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Abstract 

This paper investigates by means of Monte Carlo techniques the robustness of the CUSUM 
and CUSUM-of-squares tests (Brown et al., 1975) to serial correlation, endogeneity and lack 
of structural invariance. Our findings suggest that these tests perform better in the context of 
a dynamic model of the ADL type, which is not affected by serial correlation or non-
predetermined regressors even if over-specified. In this case, the empirical sizes of both 
tests are close to the nominal ones, whether a stationary or a cointegration environment is 
considered. The CUSUM-of-squares test is to be preferred, as it is very powerful to detect 
changes in the conditional model parameters, whether or not the variance of the regression 
error is included in the set of parameters shifting, especially towards the end of the sample.  
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1 Introduction

Two of the most frequently employed tests for parameter constancy in the context

of a linear regression are the CUSUM and CUSUM-of-squares tests proposed in

the seminal paper of Brown et al. (1975). Their widespread use is due to a large

extent to the fact that they are designed to test the null hypothesis of parameter

stability against a variety of alternatives. By constrast, other tests require prior

knowledge of the type of coefficient variation (or the timing of any structural

shifts) exhibited by model parameters, whilst have no power against other alter-

natives. Typically, the alternative being considered is that the parameters follow

a randow walk. Examples include the F-test of LaMotte and McWhorter (1978),

the point optimal invariant (POI) test of King (1980, 1985, 1988), the locally best

invariant (LBI) test of Nyblom and Makelainen (1983), King and Hillier (1985),

Leybourne and McCabe (1989) and Nyblom (1989).

The wide applicability of the CUSUM and CUSUM-of-squares tests has to be

set against several drawbacks from which they suffer, as has become increasingly

clear.1 The discussants of the original Brown et al. (1975) paper had already de-

tected some potential factors that might affect the distribution of the test statis-

tics under the null hypothesis of parameter stability or under the alternative of

parameter variation, thereby affecting size and power respectively. Subsequent

papers have investigated these issues further. Below we summarise in chronologi-

cal order the main studies concerned with factors that are likely to affect the size

of the test.

Smith (1975) and Quandt (1975) raised the question whether the null distri-

butions might be affected by the presence of a serially correlated error. Brown et

al. (1975) had speculated that these effects are likely to be substantial. Priest-

ley (1975) pointed out that that these tests require the regressors to be non-

stochastic. This rules out lagged dependent variables on the right-hand side of

the regression, thus making the applicability of the tests in the context of general

dynamic models questionable. In this respect, one should note that the effects

of a non-exogenous regressor on their null distribution might be significant. If

the regressor is non-exogenous, then the OLS estimator is inconsistent, which in

turn implies that the residual is not a consistent estimator of the regression er-

ror. Kramer et al. (1988) examined whether the CUSUM and CUSUM-of-squares

tests generalise to dynamic models. They crucially assumed that the regression

1Note that the other tests mentioned in the text also have several shortocomings, as shown
in the literature (see, e.g., Moryson, 1998). However, most of the criticisms refer to their low
power, whilst the focus in this paper is on the size of the test (see below).
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error is a martingale difference sequence with respect to the σ− fields generated

by contemporaneous and past regressors and the past regression errors. Theorem

1 (pp. 1358) proves that the null distribution of the CUSUM test remains asymp-

totically the same regardless of whether or not a lagged endogenous variable is

included in the set of regressors. However, their analysis is not informative about

how the presence of a non-exogenous regressor might affect the properties of the

CUSUM test, since it is based on the assumption that the regression error is

orthogonal to the set of regressors.

More recently, Hansen (2000) raised a general issue concerning tests for param-

eter constancy (including the CUSUM and CUSUM-of-squares tests), i.e. whether

they can distinguish between instability in the regression parameters and insta-

bility in the process driving the regressors. This question is related to the concept

of superexogeneity, according to which a necessary condition for a regressor to be

superexogenous with respect to a parameter of interest is that the parameters of

the conditional moment be stable even if the parameters of the marginal model

change. Such a property is known as structural invariance (see Engle et al., 1983).

According to Hansen (2000), the tests suffer from size distortions when a change

in the parameters of the marginal process occurs.

He also proposed a variation of the CUSUM test for parameter stability in

the context of a cointegrating regression (see Hansen, 1992), and showed that

it can be seen as testing the null of cointegration against the alternative of no-

cointegration. Further, the modifications required for its validity involve removing

nuisance parameter dependencies which characterise the simple OLS estimator

under cointegration. These second-order effects are present if the regressor is not

strictly exogenous, and if the regression error is serially correlated. It should be

obvious, therefore, that the null distribution of the CUSUM test depends on the

type of regression, i.e. stationary or cointegrated. The effects of a non-exogenous

regressor are also different: first-order effects are present in the former case (the

OLS estimator is inconsistent), but second-order ones in the latter (the OLS

estimator is superconsistent, but its asymptotic distribution contains nuisance

parameters). This means that, in the presence of a non-exogenous regressor, the

residuals are not consistent estimates of the regression errors in the stationary

case, but they are so in the cointegrating case. Consequently, it is worthwhile to

examine any possible changes in the size of the CUSUM test as one moves from

a stationary to a cointegrating environment.

This paper sheds further light on the size properties of the CUSUM and

CUSUM-of-squares tests by conducting a number of Monte Carlo experiments. 2

2The power properties of these tests have been investigated in a number of papers. For
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In particular, we examine possible deviations of the empirical from the nominal

size when:

1) The regressor in not exogenous, and exhibits various degrees of persistence,

ranging from a white noise process to a random walk (in the latter case, the

regression becomes a cointegrating one).

2) The regression error is serially correlated, both in a stationary and in a

cointegrating environment. We isolate the effects of serial correlation by assuming

that the regressor is exogenous.

