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1 Introduction

Consider the simplest �nancial market in which securities of two types are circulating. The price
evolution of the securites of the �rst type is given by the equations

bk = b0ρ
k, k = 0, 1, 2, . . . ,

where b0 > 0, ρ > 1. The prices are registered at the equidistant moments of time tk = a+ kh. With
no loss of generality we put a = 0, h = 1, i.e. tk = k.

The price of the security of the second type at the moment k is represented as

sk = s0ξ1 · · · ξk, k = 0, 1, 2, . . . ,

where the relative jumps ξk are random.
The securities of the �rst type are riskless having the interest rate (ρ− 1) · 100%. Let us call them

conventionally bonds. It is clear that possessing the securities of the second type is concerned with a
risk of their devaluation. We call them conditionally stocks.

Taken together in certain amounts β and γ the securities of both types constitute a so-called
portfolio (writer's investment portfolio) whose worth at the time moment k is βbk + γsk. Playing
in the considered �nancial market consists of successive changing of the portfolio content at the
moments k = 1, 2, . . . , n − 1. The successive pairs (β0, γ0), (β1, γ1), . . . , (βn−1, γn−1) constitute a so-
called strategy of the game. Obviously, as a basis for choosing (βk, γk) serves the evolution of the stock
price up to this moment i. e. s0, s1, . . . , sk. In other words

βk = βk(s0, s1, . . . , sk), γk = γk(s0, s1, . . . , sk).

The player is called a writer (seller, investor).
A strategy is called self-�nancing if the changing of the portfolio content does not a�ect its value

i.e.
βkbk + γksk = βk−1bk + γk−1sk, k = 1, . . . , n− 1.

The �nal goal of the game is to meet the condition

xn = βn−1bn + γn−1sn ≥ f(sn) (1.1)

where f(s) is a so-called pay-o� function of the simplest option of the European type having n as a
maturity date. For more about the mathematical and substantial aspects of the option pricing theory
see, e.g., Shiryaev (1999).

Basic problems of the mathematical theory of options are the evaluation of the so-called rational
option price and, corresponding to it, a strategy leading to (1.1). Recall that the rational option price is
the minimal initial capital x0 which allows the investor to meet contract terms under proper behavior.

Both problems are easily solved within the framework of the so-called binary model, that is, in the
case where ξk take only two values d and u, d < ρ < u. In this case (see, e.g., Ch. VI in Shiryaev
(1999))

x0 = ρ−n
n∑

k=0

Ck
np

k
∗(1− p∗)n−kf(s0ukdn−k) (1.2)

where

p∗ =
ρ− d

u− d
.

It is worth emphasizing that (1.2) does not assume any restrictions imposed on the measure that
governs the evolution of the stock price (ξ1, . . . , ξn). Furthermore, there exists the unique self-�nancing
strategy

(β, γ) = {(β0, γ0), (β1, γ1), . . . , (βn−1, γn−1)}

leading to the equality
xn = βn−1bn + γn−1sn = f(sn). (1.3)
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The strategy is de�ned by the formulae

βk =
ufk+1(skd)− dfk+1(sku)

ρbk(u− d)
(1.4)

and

γk =
fk+1(sku)− fk+1(skd)

sk(u− d)
(1.5)

where

fk(s) = ρ−(n−k)
n−k∑
j=0

Cj
n−kp

j
∗(1− p∗)n−k−jf(sujdn−k−j). (1.6)

The successive values of the portfolio are

xk = fk(sk), k = 0, 1, . . . , n− 1.

If ξk, k = 1, 2, . . . , n, take more than two values then it is impossible to guarantee the desired
relation (1.3) with probability 1. However, sometimes it is possible to guarantee (1.1). For example, if
ξk ∈ [d, u] and f(s) is convex then the minimal initial capital is evaluated by the same formula (1.2).

This fact was, �rst, proven in Tessitore and Zabczyk (1996) (see also Zabczyk (1996) and Mo-
toczy�nski and Stettner (1998)). The proof follows the control theory lines. Later on in Shiryaev (1999)
the rational price is derived as the solution of a extreme problem (see Theorem V.1c.1 ibidem). It
seems that Shiryaev knew nothing about the works of his predecessors. At least in the rather rich list
of references given in Shiryaev (1999) they are not presented.

