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Abstract 

This paper introduces a new technique to infer the risk-neutral probability distribution of an 

asset from the prices of options on this asset. The technique is based on using the trading 

volume of each option as a proxy of the informativeness of the option. Not requiring the 

implied probability distribution to recover exactly the market prices of the options allows us to 

weight each option by a function of its trading volume. As a result, we obtain implied 

probability distributions that are both smoother and should be more reflective of 

fundamentals. 
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Trading activity in derivatives products, whether on organized exchanges

or on over-the-counter (OTC) markets has increased dramatically in the

past �fteen years and derivatives have become a mainstay of �nancial mar-

kets.1 Standard, plain-vanilla contracts are very liquid and trading data on

exchange-traded products are publicly available. Derivatives prices can be

used to extract information on the probability distributions of the underly-

ing assets because the payo�s of derivatives contracts depend on the future

values of the underlying assets. This information is of use not only to deriva-

tives traders but also to a wider public, including holders of the underlying

securities and policy makers.

Di�erent instruments are used to infer di�erent characteristics of the dis-

tribution of the underlying asset. Quotes on futures contracts give some in-

formation on the market's expectations of the underlying asset price; option

prices provide a measure of the dispersion of the asset price around its mean,

the implied volatility, which can be used to gauge the degree of uncertainty

prevalent in the markets.2 If the Black-Scholes theory were true, the implied

volatility would be constant across strikes and would su�ce to describe the

whole distribution of the underlying asset. In practice, implied volatilities

are not constant across strikes. Fortunately, combinations of options can

yield information about the distribution of the underlying asset without the

need for a priori assumptions. Bates (1991) devises a technique using option

prices to estimate the skewness of the distribution of the underlying asset. If

quotes on European options were available for a continuum of strike prices,

one could use the method of Breeden and Litzenberger (1978) to retrieve

the entire probability density function (thereafter, "pdf") of a given asset.

In this case, the implied probability distribution would subsume the Bates

skewness measure.

In practice, strike prices, or strikes for short, are available only at discrete

intervals. If one assumes that all possible future values of the underlying as-

set coincide with the available strikes, the probability distribution of the

asset could be uniquely recovered from the available option prices. Alterna-

tively, the researcher could assume that the asset can take values other than

the available strikes and strive to obtain a distribution consistent with the

observed option prices. Because multiple distributions are consistent with

the option prices in that case, some additional selection criteria is needed.

The researcher may conjecture a functional form for the implied pdf and

choose the parameters to replicate as well as possible the market prices of

the options, or, alternatively, use non-parametric methods. Whatever the

techniques used to construct them, implied probability distributions have

become popular analysis tools. Some economists, like Campa et al. (1997),

Melick and Thomas (1997, 1998), and S�oderling and Svensson (1997) use

1The notional amount of interest rate, currency, and equity futures and options has

increased almost twentyfold between 1986 and 1997 (IMF, 1998). More recent data point

to a 30-percent increase in the notional amount of OTC derivatives between June 1998

and June 2000 (BIS, 2000)
2The implied volatility of an option at a given strike is the volatility at which the price

of the option assigned by the Black-Scholes (1973) formula coincides with the market price

of the option.
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option-based probability distributions to gauge the immediate market im-

pact of some particular event (Table 1). Others, like Rubinstein (1994),

Jackwerth and Rubinstein (1996), and Stutzer (1996) use option prices to

compare implied probability distributions across longer time horizons, for ex-

ample several years before and after the crash of 1987, or to build time-series

of some characteristics of the distribution, like skewness and kurtosis.

Current non-parametric approaches typically try to force the probability

distribution to perfectly replicate the market prices of the options. Instead,

we choose to only impose a non-replication cost in the objective function and

trade o� increased smoothness of the implied pdf against lower goodness of

�t with the market prices of the options. The advantage of this method is

that one can weight each option price by a proxy of its informativeness. We

select trading volume as such a proxy because there are strong economic

arguments to think that asset prices contain more information when these

assets are more actively traded.

1 Current Methods to Compute Risk-Neutral Prob-

ability Distributions

The following section introduces a simple two-period framework to review the

concept of risk-neutral distribution and presents several methods designed

to retrieve such probability distributions from option prices.