3) The regressor is subject to structural change.

The layout of the paper is the following. Section 2 describes the Data Gen-

eration Process (DGP) considered in the analysis. Section 3 presents the Monte

Carlo evidence. Section 4 summarises the main findings and briefly discusses their

implications for the applied researcher.

2 The Model

Let zt and ut be two bivariate processes, with zt = [yt, xt]
> and ut = [u1t, u2t]

>,

and let the Data Generation Process (DGP) for yt be the following:

yt = θxt + u1t (1)

xt = ρxt−1 + u2t (2)

Next, assume that ut follows a stable VAR(1) process:(
u1t

u2t

)
=

(
a11 a12

a21 a22

)(
u1t−1

u2t−1

)
+

(
e1t

e2t

)
(3)

and (
e1t

e2t

)
˜NIID

[(
0

0

)(
σ11 σ12

σ12 σ22

)]
(4)

Both eigenvalues of the matrix A = [aij], i, j = 1, 2 are assumed to be less than

one in modulus. This means that ut is a stationary process (I(0)). If ρ < 1, then

(1) is a stationary regression, whereas if ρ = 1, (1) is a cointegrating regression.

instance, Kendall (1975) questioned their ability to distinguish betwen changes in regression
coefficients and residual variance. Kramer et al.. (1988) showed that their local power depends
on the angle between structural shift and mean regressor. Hansen (1991) presented evidence
that neither test can detect changes in the slope coefficient in the case of a zero-mean regressor.
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Therefore, the ”cointegrability” of the system depends solely on the parameter ρ.

The DGP (1) - (4) implies the following:

Stationary case: ρ < 1.

a) The condition for xt to be predetermined in the context of (1) amounts to

a12 = σ12 = 0. If either a12 or σ12 are different from zero, then application of OLS

to (1) result in inconsistent estimates of θ. Concerning the degree of persistence

of the regressor, as measured by ρ, Ploberger and Kramer (1992) have shown that

the limit distributions of the CUSUM and CUSUM-of-squares test statistics are

asymptotically invariant to the limit behaviour of the regressor.

b) The regression error u1t admits an ARMA(2,1) representation. Specifically,

after some tedious algebra, one can show that

u1t − (a11 + a22)u1t−1 + (a11a22 − a21a12)u1t−2 = ε1t + γ1ε1t−1 (5)

where ε1t is i.i.d with

var(ε1t) =
σ11(1 + a2

22)− 2σ12a22a12 + σ22a
2
12

1 + γ2
(6)

and γ solves

σ11a22γ
2 +

(
σ11(1 + a2

22)− 2σ12a22a12 + σ22a
2
12

)
γ + a22σ11 = 0 (7)

This means that a sufficient condition for the regression error u1t to be serially

uncorrelated is A = 0. If A 6= 0, then, in general, the regression error u1t will be

serially correlated. The implications of serial correlation are different for the case

ρ < 1 and ρ = 1 respectively (see below).

c) Let us turn now to the issue of structural invariance, which implies that the

parameters of the conditional model remain unchanged even when those of the

marginal model change. Assume that the regressor xt in (1) is weakly exogenous

for θ in the sense of Engle et al. (1983). It is easy to show that, with ρ < 1, the

necessary and sufficient condition for weak exogeneity is given by a12 = a21 =

σ12 = 0, i.e. weak exogeneity coincides with strict exogeneity for this particular

model. Moreover, if the error is serially uncorrelated, i.e. a11 = 0, then A = 0, and

the conditional expectation E(yt | xt, Ft−1) becomes equal to θxt (where Ft−1 is

the σ−field generated by the past values of yt and xt), namely (1) coincides with

the conditional model. In this case the variance of the regressor error is equal to

σ11. This means that the parameters of the conditional model are θ and σ11, whilst

those of the marginal model are ρ and σ22. Obviously, structural invariance holds

for this parameter configuration, as the parameters of the conditional and of the
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marginal model are not related in any way. Consequently, xt is superexogenous for

θ in the context of (1). Under these circumstances, the CUSUM or CUSUM-of-

squares tests should not be affected by structural breaks in the marginal model.

If, in the presence of a structural shift in ρ, say, the percent rejections of the tests

exceed the nominal size, then the tests reject the true null of parameter stability

too frequently, thus being over-sized.

Let us now assume that structural invariance fails, with A 6= 0 and σ12 6= 0.

Then, the conditional model that corresponds to the DGP (1) - (4) is no longer

(1) but rather the following dynamic regression:

yt = θ1xt + c1yt−1 + c2xt−1 + c3xt−2 + νt (8)

where

θ1 = θ +
σ12

σ22

(9)

c1 = a11 − a21
σ12

σ22

(10)

c2 = a12 −
σ12

σ22

(a22 + ρ− a21θ)− a11θ (11)

c3 = (a22
σ12

σ22

− a12)ρ (12)

V ar(νt) ≡ σ2
ν = σ11 −

σ2
12

σ22

(13)

The ‘exogeneity status of xt in (8) is different from that in (1). In the latter

regression xt is neither strictly nor weakly exogenous for θ. On the other hand,

in the context of the regression model (8) xt is predetermined, in the sense that

E(νt+ixt) = 0, ∀i ≥ 0, implying that the parameters of this model can be con-

sistently estimated by OLS. It should be noted, however, that if the parameter

of interest is still θ, then xt is not weakly exogenous for θ even in the context

of (8), since, as implied by equations (9)-(12), θ cannot be identified from the

parameters of the conditional model alone.3 Nevertheless, we focus on the con-

ditional model (8) instead of the static model (1)4 in order to isolate the effects

3The necessary condition for weak exogeneity is restored if either ρ = 1 or a12 = σ12 = 0.
4We could argue that the parameters of interest are now the parameters of the conditional

model themselves.
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of structural change in the parameters of the marginal model on the properties

of the CUSUM test applied to the conditional model, when structural invariance

fails. The reason is that the dynamic model, as opposed to the static (1), is not

contaminated by other types of misspecification arising, say, from non-orthogonal

regressors and serially correlated errors.