Denote
x̄k = fk(sk), k = 0, . . . , n− 1, (1.7)

and let (βk, γk) be de�ned as in (1.4) and (1.5).
Possessing after the (k − 1)−th step the capital x̄k−1 distributed in portfolio in accordance with

(1.4) and (1.5) at the next step k the investor gains the capital

xk = βk−1bk + γk−1sk =
u− ξk
u− d

fk(sk−1d) +
ξk − d

u− d
fk(sk−1u)

(for more detail see, e.g., A.Nagaev and S.Nagaev (2002a)).
If ξk ∈ [d, u], k = 1, . . . , n, then

δk = xk − x̄k = fk(sk−1d)
u− ξk
u− d

+ fk(sk−1u)
ξk − d

u− d
− fk(sk−1ξk) ≥ 0. (1.8)

It is easily seen that δk = 0 if and only if ξk = d or ξk = u. Otherwise δk > 0. Thus, if ξk takes at
least one value lying in (d, u) then a pro�t arises. If the extreme values d and u belong to the support
of the distribution of ξk then x̄k−1 is the minimal capital which allows such a pro�t. It implies that
the policy determined by (1.4) and (1.5) forms the so-called hedge or, by the terminology adopted in
[1], upper hedge while (x̄0, x̄1, . . . , x̄n−1) is the corresponding chain of hedging capitals.

The investor may dispose of the so arisen pro�t in various ways. The simplest one is to withdraw
from the game the super�uous quota δk which to the maturity date acquires the value δkρn−k. So,
the self-�nancing condition is ful�lled only in the part which bans any capital in�ows.

Having withdrawn unnecessary quota one should follow the "binary" optimal strategy determined
by (1.4) and (1.5). As a result to the maturity date the investor accumulates a riskless pro�t

∆n = δ1ρ
n−1 + δ2ρ

n−2 + · · ·+ δn.

It is not easy to �nd the distribution of ∆n even in the case of independent ξk. The question arises
how to approximate it. It is one of such approximations that is a basic goal of the paper.

It is worth emphasizing that this problem was studied in A. Nagaev and S. Nagaev (2002b,
2003). In the �rst of these papers the authors consider the simplest case where the random vari-
ables ξk, k = 1, 2, . . . , n, are i.i.d. and the pay-o� function is smooth. The second one is devoted to

2



chaotic phenomena which arise when the pay-o� function is not smooth. The typical example of such
a function is provided by the call option. The basic goal of the present paper is to extend the main
results of the latter work to a more general case. The generalization concerns the distribution of the
stock price jumps (cf. the conditions on η in (2.10) below with the corresponding conditions in A.
Nagaev and S. Nagaev (2002b, 2003)). Parallel to it the author considerably simpli�es the proofs.

The paper is organized as follows. In Section 2 the basic results are formulated. The "local" pro�t
in the case where the model converges to that of the geometrical Brownian motion is studied in Section
3. In Section 4 the limit value for the expected value of the total riskless pro�t is established. The
limit distribution of the total riskless pro�t is given in Section 5. Concluding remarks are gathered
together in Section 6. Auxiliary facts are given in the Appendix.

2 Basic results

>From now on we deal with the simplest case of the standard call option determined by the pay-o�
function

f(s) = (s−K)+. (2.9)

Put in (1.8) 

u = un = exp(hn−1 + xn−1/2)

d = dn = exp(hn−1 − yn−1/2)

ρ = ρn = exp(αn−1)

ξk = ξk,n = exp(hn−1 + ηkn
−1/2)

sk,n = s0ξ1,n · · · ξk,n

(2.10)

where α, x and y are positive constants, a constant h ∈ IR while random variables ηk, k = 1, . . . , n, are
independent copies of a random variable η taking values in [−y, x] so that Eη = 0, Var η = σ2 > 0.
We assume also that the extreme points −y and x belong to the support of the distribution of η.
Consider the stochastic process z(t) = ht+ σw(t) where w(t) is the standard Wiener process.

De�ne

ψ(t, z) =
x+ y√
xy(1− t)

ϕ

(
lnK − z + (1− t)(xy/2− α)√

xy(1− t)

)
(2.11)

and

I(t) = Eψ(t, z(t) + ln s0) =
x+ y√

tσ2 + xy(1− t)
ϕ

(
ln(K/s0)− ht+ (1− t)(xy/2− α)√

tσ2 + xy(1− t)

)
. (2.12)

Here ϕ(v) is the density of the standard normal law.
The following two theorems contain the basic results of the present paper.

Theorem 2.1 Let the distribution of η be non-lattice i.e.

|Eeıtη| 6= 1 for all t 6= 0.