1.1 De�nitions

Risk in the economy is generated by the random payo� of a single asset, S,

which can take n possible values in the second period and is referred to as the

"underlying asset." Agents can trade several assets in the �rst period that

all pay out in the second period: m European call options on the underlying

asset, a forward contract on the same asset, and a riskless bond. Each of

the realizations of S de�nes a "state of the world." There is no transaction

costs or restrictions to trade, and the market is free of arbitrage. We assume

without loss of generality that the options are calls; prices of European puts

can always be translated into equivalent call prices using the put-call parity.

The following theorem presents a well-known result in �nancial economics.

Theorem 1

If market prices are arbitrage-free, there exists a probability distribution, P,

such that, if �(x) is the price of a claim paying out x in the last period,

�(x) = EP [e�r� x] (1)

where � is the time between the two periods, r is the (�xed) interest rate,

and EP [ ] denotes the expectation against P . This probability distribution

is called "risk-neutral."

Proof: Call xi the realization of asset x when S = Si, zi the random variable

that pays $1 when S = Si and $0 otherwise (zi is the "state-contingent
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claim" for the ith state), and let pi = er� �(zi). Then, because the function

� is linear and x =
Pn

i=1 xi zi,

�(x) =

nX
i=1

e�r�xi pi: (2)

The pi's are positive because � is assumed to admit no arbitrage opportu-

nities and they sum up to 1 because the riskless bond, which pays $1 in

every state and is worth by de�nition e�r� can be replicated by holding all

contingent claims. Hence, the pi's de�ne a probability distribution, P , and

�(x) = EP [e�r�x]. Q.E.D.

In the following, we review several techniques to construct (risk-neutral)

probability distributions consistent with the prices of selected assets.

Notations: C(Kj) is the price of a call option struck at Kj, j = 1; : : : ;m,

and F is the forward price of the underlying asset.

Corollary: A series of non-negative scalars pi, i = 1; : : : ; n, de�nes a risk-

neutral probability distribution consistent with the prices of the traded assets

if and only if 8<
:
Pn

i=1 pi e
�r� max(0; Si �Kj) = C(Kj);Pn

i=1 pi Si = F;Pn
i=1 pi = 1:

(3)

Eq. (3) de�nes a system of m+ 2 equations in n unknowns (the pi's) and is

equivalent to the matrix equality

M : P = Q (4)

where P = (pi)
n
i=1, Q gathers the m+ 2 terms in the right-hand side of the

equation, and M is a m+ 2� n matrix obtained from the left-hand side of

the equation.

The "risk-neutral" distribution combines characteristics of the "real-

world" probability distribution and the market participants' appetite for

risk. Nonetheless, quotes on derivative instruments taken at two moments

in time can give information on the evolution of the real-world probability

distribution of the underlying asset if attitudes toward risk are assumed to

remain constant in the interval.

If there are as many derivatives assets as states of the world, the risk-

neutral probability distribution is unique and can be inferred from the option

prices in an intuitive manner. If there are more states of the world than

derivatives, the researcher can use parametric or non-parametric methods to

pin down one risk-neutral probability distribution.

1.2 Retrieving risk-neutral distributions when there are as

many states of the world as traded assets

Setting the number of states of the world equal to the number of assets

(n = m+2) and ignoring the positivity constraint on the risk-neutral prob-
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abilities, one can easily recover the unique risk-neutral probability distribu-

tion. Assume that the spacing between two strike prices is constant and

equal to �. De�ne the possible realizations of S as follows8<
:

S1 = K1 ��;

Si = Ki�1 for i = 2; : : : ;m+ 1;

Sm+2 = Km +�:

(5)

With n = m+ 2, the system de�ned in Eq. (3) admits a unique and simple

solution. The implied probabilities of states in the heart of the distribution

match those obtained using the "buttery spread" strategy of Breeden and

Litzenberger (1978). More precisely, if Ki is not the lowest or the highest

strike, a trader can replicate the claim paying out $1 when S = Ki and

nothing otherwise by taking a long position in 1=� calls struck at Ki�1 and

Ki+1, and a short position in 2=� calls struck at Ki (see Appendix). The

procedure is illustrated graphically in Figure 1. The risk-neutral probability

of the state "S = Ki" is

P (S = Ki) = pi+1 = er� (C(Ki�1)� 2C(Ki) + C(Ki+1))=�: (6)

The probability in the tails of the distribution de�ned in Eq. (4) can be

recovered using a simple trading strategy and the fact that probabilities

sum up to 1.�
P (S � Km) = pm+1 + pm+2 = er� (C(Km�1)� C(Km))=�;

P (S � K1) = p1 + p2 = 1�
Pm+2

i=3 pi:
(7)

Taking into account the underlying asset and the riskless bond enables us

to extend the range of the distribution beyond the lowest and the highest

strikes.