The marginal model for xt can be written as:

xt = λ1xt−1 + λ2xt−2 + λ3yt−1 + e2t (14)

where

λ1 = ρ− a21θ + a22 (15)

λ2 = −a22ρ (16)

λ3 = a21 (17)

Assume now that the parameter ρ undergoes structural change as a result

of a change in the persistence of the regressor. The parameters of the marginal

model λ1 and λ2 will also change according to equations (9) and (10) respectively.

Furthermore, the parameters of the conditional model c2 and c3 will be affected

according to (11) and (12) respectively. In other words, the conditional model is

not structurally invariant with respect to these specific changes in the parameters

of the marginal model. Similarly, if the parameter of the marginal model λ3 = a21

changes (with all the other parameters in the DGP constant), this will induce

a change in the parameters of the conditional model c1 and c2. Moreover, if

the variance σ22 of the marginal model changes, then all the parameters of the

conditional model, including the variance of the conditional model σ2
ν , will also

change according to (9)- (13). This means that, if a researcher applies the CUSUM

or CUSUM-of-squares test to the correct model (8), then he should expect a

rejection of the null hypothesis of parameter stability if one of the parameters

of the marginal process has shifted. In such a case, if the percent rejections of

the CUSUM or CUSUM-of-squares tests exceed their nominal sizes, this evidence

should be interpreted not as an indication that the tests are over-sized, but rather

in terms of their power, since the null hypothesis is obviously false.

Cointegration case: ρ = 1.

If ρ = 1 the DGP (1)-(4) becomes the triangular cointegration system anal-

ysed by Phillips and his co-authors in a series of papers (see, for example, Phillips
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1988, Phillips and Hansen 1990). In this context, the effects of a non-exogenous

regressor are different from those in the stationary case. Applying OLS to (1)

yields superconsistent estimates of θ, regardless of the values of A and σ12. This

means that the OLS residuals û1t are consistent estimates of the regression er-

ror u1t. Nevertheless, ‘second-order’ asymptotic bias effects are present in the

asymptotic distribution of the OLS estimator. To be more precise, let us define

the long-run covariance matrix Ω and the one-sided covariance matrix ∆ given

by

Ω = (I − A)−1Σ(I − A>)−1 (18)

∆ = G(I − A>)−1 (19)

where Σ denotes the innovations covariance matrix of the VAR, and G is the

unconditional covariance matrix of ut given by

vecG = (I − A⊗ A)−1vecΣ (20)

One can now distinguish two nuisance parameters in the asymptotic distribution

of the OLS estimator. The first is the parameter, ω12/ω22, that describes the

”long-run correlation” effect, due to the non-diagonality of the long-run covariance

matrix Ω = [ωij] , i, j = 1, 2. The second is the parameter δ21 =
∑∞

k=0 E(u20u1k),
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that corresponds to the ”endogeneity” effect.5 The presence of these second-order

effects requires a modification of the standard CUSUM and CUSUM-of-squares

tests in order to correct for endogeneity and serial correlation, along the lines

suggested by Xiao and Phillips (2002). Nevertheless, it is easy to show that, if

a12 = a21 = σ12 = 0, the asymptotic nuisance parameters are zero and standard

OLS is optimal. In other words, the presence of a serially correlated error, that is

a11 6= 0, has no effects asymptotically on OLS, as shown by Kramer (1986) and

Park and Phillips (1988). Unlike in the stationary case, under the assumption that

the regressor is strictly exogenous, serial correlation has no asymptotic effects on

the null distributions of the CUSUM and CUSUM-of-squares test statistics.

As for structural invariance, similar considerations to those for the stationary

5Using some tedious algebra, it can be shown that ω12/ω22 and δ21 are related to the
parameters of the VAR as follows:

ω12 = k2
1 {σ12[(1− a11)(1− a22) + a12a21] + a12σ22(1− a11) + a21σ11(1− a22)} (21)

ω22 = k2
1

{
a2

21σ11 + 2a21(1− a11)σ12 + (1− a11)2σ22

}
(22)

and

δ21 = k2[σ11a21ζ1 + σ12ζ2 + σ22a12ζ3] (23)

where

ζ1 = −a11 − a12a21a22 + a11a
2
22 + a11a22 + a12a21a

2
22 − a11a

3
22 − a12a21 + (24)

+a2
12a

2
21 − a11a21a22a12

ζ2 = a2
12a

2
21 − 1 + a2

11 + a2
22 − a2

11a
2
22 − a2

12a
2
21a22 + a22 − a2

11a22 − a3
22 + (25)

a2
11a

3
22 − 2a11a

2
21a

2
12 − 2a21a22a12 + 2a2

11a21a22a12

ζ3 = −a11a21a12 − a22 + a2
11a22 + a11a21a22a12 + a2

22 − a2
11a

2
22 − 1 + a2

11 + (26)

a21a12 + a2
11a21a12 + a11a22 − a3

11a22

and

k1 = [det(I −A)]−1 (27)

k2 = [(−1 + detA)(det(I −A))2(1 + trA+ detA)]−1 (28)
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case apply. The only difference is that structural change in the marginal process

cannot arise from a change in ρ, since now this parameter is fixed to unity. Of

course, one can consider a change in the parameter λ2 = −a22 affecting c2 and

c3, or in λ3 = a21 affecting c1 and c2, or in σ22 affecting all the parameters of the

conditional model.