Then as n→∞

E∆n =
Kxy

2(x+ y)

(
1− σ2

xy

) 1∫
0

I(t)dt+ o(1)

where K is the strike price from (2.9).
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Theorem 2.2 Under the conditions of Theorem 2.1

∆n
d→ l(z(t)) =

Kxy

2(x+ y)

(
1− σ2

xy

)∫ 1

0

ψ(t, z(t) + ln s0)dt

where
z(t) = ht+ σw(t),

w(t) is the standard Wiener process and ψ(t, z) is de�ned as in (2.11).

It should be emphasized that the limit distribution of ∆n depends on the underlying one only
through σ.

3 "Local" pro�t of investor

Let us convene to denote by c any positive constant whose concrete value is of no importance. Under
such a convention we have e.g. c+c = c, c2 = c etc. By [·, ·], ((·, ·]) we denote a closed (closed from the
right) interval and by θ any variable taking values in [−1, 1]. By [·] and {·} we denote, respectively,
the integer and fractional part of the embraced number.

Denote

pn =
ρn − dn

un − dn
, λk,n =

ξk,n − dn

un − dn

and
aj,m = uj

nd
m−j
n , bj,m = Cj

mp
j
n(1− pn)m−j .

>From (1.6) it follows that the discounted "local"pro�t of the investor takes the form

∆k,n = δk,nρ
n−k
n =

n−k∑
j=0

bj,n−k(λk,nf(sk−1,nunaj,n−k) + (1− λk,n)f(sk−1,ndnaj,n−k)−

−f(sk−1,nξk,naj,n−k)).

(3.13)

For time being we suppress the dependence of λk, d, u, ξk and sk on n. Let j be such that
sk−1daj,n−k > K. Then

λkf(sk−1uaj,n−k)+(1−λk)f(sk−1daj,n−k)−f(sk−1ξkaj,n−k) = sk−1(λku+(1−λk)d−ξk)aj,n−k = 0.

If sk−1uaj,n−k ≤ K then

0 = f(sk−1uaj,n−k) ≥ f(sk−1ξkaj,n−k) ≥ f(sk−1daj,n−k).

It is worth reminding that d ≤ ξk−1 ≤ u. Thus,

∆k,n = δk,nρ
n−k
n =

∑
rn−k(u)<j≤rn−k(d)

bj,n−k(λk(sk−1uaj,n−k −K)++

(1− λk)(sk−1daj,n−k −K)+ − (sk−1ξkaj,n−k −K)+)

where

rm(z) = rm(z, sk−1) =
ln(K/(sk−1zd

m))
ln(u/d)

.

The following lemma plays an important role.

Lemma 3.1 If 0 < x′ ≤ min(x, y) ≤ max(x, y) ≤ x′′ <∞ then for d ≤ z ≤ u, m ≤ n

rm(z) = m · y

x+ y
+ n1/2

(
lnK
x+ y

− ln sk−1

x+ y
− m+ 1

n
· h

x+ y

)
− w

x+ y

where ln z = hn−1 + wn−1/2.
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Proof. From (2.10) it follows that

ln
u

d
= (x+ y)n−1/2

and, therefore,
ln z

ln(u/d)
=

w

x+ y
+

h

x+ y
· n−1/2.

In particular,
ln d

ln(u/d)
= − y

x+ y
+

h

x+ y
· n−1/2

and the lemma follows.
It is easily seen that rm(d)− rm(u) = 1. Moreover,

#{j : rm(u) < j ≤ rm(d)} = 1. (3.14)

Taking into account (2.10) we obtain

u− d = (x+ y)n−1/2 +
x2 − y2

2
n−1 +O(n−3/2)

while
ρ− d = yn−1/2 + (α− h− y2/2)n−1 +O(n−3/2).

Therefore,

pn =
y

x+ y
+
α− h− xy/2

x+ y
n−1/2 +O(n−1).

By Lemma 3.1

rm(d)−mpn = n1/2

(
ln(K/sk−1)

x+ y
+
m

n
(

xy

2(x+ y)
− α

x+ y
)
)

+O(1)

and, therefore,

rm(d)−mpn√
mpn(1− pn)

= (m/n)−1/2(xy)−1/2
(
ln(K/sk−1) + (m/n)(

xy

2
− α)

)
+O(m−1/2). (3.15)

Further,

∆k,n =
∑

rn−k(ξk)<j≤rn−k(d)

bj,n−k(λk(sk−1uaj,n−k −K)− (sk−1ξkaj,n−k −K))+

λk

∑
rn−k(u)<j≤rn−k(ξk)

bj,n−k(sk−1uaj,n−k −K) = ∆′
k,n + ∆′′

k,n.
(3.16)

By de�nition of rn−k(z) we have

sk−1zaj,n−k = sk−1zd
n−k(u/d)j = K(u/d)j−rn−k(z).