The density function at S = K is f(K) = P (S = K)=� and hence

f(K) = er�
�
C(K ��)� 2C(K) + C(K +�)

�
=�2: (8)

f(K) is the �nite-di�erence approximation of er�
@2C(K)

@K2 . More generally, as

shown in Breeden and Litzenberger (1978), if S takes a continuum of possible

values and each of those is the strike price of a call option, the risk-neutral

probability density function away from the boundaries of the distribution is

f(K) = er�
@2C(K)

@K2
: (9)

No positivity constraint need to be imposed on the probability density func-

tions de�ned in Eqs. (8) and (9) because the price of an option is a con-

vex function of the strike.3 However, option prices observed in the market

are not always convex in their strikes because of transaction costs or non-

synchronous trading.

3This is the case when the underlying price process is a one-dimensional di�usion and

in some stochastic-volatility models (Bergman et al., 1996).
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In the present framework, one can replicate the payo�s of the contingent

claims, and hence of any asset, by forming portfolios of the options: the

market is "complete" and a unique risk-neutral distribution is inferred from

option prices. In practice, m is given and the researcher decides n, that

is, makes markets complete by constraining the possible realizations of the

underlying asset. The fewer the strike prices, the more constraining this

approach is.

Alternatively, we can consider that there are more states than traded

assets and construct a risk-neutral probability distribution consistent with

the prices of the traded options.

1.3 Retrieving risk-neutral distributions when there are more

states of the world than traded assets

Creating more states than traded assets enables one to re�ne the grid of

the support of the probability distribution and to extend the tails of the

distribution farther away from the lowest and highest strikes. With more

states than assets, markets are incomplete and multiple risk-neutral distri-

butions can �t the option prices. In other words, when n > m+2, there are

more unknowns than equations in the linear system de�ned by Eq. (3) and

the system admits multiple solutions. One needs some additional criteria

to pin down a unique probability distribution. One solution is to impose a

functional form for the probability distribution and to estimate its param-

eters using the option data. Alternatively, one can choose non-parametric

methods, which can deliver implied distributions that perfectly match the

option prices observed in the market. Even though not all non-parametric

methods aim at perfectly replicating the market prices of derivatives, their

extra exibility allows a closer �t with market prices.

Non-parametric methods

One such method consists in minimizing the Euclidean distance between

the distribution that �ts the option prices, P , and an initial distribution,

P0. This is based on the "implied-tree method" of Rubinstein (1994).4 The

implied-trees of Rubinstein (1994) and Jackwerth and Rubinstein (1996) only

require the option prices obtained from the risk-neutral pdf to be between the

bid and ask prices observed in the market. When only closing or settlement

prices are available, the implied-tree procedure typically constrains the pdf

to exactly recover the market prices of the options (Campa et al., 1998).

Mathematically, the objective is to

min
pi

nX
i=1

(pi � p0i )
2 (10)

subject to the constraints of Eq. (3) and

pi � 0 for i = 1; : : : ; n: (11)

4The original article by Rubinstein used binomial trees. However, the method is called

"implied trees" even if no tree is used.
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Eq. (3) imposes m + 2 conditions on the n risk-neutral probabilities pi's.

Consequently, the n-dimensional vector P can be expressed as a linear func-

tion of n�m� 2 of its components and of the prices of the marketed assets.

Using this relation and the �rst-order conditions implied in Eq. (10) while

ignoring the non-negativity constraints on the pi's, one can easily solve for

P as a linear function of the price of the marketed assets (see Appendix).