3 Monte Carlo Results

This section reports on Monte Carlo simulations aimed at investigating the is-

sues discussed above and their implications for the size properties of the CUSUM

and CUSUM-of-squares tests. The only parameter kept fixed in all the experi-

ments that follow is θ = 1. We generate 2000 series of length 150, starting with

u10 = u20 = 0, and then discard the initial 50 observations, thus obtaining a

sample size of 100. We consider four different cases, and for each of them report

the percent rejections produced by the CUSUM and CUSUM-of-squares tests

for the hypothesis of parameter stability in the context of both the static (and

often heavily misspecified in a number of ways) regression (1) and the dynamic

regression (8).

Case I: Benchmark Case

Here we assume that A = 0, and σ12 = 0. We also set σ11 = σ22 = 1. This is a

case where the conditional expectation is equal to θxt. This means that the static

regression (1) is the correct model, whereas the dynamic (8) is over-specified. No

serial correlation or endogeneity effects are present. We set ρ = 0.5 (the stationary

case) and ρ = 1 (the cointegration case). The results are reported in Table 1. It

can be seen that the empirical sizes of both tests are close to their nominal 5%

value in both the stationary and the cointegration case. This is hardly surprising,

since, even with ρ = 1, the OLS estimator in the case of the correct model (1)

is the optimal estimator, and the modifications in the spirit of Xiao and Phillips

(2002) are redundant.

Case II: Non-exogenous Regressor

In this case, it is still assumed that A = 0, but σ12 now differs from zero.

This means that, in the context of the static regression (1), the regressor xt is

not predetermined, even though the error u1t is serially uncorrelated. On the

other hand, it is predetermined (and weakly exogenous for the parameters of

the conditional model, though not for θ) in the context of the ADL model (8),

and the regression error νt is, of course, serially uncorrelated. Nevertheless the
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ADL model (8) is still over-specified, since the correct conditional expectation is

given by yt = θ1xt + c2x, where c2 = σ12

σ22
ρ . In order to examine the effects of

different ”degrees” of endogeneity on the size properties of the tests under study,

we consider the following values of σ12 : σ12 = 0.3, 0.5, 0.7, 0.9. The results are

reported in Table 2, again for ρ = 0.5 and ρ = 1. They can be summarised as

follows:

1) The CUSUM-of-squares test is robust to the presence of σ12 6= 0 for both

ρ = 0.5 (the stationary case) and ρ = 1 (the cointegration case), since, although

applied to the misspecified equation (1), it does not exhibit size distortions. It

appears, therefore, that this source of misspecification does not affect the test in

either a stationary or a cointegrating environment.

2) A different picture emerges for the CUSUM test. Here there are important

differences between the two cases of a stationary or a cointegrating static regres-

sion. In the stationary case the size of the test applied to (1) remains close to the

nominal one for all values of σ12. If, however, ρ = 1, then the test is over-sized,

with the size distortion proportional to the endogeneity effect as measured by

σ12. For example, for σ12 = 0.7 the nominal size is 28.27 and 4.90 percent for

ρ = 1 and ρ = 0.5 respectively.

3) Nevertheless, the CUSUM test performs satisfactorily, even if ρ = 1, when

the test is applied to the dynamic model (8). The explanation is that this model,

unlike the static model (1), deals with the second-order endogeneity effects arising

from σ12 6= 0 in a parametric way, and hence they are not present in the residuals.

We also find that the non-parametric corrections for the CUSUM test, suggested

by Xiao and Phillips (2002), reduce the size distortions to a satisfactory level

(these results, not reported, are available on request).6 The implication is that,

when testing the stability of a cointegration model by means of the CUSUM test,

it is preferable to use the dynamic model (8) instead of the static model (1), unless

one is willing to undertake the additional computational burden entailed by the

Xiao and Phillips (2002) procedure. This is because the OLS-based CUSUM test

misinterprets the second-order effects as parameter instability, thus leading to

erroneous rejections of the null.

4) Finally, rather surprisingly, there appears to be no evidence that the CUSUM-

of-squares test is affected by second-order effects when applied to (1) for ρ = 1 -

a finding for which there is no obvious explanation.

Case III: Serially Correlated Regression Error

In this case it is again assumed that xt is predetermined in the context

6Note that these modifications work well even if the choice of the bandwidth parameter,
needed to implement them, is not optimal.
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of the static regression (1), which implies that a12 = σ12 = 0. We also set

a21 = 0. For this parameter settings, the conditional expectation is equal to

θxt + c1yt−1 + c2xt−1, where c1 = a11 and c2 = −a11θ. Of course, in the context of

the conditional model, xt is weakly exogenous for θ, and the regression error νt is

serially uncorrelated.7 In order to examine the effects of different degrees of serial

correlation on the size properties of the tests we consider the following values of

a11 : a11 = 0.3, 0.5, 0.7, 0.9. The results are reported in Table 3, again for ρ = 0.5

and ρ = 1. The main findings are the following:

1) In the stationary case ρ = 0.5, the effects of serial correlation on the size

(especially in the case of the CUSUM test) are significant. As the degree of serial

correlation increases, so does the size in the context of the static regression (1),

reaching the value of 86.77 and 68.37 percent for the CUSUM and CUSUM-of-

squares tests respectively. The implication is that, when testing for parameter

stability in the context of a regression model with a serially correlated error, the

researcher will erroneously infer that the model parameters are unstable.