Hence
sk−1uaj,n−k = K(u/d)j−rn−k(u) = K(u/d)j+1−rn−k(d)

and
sk−1daj,n−k = K(u/d)j−rn−k(d).

Since λku− ξk = −d(1− λk) we conclude that

∆′
k,n = (1− λk)K

∑
rn−k(ξk)<j≤rn−k(d)

bj,n−k

(
1− (d/u)rn−k(d)−j

)
(3.17)
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while
∆′′

k,n = λkK
∑

rn−k(u)<j≤rn−k(ξk)

bj,n−k

(
(u/d)j+1−rn−k(d) − 1

)
. (3.18)

In view of (2.10) and (3.14) we have uniformly in k, δn ≤ k ≤ (1− δ)n,

1− (d/u)rn−k(d)−j = (x+ y)n−1/2(rn−k(d)− j +O(n−1))

and
(u/d)j+1−rn−k(d) − 1 = (x+ y)n−1/2(j + 1− rn−k(d) +O(n−1)).

Here δ > 0 is arbitrarily small.
Taking into account (2.10) we conclude that

∆′
k,n = K(x− ηk +O(n−1/2))n−1/2

∑
rn−k(ξk)<j≤rn−k(d)

bj,n−k(rn−k(d)− j +O(n−1))

while

∆′′
k,n = K(ηk + y +O(n−1/2))n−1/2

∑
rn−k(u)<j≤rn−k(ξk)

bj,n−k(j + 1− rn−k(d) +O(n−1)).

Both representations are valid uniformly in k, δn ≤ k ≤ (1− δ)n.
By the uniform version of the Moivre-Laplace local limit theorem we obtain for k, δn ≤ k ≤

(1− δ)n,

bj,n−k =
1√

(n− k)pn(1− pn)
ϕ(

j − (n− k)pn√
(n− k)pn(1− pn)

) + o(n−1/2) = n−1/2ψ(kn−1, ln sk−1) + o(n−1/2)

or, taking into account (3.15) and (2.11)

bj,n−k = n−1/2ψ(kn−1, ln sk−1) + o(n−1/2). (3.19)

It is worth emphasizing that (3.19) holds uniformly in sk−1.
Thus,

∆′
k,n = K(x− ηk)n−1ψ(kn−1, ln sk−1)

∑
rn−k(ξk)<j≤rn−k(d)

(rn−k(d)− j) +O(n−3/2)

while

∆′′
k,n = K(ηk + y)n−1ψ(kn−1, ln sk−1)

∑
rn−k(u)<j≤rn−k(ξk)

(j + 1− rn−k(d)) +O(n−3/2).

Both representations are valid uniformly in k, δn ≤ k ≤ (1 − δ)n. In view of (3.14) the interval
(rn−k(u), rn−k(d)] contains exactly one integer j∗ = [rn−k(d)]. So,

∑
rn−k(ξk)<j≤rn−k(d)

(rn−k(d)− j) =

 {rn−k(d)} if rn−k(ξk) < [rn−k(d)]

0 otherwise.

Similarly,

∑
rn−k(u)<j≤rn−k(ξk)

(j + 1− rn−k(d)) =

 0 if rn−k(ξk) < [rn−k(d)]

1− {rn−k(d)} otherwise.

It is worth reminding that {rn−k(d)} denotes the fractional part of rn−k(d).

6



Now we may combine (3.16) and the latest estimates in the following way

∆k,n = Kn−1ψ(kn−1, ln sk−1)σk,n +O(n−3/2) (3.20)

where

σk,n =

 (x− ηk){rn−k(d)} if rn−k(ξk) < [rn−k(d)]

(ηk + y)(1− {rn−k(d)}) otherwise.

For the sake of brevity put

p =
y

x+ y
, R = x+ y.

Then the inequality rn−k(ξk) < [rn−k(d)] can be rewritten as

ηk > R({rn−k(d)} − p).

