 0.022770 0.023687 0.024555 0.025028
BUDDHA 0.013989 0.002399 0.009948 0.010515 0.012390 0.013618 0.015987 0.017266 0.017728
CONFUC 0.029440 0.005180 0.021583 0.022600 0.024895 0.029662 0.033451 0.036432 0.038295
GVR61 -0.032952 0.007627 -0.045244 -0.043221 -0.038594 -0.033052 -0.026328 -0.023067 -0.021360
IPRICE -0.000066 0.000005 -0.000075 -0.000073 -0.000069 -0.000066 -0.000062 -0.000059 -0.000058
LAAM -0.005066 0.004279 -0.011315 -0.010823 -0.008231 -0.005369 -0.001721 0.000917 0.002147
MALFAL -0.008428 0.002248 -0.012161 -0.011454 -0.010130 -0.008289 -0.006770 -0.005322 -0.004599
REVCOUP -0.006425 0.001747 -0.008918 -0.008525 -0.007719 -0.006598 -0.005430 -0.003737 -0.002967
SAFRICA -0.005474 0.002326 -0.009282 -0.008474 -0.007171 -0.005454 -0.004017 -0.002487 -0.001566
TROPICAR -0.011648 0.001738 -0.014704 -0.014373 -0.012877 -0.011609 -0.010536 -0.009301 -0.008502

Table 9: Mean, standard deviation and quantiles of the empirical coefficient distributions over
all models where the respective variables are included for the Sala-i-Martin et al. (2004) data
set.

0 1 2 3 4 5 6 7 8 9
Equal 0.002 0.018 0.070 0.164 0.246 0.246 0.164 0.070 0.018 0.002
MMA 0.000 0.208 0.249 0.152 0.391 0.000 0.000 0.000 0.000 0.000
S-AIC 0.001 0.025 0.134 0.272 0.298 0.185 0.068 0.015 0.002 0.000
S-BIC 0.034 0.254 0.393 0.231 0.074 0.013 0.001 0.000 0.000 0.000

Table 10: Distribution of model weights over model sizes for the Sala-i-Martin et al. (2004)
data for the four discussed weighting schemes.

Fernandez et al. (2001) Data

Dummy variables, 0−1 unless stated otherwise, contained in X2: BritCol (0, 1, . . . , 5), EcoOrg,

FrenchCol, OutwarOr, SpanishCol, WarDummy
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Variable Mean StdDev 5 10 25 50 75 90 95
Confucious 0.061269 0.005288 0.052543 0.053998 0.057679 0.061540 0.065271 0.067751 0.070608
EquipInv 0.148415 0.031306 0.100930 0.108573 0.125240 0.144671 0.169619 0.195328 0.205562
GDPsh560 -0.016205 0.000997 -0.017829 -0.017542 -0.016969 -0.016168 -0.015501 -0.014915 -0.014582
LifeExp 0.000776 0.000134 0.000586 0.000621 0.000669 0.000764 0.000852 0.000956 0.001025
EthnoLFrac 0.007488 0.001671 0.004990 0.005386 0.006021 0.007420 0.008627 0.009802 0.010384
HighEnroll -0.019691 0.015222 -0.043586 -0.041503 -0.029917 -0.019753 -0.009870 -0.000387 0.006498
LatAmerica -0.005826 0.003777 -0.012103 -0.010926 -0.008437 -0.005983 -0.002866 -0.000553 0.000136
Mining 0.038298 0.005875 0.027905 0.028967 0.034456 0.038741 0.042097 0.046711 0.048027
Muslim 0.014993 0.002767 0.010536 0.011204 0.013074 0.014802 0.017118 0.018776 0.019866
NEquipInv 0.065659 0.006905 0.053085 0.056004 0.060273 0.066609 0.071281 0.073975 0.074808
PrScEnroll 0.008091 0.008219 -0.004684 -0.002487 0.000673 0.007886 0.014713 0.019600 0.020849
RuleofLaw 0.005285 0.003215 -0.001024 0.000827 0.003198 0.005486 0.007921 0.009106 0.010260
SubSahara -0.009249 0.004250 -0.016622 -0.014944 -0.012193 -0.009225 -0.006234 -0.003704 -0.002726

Table 11: Mean, standard deviation and quantiles of the empirical coefficient distributions
over all models where the respective variables are included for the Fernandez et al. (2001)
data set.

0 1 2 3 4 5 6 7 8 9
Equal 0.002 0.018 0.070 0.164 0.246 0.246 0.164 0.070 0.018 0.002
MMA 0.000 0.000 0.154 0.202 0.540 0.000 0.104 0.000 0.000 0.000
S-AIC 0.000 0.000 0.007 0.127 0.274 0.330 0.191 0.061 0.010 0.001
S-BIC 0.000 0.003 0.080 0.456 0.315 0.122 0.023 0.002 0.000 0.000

Table 12: Distribution of model weights over model sizes for the Fernandez et al. (2001) data
for the four discussed weighting schemes.