2) In the cointegration case ρ = 1, a similar picture emerges. Both tests are

considerably over-sized, although slightly less so than in the stationary case.8

This is a rather surprising result in view of the fact that the effects of a serially

correlated error on the estimation of a cointegration parameter are asymptotically

negligible if the regressor is strictly exogenous (as in the present case - see Kramer

1986, Park and Phillips 1988). It should be noted that the Xiao and Phillips (2002)

modifications do not improve substantially the size behaviour of the tests (these

results are not reported, for reasons of space, but are available on request). For

example, for a11 = 0.7 the size of the OLS-based CUSUM test is 50.20 percent,

whereas the size of the ADL-based is 44.67 percent. This is hardly surprising,

since in this case a12 = σ12 = a21 = 0, and therefore both the nuisance parameters

ω12/ω22 and δ21 are already equal to zero, implying that there is no possible gain

from using the modifications.

3) In the context of the dynamic model (8) both tests (particularly the

CUSUM-of-squares) perform well in both environments, i.e. for ρ = 0.5 and

ρ = 1. Again, if one utilises the correct regression model, their performance is

satisfactory.

Case IV: (Lack of) Structural Invariance

The final set of experiments focuses on the role of structural invariance. One

would expect that, if this property holds, i.e. if changes in the parameters of

7Note that since a21 = 0, xt is also strongly exogenous for θ.
8In the interpretation of Xiao and Phillips (2002), they reject too frequently the null hy-

pothesis of cointegration.
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the marginal model do not cause corresponding changes in the parameters of

the conditional model, the percent rejections of the null hypothesis of parameter

constancy (of the conditional model) should not be higher than the nominal ones

for either the CUSUM or the CUSUM-of-squares tests. We consider the following

cases:

(a) Structural Invariance: A = 0, σ12 = 0. For this parameter setting the static

model (1) is the conditional model, whose parameters are θ and σ11. The marginal

model is xt = ρxt−1 + u2t, with parameters ρ and σ22. In this case structural

invariance holds. We introduce a shift in the parameter ρ of the marginal model,

which is set equal to 0.3 in the first half of the sample, and to 0.7 in the second

half. This shift in ρ does not affect the conditional parameters θ and σ11, and

hence should not affect the size properties of the tests under study. The results are

reported in Table 4A. It can be seen that both tests, whether they are applied

to the correct static (1) model or to the over-specified dynamic one (8), have

empirical sizes close to the corresponding nominal ones, confirming our prior that

the size properties should be robust to changes in the marginal parameters in the

presence of structural invariance.

We also adopt the following experimental design: we keep ρ constant for the

whole sample, and change the other parameter of the marginal model, i.e. σ22.

This allows us to examine the effects of a structural change in the marginal

model in both a stationary and a cointegrating framework (unlike in earlier cases

where ρ was allowed to change - then we could not analyse the latter case, since

cointegration requires ρ to be equal to one in the whole sample). Specifically, we

set σ22 = 1 in the first half of the sample, and σ22 = 2 in the second half. The

results are reported in Table 4B. The empirical sizes are close to the nominal

ones in both the stationary case ρ = 0.5 and the cointegration one ρ = 1, and for

both the static model (1) and the over-specified dynamic one (8). Again, despite a

change in the marginal process, structural invariance ensures that the tests retain

good size properties. Note that in the cases under study xt is superexogenous for

θ.

We also examine the robustness of the CUSUM and CUSUM-of-squares tests

to a very large shift in σ22 = 1, i.e. from 1 in the first half to 10 in the second half

of the sample. The results, reported in Table 4C, show that even such a sizeable

change in the parameters of the marginal model does not affect the properties of

the tests in the presence of structural invariance.

Further, we analyse the general case of structural invariance with A 6= 0

and σ12 6= 0, the parameter settings being such that the conditional model is

not affected by the shift in the underlying DGP parameters, whilst the marginal
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model is. Specifically, consider the following parameter settings for the first half

of the sample: a11 = 0.4, a12 = 0.7, a22 = 0, a21 = 0.2, σ12 = 0.7, σ11 = σ22 = 1,

ρ = 0.5. Then the parameters of the marginal model will be equal to λ1 = 0.36,

λ2 = 0, λ3 = 0.2, σ22 = 1, whilst those of the conditional model will be equal to

θ1 = 1.4, c1 = 0.26, c2 = 0.168, c3 = −0.35 = σ2
ν = 0.51. Assume that there is a

shift in the middle of the sample in the following parameters: a11 = 0.61, a12 =

0.98, a22 = 0.4, a21 = 0.5, σ12 = 1.4, σ11 = 1.49, σ22 = 2, ρ = 0.5. This will result

in λ1 = 0.55, λ2 = −0.2, λ3 = 0.5, σ22 = 2. As one can see, the parameters of the

marginal model have changed, whereas those of the conditional model have not -

in other words, structural invariance holds.

We have also investigated the effects of the same parameter shifts when ρ = 1

instead of ρ = 0.5, the values taken in the first subsample by the parameters of the

conditional model now being θ1 = 1.4, c1 = 0.26, c2 = −0.182, c3 = −0.70 = σ2
ν =

0.51, and by those of the marginal model λ1 = 0.86, λ2 = 0.0, λ3 = 0.2, σ22 = 1.

The shifts do not affect the conditional model parameters, but the marginal ones

change to λ1 = 1.05, λ2 = −0.4, λ3 = 0.5, σ22 = 2 in the second subsample. The

results for both the stationary and the cointegration case are presented in Table

4D. It appears that structural invariance holds again, as the percent rejections

for both tests in the context of the correctly specified dynamic model (8) are

always close to the nominal ones. Let us analyse the consequences of using the

misspecified static model (1). It is apparent that its parameters, σ2
u and θ, change

as a result of the shift. This is clearly the case for the former, as suggested by

equations (5)-(7). As for the latter, although the shift does not affect it directly,

it does affect the limiting parameter to which the OLS estimator applied to (1)

converges. This point can be illustrated by noting that, if one applies OLS to

(1), then this estimator, say θ̂LS, will converge in probability to θ + θ̃, where θ̃

denotes the asymptotic bias due to the presence of a non-predetermined regressor.