Therefore,

σk,n =

 (x− ηk){rn−k(d)} if ηk > R({rn−k(d)} − p)

(ηk + y)(1− {rn−k(d)}) otherwise.
(3.21)

So, we obtained the desired representation of the "local" pro�t.

4 Proof of Theorem 2.1

Represent the total pro�t ∆n as

∆n =
∑

1≤k<δn

∆k,n +
∑

δn≤k≤(1−δ)n

∆k,n +
∑

(1−δ)n≤k≤n

∆k,n = ∆′
n + ∆′′

n + ∆′′′
n (4.22)

and estimate the expectations E∆′
n, E∆′′

n and E∆′′′
n one after another.

According to (3.20) we have

E∆′′
n = Kn−1

∑
δn≤k≤(1−δ)n

Eψ(kn−1, ln sk−1,n)σk,n + cθn−1/2.

Consider

A(u, v) = (x− v)uχ(u, v) + (v + y)(1− u)(1− χ(u, v)), (u, v) ∈ [0, 1]× [−y, x], (4.23)

where

χ(u, v) =

 1 if R(u− p) < v ≤ x, 0 ≤ u ≤ 1

0 if − y < v ≤ R(u− p), 0 ≤ u ≤ 1

In view of (3.21) we have
σk,n = A({rn−k(d)}, ηk).

It is evident that χ(u, v) admits a monotone ε−approximation by means of χ+(u, v) and χ−(u, v)
where

χ+(u, v) =



v−R(u−p)
ε + 1 if R(u− p)− ε ≤ v ≤ R(u− p), 0 ≤ u ≤ 1

0 if − y ≤ v ≤ R(u− p)− ε, 0 ≤ u ≤ 1

1 if R(u− p) ≤ v ≤ x, 0 ≤ u ≤ 1
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and

χ−(u, v) =



v−R(u−p)
ε if R(u− p) ≤ v ≤ R(u− p) + ε, 0 ≤ u ≤ 1

0 if − y ≤ v ≤ R(u− p), 0 ≤ u ≤ 1

1 if R(u− p) + ε ≤ v ≤ x, 0 ≤ u ≤ 1.

Obviously, χ±(u, v) are continuous in [0, 1]× [−y, x] and

χ−(u, v) ≤ χ(u, v) ≤ χ+(u, v).

Furthermore,

0 ≤
∫

[0,1]×[−y,x]

(χ+(u, v)− χ−(u, v))dudF (v) ≤
∫
Uε

dudF (v) ≤ (2ε/R) (4.24)

where
Uε = ((u, v) : u ∈ (0, 1), −y < v < x, |v −R(u− p)| ≤ ε).

Therefore
Eψ(kn−1, η1+···+ηk−1√

n
+ hk−1

n + ln s0)A−({rn−k(d)}, ηk) ≤

Eψ(kn−1, η1+···+ηk−1√
n

+ hk−1
n + ln s0)σk,n =

Eψ(kn−1, η1+···+ηk−1√
n

+ hk−1
n + ln s0)A({rn−k(d)}, ηk) ≤

Eψ(kn−1, η1+···+ηk−1√
n

+ hk−1
n + ln s0)A+({rn−k(d)}, ηk)

where
A±(u, v) = (x− y)uχ±(u, v) + (y + x)(1− u)(1− χ∓(u, v)).

Obviously, the family ψ(t, z), δ ≤ t ≤ 1 − δ, is contained in the class G de�ned in Appendix. So,
we may apply Corollary 7.2.

By the corollary

Eψ(kn−1, η1+···+ηk−1√
n

+ hk−1
n + ln s0)A±({rn−k(d)}, ηk) =

Eψ(kn−1, σν
√
kn−1 + hkn−1 + ln s0)

∫
[0,1]×[−y,x]

A±(u, v)dudF (v) + o(1)

uniformly in k, δ ≤ kn−1 ≤ 1 − δ. Here ν has the standard (0, 1)−normal distribution and F is the
distribution function of η.

In view of (4.24) ∫
[0,1]×[−y,x]

A±(u, v)dudF (v) =
∫

[0,1]×[−y,x]

A(u, v)dudF (v) + 2θε.

The straightforward calculations yield

aF =
∫

[0,1]×[−y,x]

A(u, v)dudF (v) =
xy

2(x+ y)

(
1− σ2

xy

)
.