European Regional Data

Dummy variables, 0 − 1 unless stated otherwise, contained in X2: RegBorder, RegCoast,

RegObj1, RegPent27, Seaports, Settl, TELF (1, 2, . . . , 6) and 16 country dummies for the

countries consisting of more than one region, compare Table 7, with the exception of Ger-

many (DUMc6), Ireland (DUMc14) and the UK (DUMc27). These three country dummies

are included in X12 in the results discussed in detail in this paper.
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Variable Mean StdDev 5 10 25 50 75 90 95
GDPCAP0 -0.017046 0.002289 -0.020494 -0.019834 -0.018679 -0.017266 -0.015663 -0.013885 -0.012638
AccessRail -0.009724 0.003149 -0.015196 -0.014210 -0.011847 -0.010188 -0.006719 -0.005738 -0.005152
ARL0 -0.035950 0.024852 -0.069014 -0.065331 -0.054822 -0.041083 -0.017692 0.001011 0.010719
Capital 0.013520 0.001233 0.011404 0.011824 0.012646 0.013501 0.014391 0.015260 0.015413
ShSH 0.057723 0.018497 0.028123 0.032660 0.042673 0.056717 0.070823 0.081562 0.088858
ShSM 0.002732 0.011873 -0.013476 -0.011545 -0.006302 0.000250 0.012144 0.019983 0.024431
URT0 -0.097582 0.038242 -0.157835 -0.142333 -0.128205 -0.100769 -0.073134 -0.042282 -0.027830
DUMc6 -0.008916 0.001921 -0.011902 -0.011385 -0.010336 -0.008992 -0.007700 -0.006128 -0.005353
DUMc14 0.029797 0.002265 0.026481 0.026889 0.028159 0.029394 0.031490 0.032544 0.034152
DUMc27 -0.009341 0.002497 -0.013126 -0.012645 -0.011364 -0.009132 -0.007754 -0.006071 -0.004834

Table 13: Mean, standard deviation and quantiles of the empirical coefficient distributions
over all models where the respective variables are included for the European regional data
set.

0 1 2 3 4 5 6 7 8 9
Equal 0.002 0.018 0.070 0.164 0.246 0.246 0.164 0.070 0.018 0.002
MMA 0.000 0.000 0.000 0.000 0.196 0.000 0.559 0.246 0.000 0.000
S-AIC 0.000 0.000 0.000 0.000 0.001 0.020 0.284 0.469 0.200 0.027
S-BIC 0.000 0.000 0.000 0.001 0.074 0.220 0.542 0.152 0.011 0.000

Table 14: Distribution of model weights over model sizes for the European regional data for
the four discussed weighting schemes.

Appendix C: Inference for Model Average Coefficients

In order to describe how to perform inference as derived in Claeskens and Hjort (2008) some

further quantities need to be defined first. Denote with ej ∈ Rk11+r a vector with 0 entries

except for 1 at position j and with ẽj ∈ Rk12 a vector with 0 entries except for 1 at position

j. Next define τ2
0i ∈ R+

0 and ωi ∈ Rk12 as

τ2
0i =





e′i

([
X ′

11

X̃ ′
2

] [
X11 X̃2

])−1

ei, i = 1, . . . , k11

0, i = k11 + 1, . . . , k11 + k12

e′i−k12

([
X ′

11

X̃ ′
2

] [
X11 X̃2

])−1

ei−k12 , i = k11 + k12 + 1, . . . , k11 + k12 + r

(10)

and

ωi =





X ′
12

[
X11 X̃2

]([
X ′

11

X̃ ′
2

] [
X11 X̃2

])−1

ei, i = 1, . . . , k11

ẽi−k11 , i = k11 + 1, . . . , k11 + k12

X ′
12

[
X11 X̃2

]([
X ′

11

X̃ ′
2

] [
X11 X̃2

])−1

ei−k12 , i = k11 + k12 + 1, . . . , k11 + k12 + r

(11)
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Further, we need the block of the information matrix for the coefficient vector β in the full

regression including [X11 X12 X̃2], given in partitioned format by

I =
1

Nσ2




X ′
11X11 X ′

11X12 X ′
11X̃2

X ′
12X11 X ′

12X12 X ′
12X̃2

X̃ ′
2X11 X̃ ′

2X12 X̃ ′
2X̃2


 . (12)

In the computations the unknown quantity σ2 is replaced by the estimate from the full model.

The 2-2 block of I−1, i.e. the block at the position of X ′
12X12 in I, is denoted by (I−1)(2,2).

Next denote the set of indices of variables of X12 included in Mj as Sj and its cardinality by

|Sj |, i.e. Sj =
{

i1, . . . , i|Sj |
}
⊆ {1, . . . , k12}. Without loss of generality we index the model

excluding all variables of X12 as M1. For all models except M1 define

πj =




ẽ′i1
...

ẽ′i|Sj |


 ∈ R|Sj |×k12 (13)

and G(j) = π′j
(
πj

(
(I−1)(2,2)

)−1
π′j

)−1
πj

(
(I−1)(2,2)

)−1 ∈ Rk12×k12 for j = 2, . . . , 2k12 . For

j = 1 we define G(1) = 0k12×k12 .

Based on these quantities one can compute for each coordinate i = 1, . . . , k11 + k12 + r of the

model average coefficient vector β̂w a valid confidence interval for testing the hypothesis that

H0 : βw
i = βi,0. Specifically, it holds (compare Theorem 4.1 of Hjort and Claeskens, 2003)

that

Tn,i =

√
N

τ2
0i + ω′i(I−1)(2,2)ωi


β̂w

i − βi,0 − ω′i


β̂F

12 −
2k12∑

j=1

w(j)G(j)β̂F
12





 (14)

is asymptotically standard normally distributed under the null hypothesis for i = 1, . . . , k11 +

k12 + r, where β̂F
12 is the block of the estimated coefficients corresponding to X12 in the full

model. Based on (14) one can calculate confidence intervals.
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