It is easy to show that θ̃ is a function of the parameters of the DGP changing

between regimes. Therefore, although θ itself does not change, θ̂LS does as a result

of the shift in the DGP parameters, and so do the residuals on which the tests

are based. The static regression (1) is also misspecified in other ways. First, the

regression error u1t is serially correlated in both subsamples, with different degrees

of autocorrelation. For instance, the first and second autoregressive coefficients,

(a11 +a22) and (a11a22−a21a12) respectively, are equal to 0.4 and -0.14 in the first

half of the sample, and to 1.01 and -0.146 in the second. Second, the regressor xt

is not predetermined in either case (a12, σ12 6= 0 in both subsamples). Therefore,

one would expect both the CUSUM and CUSUM-of-squares tests to reject the

null when carried out in the context of the static regression (1). However, it
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cannot be established whether such rejections are due to parameter instability

(the correct reason for rejecting), or to other types of misspecification (the wrong

reason). Indeed, the evidence presented in Table 4D confirms our conjecture that

the tests will reject the null hypothesis quite often, especially if ρ = 1. This is

in sharp contrast to their behaviour when applied to the correctly specified and

structurally invariant ADL model (8).

To summarise, these tests appear to reject the null when it is false (in the

case of the static model), and not to reject it when it is true (in the case of the

dynamic model). As already mentioned, the rejections in the former case might

reflect several types of misspecification, such as serial correlation (primarily) or

endogeneity, as well as parameter instability. We have reported earlier that au-

tocorrelated errors mainly affect the empirical size of both tests, whereas the

strongest effects of endogeneity occur in the case of the CUSUM test when coin-

tegration holds. These findings might be interpreted as an indication that the

tests under examination tend not to reject the null of parameter stability unless

some other form of misspecification is also present. Consequently, although it is

a desirable property that they should reject in the context of the static model

(which is indeed characterised by parameter instability), they are not informa-

tive about the specific reason behind such rejections, which could be one of many

forms of misspecification. Similarly, it is desirable that they should not reject

when applied to a correctly specified structurally invariant model (i.e. the ADL),

since the null in this case is true. But the question remains whether such be-

haviour is a consequence of a general tendency not to reject in the presence of

any type of misspecification (which might not be linked at all to parameter varia-

tion). To address these issues, we investigate next the performance of these tests

when the dynamic ADL model is not structurally invariant and the only source

of misspecification is instability in the parameters of the conditional model.

b) No Structural Invariance. Consider the following parameter settings for the

first half of the sample: a11 = 0.7, a12 = 0.7, a22 = 0, a21 = 0.3, σ12 = 0.7, σ11 =

σ22 = 1, ρ = 0.5. The corresponding conditional model parameters are equal to

θ1 = 1.4, c1 = 0.49, c2 = 0.007, c3 = −0.35, σ2
ν = 0.51. Assume a permanent shift

in the middle of the sample in the following DGP parameters: a11 = 0.9, a12 =

0.0, a22 = 0.0, a21 = 0.7, σ12 = 0.0, σ11 = 4, σ22 = 2, ρ = 0.5. As a result, the

conditional model parameters will become equal to: θ1 = 0.7, c1 = 0.90, c2 =

-0.63, c3 = 0.00, σ2
ν = 4, i.e. structural invariance does not hold. Consequently,

the CUSUM and CUSUM-of-squares tests should reject the null hypothesis of

parameter stability if applied to the dynamic regression (8). To put it differently,

the desirable behaviour of these tests in this particular case is that they should
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”reject” as often as possible - and the percent rejections of the null should be

interpreted in terms of ”power” instead of size”. Note, once again, that here the

only form of misspecification is parameter instability: the ADL model does not

have either a serially correlated error or a non-predetermined regressor.

Similar considerations apply when the tests are applied to the static model (1).

This model is misspecified in several ways other than parameter instability: serial

correlation of the error ut (in both subsamples) and endogeneity of the regressor

(in the first subsample) are both present. Therefore, rejections of the null do not

lend themselves to a unique interpretation. The results for both the stationary

and the cointegration case are shown in Table 4E, and can be summarised as

follows:

(i) The CUSUM test lacks any power to detect the break that has occured in

the parameters of the correct (ADL) conditional model, this being true in both

the stationary and the cointegration case. In fact, its ”power” appears to be more

or less equal to its nominal size. On the contrary, the CUSUM-of-squares test

is extremely powerful and rejects the false null in 100% of the cases, whether a

stationary or a cointegration environment is considered. This is not a surprising

finding, given the very large step change in the variance of the regression error σ2
v,

from 0.5 in the first to 4 in the second subsample. These results are in agreement

with those of Ploberger and Kramer (1990) and Hansen (1991), who argue that

neither test has asymptotic power to detect shifts in the slope parameters. Specif-

ically, the CUSUM test has local asymptotic power to detect shifts only in the

intercept, and the CUSUM-of-squares test only in the variance of the regression

error.

(ii) When the tests are applied to the misspecified static model (1), the

CUSUM test rejects more frequently (especially in the case of cointegration) than

it did in the context of the correctly specified ADL model. This can be seen as

further evidence that forms of misspecification other than parameter instability

cause the test to reject: here the null of parameter instability is correctly rejected,

but for the wrong reasons (serial correlation, endogeneity, etc.) The rejection fre-

quencies for the CUSUM-of-squares test are also high, but can more plausibly

be attributed to the correct reasons, as (a) it is the variance of u1t which has

changed, and therefore the test has a natural advantage over its CUSUM version

to reject for the right reasons, and (b) according to the results presented in Tables

2 and 3, it is less affected than the CUSUM test by misspecification in the form

of serial correlation or endogeneity.