Since ε is arbitrary we obtain

Eψ(kn−1, σν
√
kn−1 + hkn−1 + ln s0)σk,n = aF Eψ(kn−1, σν

√
kn−1 + hkn−1 + ln s0) + o(1)
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uniformly in k, δ ≤ kn−1 ≤ 1− δ.
Thus,

E∆′′
n = KaFn

−1
∑

δn≤k≤(1−δ)n

Eψ(kn−1, σν
√
kn−1 + hkn−1 + ln s0) + o(1).

Obviously,

I(t) = Eψ(t, σν
√
t+ ht+ ln s0) =

∫
ψ(t, σv

√
t+ ht+ ln s0)ϕ(v)dv

or after the straightforward calculations

I(t) =
x+ y√

tσ2 + xy(1− t)
ϕ

(
ln(K/s0)− ht+ (1− t)(xy/2− α)√

tσ2 + xy(1− t)

)

whence we deduce

E∆′′
n = KaF

1−δ∫
δ

I(t)dt+ o(1). (4.25)

Now we are going to estimate E∆′′′
n . For the extreme "local" pro�t ∆n,n we obtain

∆n,n = δn,n = (sn−1,ndn −K)+
un − ξn
un − dn

+ (sn−1,nun −K)+
ξn − dn

un − dn
− (sn−1,nξn.n −K)+

whence

∆n,n =

 0 if sn−1,nun ≤ K or sn−1,ndn > K

θ(sn−1,nun −K) if K/un < sn−1,n ≤ K/dn.

Therefore,
E∆n,n ≤ K(un/dn − 1) ≤ cn−1/2.

For m = n− k ≥ 1 in view of (3.16) � (3.18)

∆n−m,n ≤ cmax
j
bj,m

(
(un/dn)2 − 1

)
or taking into account (2.10) and (7.36)

∆n−m,n ≤ cm−1/2n−1/2.

Thus, for all su�ciently large n
E∆′′′

n ≤ cδ1/2. (4.26)

Similarly,
E∆′

n ≤ cδ. (4.27)

Since δ is arbitrary in view of (4.22), (4.25), (4.26) and (4.27) the theorem follows.

5 The limit distribution of the riskless pro�t

Consider the representation (4.22). From (3.20) it follows that

∆′′
n = Kn−1

∑
δn≤k≤(1−δ)n

ψ(kn−1, ln sk−1,n)σk,n +O(n−1/2).

Put
∆∗

n = n−1
∑

δn≤k≤(1−δ)n

ψ(kn−1, ln sk−1,n)σk,n.

9



Then
∆′′

n = K∆∗
n +O(n−1/2).

Represent ∆∗
n as follows

∆∗
n = aFn

−1
∑

δn≤k≤(1−δ)n

ψ(kn−1, ln sk−1,n) + n−1
∑

δn≤k≤(1−δ)n

ψ(kn−1, ln sk−1,n)(σk,n − aF ).

In view of (4.26) and (4.27)

n−1
∑

δn≤k≤(1−δ)n

ψ(kn−1, ln sk−1,n) = n−1
∑

1≤k≤n

ψ(kn−1, ln sk−1,n) + θcδ1/2.

Denote
ln = n−1

∑
1≤k≤n

ψ(kn−1, ln sk−1,n)

and
mn = n−1

∑
δn≤k≤(1−δ)n

ψ(kn−1, ln sk−1,n)(σk,n − aF ).

Then
∆′′

n = KaF ln +mn +O(n−1/2). (5.28)

We are going to prove that
El2n ≤ cδ. (5.29)

In view of (4.26), (4.27), (5.28) and (5.29) it follows that for all su�ciently large n

∆n = KaF ln + ω(n, δ)

where
E|ω(n, δ)| ≤ cδ1/2.

Therefore, for any ε > 0 and δ′ > 0

P(|∆n −KaF ln| ≥ ε) ≤ cδ1/2/ε ≤ δ′

provided δ is su�ciently small. It implies that the limit distributions of ∆n and KaF ln coincide. So,
it remains to establish the limit distribution for ln and to prove (5.29). First, we tackle ln. Consider
the stochastic process

zn(t) = ln(sk,n/s0) =
η1 + · · ·+ ηk√

n
+ hkn−1, (k − 1)n−1 ≤ t < kn−1, k = 1, 2, . . . , n.

It is well known that zn(t) weakly converges to z(t) = ht+ σw(t) where w(t) is the standard Wiener
process (see, e.g., Billingsley (1968) Ch.3). It is easily seen that ln is a continuous functional on D[0, 1].
Note also that from (2.11) we obtain

sup
z
ψ(t, z) ≤ (2π(1− t))−1/2.

Since zn(t) weakly converges to z(t) = ht+ σw(t) we conclude that

ln
d→

1∫
0

ψ(t, z(t) + ln s0)dt. (5.30)

It remains to establish (5.29). It is easily seen that

Em2
n = n−2

∑
δ≤kn−1≤1−δ

Eψ2(kn−1, ln sk−1,n)(σk,n − aF )2+

2n−2
∑

δn≤l<k≤n(1−δ)

Eψ(ln−1, ln sl−1,n)(σl,n − aF )ψ(kn−1, ln sk−1,n)(σk,n − aF )+

Σ1 + 2Σ2.

(5.31)
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Obviously,
Σ1 = O(n−1). (5.32)

Split Σ2 in the following way

Σ2 = n−2
∑

δn≤l<k≤n(1−δ), k−l<δn

+n−2
∑

δn≤l<k≤n(1−δ), k−l≥δn

= Σ21 + Σ22. (5.33)

Obviously,
Σ21 ≤ cδ. (5.34)

So, it remains to estimate Σ22. Utilizing (3.20) and (4.23) we obtain

Ml,k,n = Eψ(ln−1, ln sl−1,n)(σl,n − aF )ψ(kn−1, ln sk−1,n)(σk,n − aF ) =

Eψ(ln−1, ln sl−1,n)(A({rn−l}, ηl)− aF )ψ(kn−1, ln sk−1,n)(A({rn−k(d)}, ηk)− aF ).

Denote by
Fm,n(z) = P(n−1/2(η1 + · · ·+ ηm) + ln s0 < z).

Then we may represent Ml,k,n as

Ml,k,n =
∫

IR1×[−x,x]

ψ(ln−1, z′ + (l − 1)n−1µ)(A({rn−l(d)}, v′)− aF )dFl−1,n(z′)dF (v′)·

∫
IR1×[−x,x]

ψ(kn−1, z′ + z + n−1/2v + (k − 1)n−1µ)(A({rn−k(d)}, v)− aF )dFk−l−1,n(z)dF (v).

From (3.1) it follows that given n−1/2(η1 + · · ·+ ηl−1) = z′, ηl = v′ we have

rn−k(d) = ak,n −
η1 + · · ·+ ηk−1

x+ y
= a′k,n −

ηl+1 + · · ·+ ηk−1

x+ y

d= a′k,n −
η1 + · · ·+ ηk−l−1

x+ y
.

Further, note that for δ ≤ kn−1 ≤ 1− δ the functions ψ(kn−1, z′ + z), |z′| < Z, belong to the class
G for any Z > 0. Since k − l ≥ δn and A(u, v) admits the monotone ε−approximation we may apply
Corollary 7.2. Thus

lim
n→∞

sup
δn≤l<k≤n(1−δ), k−l≥δn

sup
|z′|<Z

|
∫

IR1×[−y,x]

ψ(kn−1, z′ + z + n−1/2v+

(k − 1)n−1µ)(A({rn−k(d)}, v)− aF )dFk−l−1,n(z)dF (v) |= 0.

It implies that
Σ22 ≤ sup

δn≤l<k≤n(1−δ), k−l≥δn

|Ml,k,n| = o(1). (5.35)

Combining (5.31) � (5.35) yields (5.29) that completes the proof. Theorem is proved.

6 Concluding remarks

The incompleteness of a discrete time �nancial market leads to such a phenomenon that optimal
strategy is not self-�nancing and the riskless pro�t arises. Mathematically, the riskless pro�t is a
functional de�ned on the sample path of the risk price evolution. This is a quite general fact that
takes place when the relative stock price jumps are bounded, i.e., d ≤ ξk ≤ u, k = 1, . . . , n, while the
pay-o� function is convex whatever be the measure that governs the risk price evolution. The di�usion
approximation studied here is based on the assumption that ln ξk, k = 1, . . . , n are i.i.d. random
variables. This assumption makes the scheme rather far from reality. However, even this simplest
model highlights main features of the riskless pro�t. It turns out that such in�nitesimal characteristic
of the riskless pro�t as the the "local"pro�t admits a representation that contains a chaotic multiplier
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σk,n. This multiplier arises because the derivative of the pay-o� function that determines call option
has a jump at s = K. The asymptotic analysis of such random variables requires special tools. The
given in the Appendix Lemma 7.1 and its Corollary 7.2 give the impression on how to analyze the
random variables of a chaotic nature.