Finally, we assume that the parameters of the DGP change in such a way as to

affect the slope parameters of the conditional model, but at the same time leave
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the variance of the error σ2
ν unaffected. The motivation is the following. In the

previous experiment, allowing σ2
ν to change whilst keeping the intercept constant

meant that the CUSUM-of-squares test had an obvious advantage, as it is well

known that this test has more power to detect shifts in the former relative to

the CUSUM test, which performs better in detecting changes in the latter (see

Hansen, 1991). Therefore, a fairer comparison between the performance of the

two tests in the presence of a shift in the slope parameters of the conditional

model can be made by keeping the variance of the error constant. Specifically,

we assume that the parameters of the DGP in the first subsample are the same

as in the previous case, whilst in the second one they are set equal to: a11 = 0.9,

a12 = 0, a22 = 0, a21 = 0.7, σ12 = 1.732, σ11 = σ22 = 2. For the stationary case

ρ = 0.5. The parameters of the conditional model are equal to θ1 = 1.4, c1 =

0.49, c2 = 0.007, c3 = −0.35, σ2
ν = 0.51 in the first subsample, and change to

θ1 = 1.566, c1 = 0.294, c2 = −0.638, c3 = 0, σ2
ν = 0.51 in the second one. Similar

parameter shifts are introduced for the cointegration case ρ = 1. The results

are reported in Table 4F. It is apparent that the CUSUM-of-squares test has a

superior performance: it has satisfactory power to detect parameter instability

even when the conditional variance is kept constant. For instance, for ρ = 0.5,

and in the context of the correctly specified ADL model, the percent rejections

of the CUSUM and CUSUM-of-squares tests are 5.70 and 65.44 respectively. In

the cointegration case, with ρ = 1, the corresponding figures are 6.30 and 68.17.

Given the other types of robustness of the CUSUM-of-squares test already

documented, one can conclude that this test is more reliable to detect parameter

instability. It is important to note that its power to detect shifts in the slope

parameters of the ADL model (even when the conditional variance is constant)

increases further if the breaks occur later in the sample. For instance, if the shift

takes place after 75 (rather than 50, as previously) observations, its power is 94.56

and 94.98 percent in the stationary and cointegration case respectively. This is

in constrast to the findings of Kramer et al. (1988), who argued that ”power

decreases as the shift moves toward the end of the sample”. Instead, we find a

significantly lower power when the shift occurs after 25 observations (34.56 and

35.89 percent only in the two cases), i.e. as one moves towards the beginning of

the sample (the full set of results is not reported for reasons of space). Also note

that the power of this test is approximately equal to its nominal size regardless

of the point where the shift occurs.
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4 Conclusions

This paper has investigated by means of Monte Carlo techniques the size proper-

ties of the CUSUM and CUSUM-of-squares tests (see Brown et al., 1975), which

are widely used in empirical applications because they are appropriate to test pa-

rameter instability against a variety of alternatives, but have been subjected to

various criticisms concerning their performance both in terms of size and power

(see, e.g., Kendall, 1975, Priestley, 1975, Kramer et al, 1988, Hansen, 1991). Our

findings, which have important implications for the applied researcher, suggest

the following.

The CUSUM-of-squares test is very robust to the presence of non-predetermined

(endogenous) regressors in both a stationary and a cointegration environment. In-

stead, the CUSUM test is robust only in the former case, whilst it is characterised

by large size distortions in the latter. These are proportional to the degree of cor-

relation between the regression error and the regressor. Further, serial correlation

has serious consequences in all cases, the CUSUM-of-squares test also being more

robust to the presence of weakly serially correlated errors.

The implication is that it is preferable to use these tests in the context of

a dynamic model of the ADL type, which is not affected by serial correlation

or non-predetermined regressors even if over-specified. In this case, the empiri-

cal sizes of both tests are close to the nominal ones, whether a stationary or a

cointegration environment is considered. This means that another advantage of

performing cointegration analysis using the ADL framework is the availability

of robust stability tests not requiring the modifications suggested by Xiao and

Phillips (2002). Although such tests are not directly interpretable as tests for

the null of cointegration, stability of the ADL parameter is a pre-requisite for

cointegration.

The two tests being considered are also robust to changes in the parameters

of the marginal process provided that structural invariance holds. In other words,

they do not misinterpret shifts in the marginal process as changes in the param-

eters of the conditional model, i.e. the frequency of a type-I error is not higher

than that implied by the nominal size. Structurally invariant parameters will be

obtained by employing the appropriate conditional model, i.e.the dynamic ADL

model, but not using a static model. For this reason, and also because such a

model is misspecified in ways that favour rejections, the percent rejections will

be higher.

When structural invariance fails, the CUSUM test is unable to detect parame-

ter instability even if this is substantial and present in both the slope parameters
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and the variance of the regressor error. It tends to reject the null only if other

forms of misspecification are also present, and hence is more useful as a test for

serial correlation, say, than for parameter instability. Therefore, a rejection can

only be seen as a general indication of misspecification rather than a specific sign

of parameter variation. However, as is well known, this test does have power to

detect intercept shifts (see Hansen, 1991). By constrast, the CUSUM-of-squares

test is very powerful to detect changes in the conditional model parameters if the

variance of the regression error is included in the set of shifting parameters. Its

power is considerable even if this parameter is constant, especially towards the

end of the sample.

In brief, our findings imply that the CUSUM-of-squares test should always be

used in the context of a generalised dynamic ADL model, and never applied to a

static model. Its performance is satisfactory in both stationary and cointegration

environments. Importantly, it does not misinterpret shifts in the marginal process:

if it is carried out within a dynamic ADL model, rejections of the null are highly

likely to reflect actual parameter instability.
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TABLE 1 
Benchmark Case, A=0, Σ=Ι. 

Percent Rejections of the Null Hypothesis of Parameter Stability 
 

 CUSUM CUSUM-SQ 
 ρ=0.5 

OLS 4.20 5.43 
ADL 4.37 5.83 

 ρ=1 
OLS 3.77 5.43 
ADL 4.50 5.83 

 
 

TABLE 2 
Endogeneity: A=0, σ12≠0 

Percent Rejections of the Null Hypothesis of Parameter Stability 
 
 CUSUM CUSUM-SQ 
 ρ=0.5, σ12=0.3 

OLS 4.03 5.43 
ADL 4.07 5.77 

 ρ=1, σ12=0.3 
OLS 8.17 4.77 
ADL 5.63 5.87 

 ρ=0.5, σ12=0.5 
OLS 4.63 5.67 
ADL 4.20 5.90 

 ρ=1, σ12=0.5 
OLS 15.00 5.63 
ADL 4.97 5.50 

 ρ=0.5, σ12=0.7 
OLS 4.90 5.87 
ADL 4.73 6.17 

 ρ=1, σ12=0.7 
OLS 28.27 5.13 
ADL 4.70 5.50 

 ρ=0.5, σ12=0.9 
OLS 7.40 5.70 
ADL 4.20 5.50 

 ρ=1, σ12=0.9 
OLS 46.53 5.50 
ADL 4.57 5.27 
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TABLE 3 
Serial Correlation:  a11≠0 

Percent Rejections of the Null Hypothesis of Parameter Stability 
 
 CUSUM CUSUM-SQ 
 ρ=0.5, a11=0.3 

OLS 16.40 8.67 
ADL 5.07 5.90 

 ρ=1, a11=0.3 
OLS 14.07 9.03 
ADL 5.07 6.33 

 ρ=0.5, a11=0.5 
OLS 31.73 15.80 
ADL 5.53 6.17 

 ρ=1, a11=0.5 
OLS 27.97 16.50 
ADL 6.13 6.37 

 ρ=0.5, a11=0.7 
OLS 56.11 33.83 
ADL 6.80 6.30 

 ρ=1, a11=0.7 
OLS 50.20 34.20 
ADL 8.00 6.37 

 ρ=0.5, a11=0.9 
OLS 86.77 68.37 
ADL 10.10 6.40 

 ρ=1, a11=0.9 
OLS 79.43 68.93 
ADL 11.73 6.57 
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TABLE 4 

Structural Breaks 
Percent Rejections of the Null Hypothesis of Parameter Stability 

 
A. Structural Invariance Holds, Α=0 σ12=0 

ρ: 0.3 →0.7 at 50th observation 
 

 CUSUM CUSUM-SQ 
OLS 3.80 5.37 
ADL 4.93 6.00 

 
 

B. Structural Invariance Holds, Α=0 σ12=0 
σ22: 1 →2 at 50th observation 

 
 CUSUM CUSUM-SQ 
 ρ=0.5 

OLS 4.20 5.43 
ADL 4.37 5.83 

 ρ=1 
OLS 3.77 5.40 
ADL 4.50 5.86 

 
 
 

C. Structural Invariance Holds, Α=0 σ12=0 
σ22: 1 →10 at 50th observation 

 
 Cusum Cusum-SQ 
 ρ=0.5 

OLS 5.10 5.99 
ADL 5.65 6.24 

 ρ=1 
OLS 4.87 5.87 
ADL 5.76 6.87 
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D. Structural Invariance Holds, A≠0, σ12≠0 
 

a11: 0.4 →0.61  σ11: 1 .0→1.49 
a12: 0.7 →0.98  σ12: 0.7 →1.40 
a21: 0.2 →0.50  σ22: 1.0 →2.00 
a22: 0.0 →0.40 

     ALL at 50th observation 
     

 CUSUM CUSUM-SQ 
 ρ=0.5 

OLS 55.41 41.34 
ADL 5.80 5.86 

 ρ=1 
OLS 81.20 94.39 
ADL 5.15 5.02 

 
E. Structural Invariance Fails 

 
a11: 0.7 →0.90  σ11: 1.0 →4.00 
a12: 0.7 →0.00  σ12: 0.7 →0.00 
a21: 0.3 →0.70  σ22: 1.0 →2.00 
a22: 0.0 →0.00 

 
     ALL at 50th observation 
 
 Cusum Cusum-SQ 
 ρ=0.5 

OLS 59.86 100 
ADL 5.80 100 

 ρ=1 
OLS 90.11 95.30 
ADL 7.03 100 
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F. Structural Invariance Fails 

(Conditional variance remains constant) 
 

a11: 0.7 →0.90  σ11: 1.0 →2.00 
a12: 0.7 →0.00  σ12: 0.7 →1.732 
a21: 0.3 →0.70  σ22: 1.0 →2.00 
a22: 0.0 →0.00 

ALL at 50th observation 
 
 CUSUM CUSUM-SQ 
 ρ=0.5 

OLS 79.66 69.39 
ADL 5.70 65.44 

 ρ=1 
OLS 93.33 78.55 
ADL 6.30 68.17 

 
 

G. Structural Invariance Fails 
(Conditional variance remains constant) 

 
a11: 0.7 →0.90  σ11: 1.0 →2.00 
a12: 0.7 →0.00  σ12: 0.7 →1.732 
a21: 0.3 →0.70  σ22: 1.0 →2.00 
a22: 0.0 →0.00 

ALL at 75th observation 
 
 CUSUM CUSUM-SQ 
 ρ=0.5 

OLS 70.19 81.89 
ADL 5.40 94.56 

 ρ=1 
OLS 93.82 78.95 
ADL 6.50 94.98 
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