The results presented in this paper should be regarded as the �rst step on the way to exhaustive
analysis of much more realistic schemes. To the moment it is clear that the methods utilized here can
be applied to much more general schemes. In particular, the case where relative stock price jumps are
independent but non-identically distributed. Such a scheme enables us to take into account such a
typical property of �nancial markets as the volatility. Another way of possible extension of our results
provides the case where the stock price evolution is mixing or, in other words, possesses short range
memory.

However, all such generalizations are still rather far for the conditions of the real �nancial practice.
They do not take into account the transaction costs and the various restrictions that regulates the
investor activity. Nevertheless, they highlight certain rather delicate sides of the �nancial practice. In
this connection it should be of great interest to implement the retrospective analysis of the historical
data from the view point of riskless pro�t. The authors is going to take part in such studies in the
nearest future.

7 Appendix. Local limit theorems

Let η, η1, η2, . . . be i.i.d. random variables such that

Eη = 0, Var η = σ2 <∞.

Consider
ζn = η1 + · · ·+ ηn.

If the distribution of η is non-lattice then for any �xed y′, y′′, 0 < y′ < y′′ <∞

sup
x, y′≤y≤y′′

|P(x ≤ ζn < x+ y)− y

σ
√
n
ϕ(

x

σ
√
n

)| = o(n−1/2). (7.36)

This is a slightly generalized version of the Shepp local limit theorem (see, e.g., A. Nagaev (1973)).
Consider the sequence of the measures

Qn(A) = σ
√

2πnP(ζn ∈ A).

The statement (7.36) implies that Qn weakly converge to the Lebesgue measure that is for any
continuous compactly supported function g(u)∫

g(u)Qn(du) →
∫
g(u)du. (7.37)

Let G be the class of equicontinuous functions de�ned on (−∞,∞) such that

lim
t→∞

sup
g∈G

∫
|u|>t

|g(u)|du = 0.

It is easily seen that (7.37) holds uniformly in G ∈ G. More precisely,

lim
n→∞

sup
g∈G

|
∫
g(u)Qn(du)−

∫
g(u)du| = 0. (7.38)

Consider the family of the random variables τn(a) = {λζn +a}, a ∈ IR1 where λ 6= 1 is constant. It
is worth comparing the following statement with the basic result in S. V. Nagaev and Mukhin (1966).

12



Lemma 7.1 If the distribution of η is non-lattice then for any �xed u′, u′′, 0 < u′ < u′′ < 1 and
z′, z′′, −∞ < z′ < z′′ <∞ as n→∞

sup
a
|P(u′ ≤ τn(a) < u′′, z′ ≤ n−1/2ζn < z′′)− (u′′ − u′) (Φ(z′′/σ)− Φ(z′/σ)) | = o(1).

Proof. Let k = k(a) = [a], θ = θ(a) = {a}. Suppose that λ > 0. It is easily seen that

Pn = P(u′ ≤ τn(a) < u′′, z′ ≤ n−1/2ζn < z′′) =∑
k

P(k + u′ ≤ λζn + a < k + u′′, z′n1/2 ≤ ζn < z′′n1/2) =

∑
k′≤k≤k′′

P(k+u′−θ
λ ≤ ζn <

k+u′′−θ
λ ) + P(k′′+u′′−θ

λ ≤ ζn < z′′n1/2)+

P(z′n1/2 ≤ ζn <
k′+u′−θ

λ )

where

k′ = min(k :
k + u′ − θ

λ
≥ z′n1/2), k′′ = max(k :

k + u′′ − θ

λ
≤ z′′n1/2).

According to (7.36)

Pn =
u′′ − u′

λσ
√
n

∑
k′≤k≤k′′

ϕ(
k

λσ
√
n

) +O(n−1/2).

It remains to recall that

k′ = z′λ
√
n(1 + o(1)), k′′ = z′′λ

√
n(1 + o(1)).

Lemma 7.1 has the following evident corollary (cf. (7.38)).

Corollary 7.2 Let χ(u, v) be a bounded continuous function de�ned on [0, 1]× IR1. Under the condi-
tions of Lemma 7.1

lim
n→∞

sup
g∈G

sup
a
|Eg(n−1/2ζn)χ({λζn + a}, ηn)−

∫
g(σz)ϕ(z)dz

∫
[0,1]×IR1

χ(u, v)dudF (v)| = 0

where F is the distribution function of η.
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