The quadratic distance function in Eq. (10) can be replaced by the

\entropy" criterion function of Stutzer (1996), and Buchen and Kelly (1997):

min
pi

nX
i=1

pi log(pi=p
0
i ): (12)

Eq. (12) guarantees the positivity of the risk-neutral probabilities. Using

Eq. (12) or using Eq. (10) with pi � 0 result in a non-linear optimization

problem requiring the use of numerical solution techniques. For the sake

of computational simplicity, we use the quadratic distance function without

imposing positivity of the risk-neutral probabilities.5

Parametric methods

An alternative to these non-parametric methods is to impose a exible but

parametric form on the probability distribution and determine its parame-

ters by maximizing the �t of the option prices implied by the probability

distribution to the prices observed in the market. (The objective function to

minimize typically is the sum of the square di�erences between the option

prices implied by the distribution and those observed in the market.) The

additional structure provided by parametric methods may reduce the risk of

over�tting the data but option prices based on the risk-neutral probability

distribution fail to coincide exactly with those observed in the market. How-

ever, the researcher can improve the �t by allowing more exibility in the

parametric function (at the cost of an increase in the numerical complexity

of the optimization problem).

Melick and Thomas (1997) assume that the price of the underlying asset

follows a mixture of N lognormals, that is, that the risk-neutral density

function g is de�ned by

g(t) =

NX
i=1

�i gi(t); (13)

where

gi(t) =
1

p
2��it

exp

"
1

2

�
log(t)� �i)

�i

�2
#
; (14)

and

NX
i=1

�i = 1: (15)

5When such constraints are imposed, perfect replication of the option prices is not

guaranteed.
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The more lognormal distributions are included, the better the �t with the

observed option prices but the more di�cult the estimation procedure may

be. Numerical di�culties seem to limit the choice of N to 2 to 3 in practice.

Anecdotally, a change-of-regime model where the asset price at maturity fol-

lows distribution gi with probability �i yields the density function of Eq. (13)

but reference to this model is not necessary and the mixture-of-distribution

method can be seen in its own right as a way to obtain a parametric proba-

bility distribution that closely matches options prices.

S�oderling and Svensson (1997) point out that the mix-of-distribution

approach sometimes generates implied pdfs with sharp spikes, and that the

loss function (the minimization of which yields estimates of the parameters)

is often very at. This could cause the implausibly large changes in the

shape of the pdfs between consecutive days observed by Clews et al. (2000).

Jackwerth (1999) con�rms that the mixture-of-distribution method tends

to over�t the data when many distributions are used in the mix. Even if

the overall shape of the distribution is roughly stable across short periods

of time, individual distributions in the mix can change drastically, which

invalidates the use of the method in estimating a change-of-regime model.

2 A New Non-Parametric Method to Compute Risk-

Neutral Probability Distributions from the Prices

of Traded Assets

The method introduced below is both an extension and a simpli�cation of

implied trees. The implied-tree method above forces the risk-neutral proba-

bility distribution to exactly replicate the option prices. However, one may

not wish to match all quoted options prices exactly if some poorly reect eco-

nomic fundamentals. This paper innovates by substituting a penalty for not

matching the option prices instead of the obligation of recovering them ex-

actly. Not �tting the option prices perfectly allows us to weight each option

price by its trading volume, which we use as a proxy for the informativeness

of the option's price. In other words, highly traded options are assumed to

contain more information than low-volume options.

Trading volume is typically very unequally distributed across strike prices.

Clews et al. (2000) note that at- and near-the-money options account for

most of trading volume in options on Financial Times Share 100 Index

(FTSE 100) and on short-term sterling interest-rate futures. Recent data on

options on Eurodollar, Standard and Poors 500 Index (S&P 500) futures re-

veals the same pattern. Exchanges typically publish daily settlement prices

for options that have not been traded on the day. Such quotes are model

based and should not be used to construct implied probability distributions.

It is also doubtful whether prices of options with very low trading volume

are meaningful.

Economic motivations for using trading volume as a �lter

There are several reasons to weight each option by its trading volume. The

equilibrium price of an asset averages the di�erent values assigned to the
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asset by the participating traders. Intuitively, if buying and selling orders

contain some noise, the latter should have a lesser impact on highly traded

options because the idiosyncratic components of the order ow are averaged

across a larger pool of traders. This should lead us to give more weight to

high-volume options, following the example of generalized least-squares re-

gressions, which deal with variables that are means of other random variables

by weighting each observation by the size of the sample it averages.

Another reason to use trading volume to discriminate among the di�er-

ent options is that quotes on high-volume options are more likely to corre-

spond to simultaneous transactions. Transaction volume typically displays

a U-shape pattern across the trading day (Jain and Joh, 1988). Since set-

tlement prices of exchange-traded derivatives most often coincide with their

prices at the close, quotes on high-volume options are likely to correspond

to transactions occurring during the peak-volume time at the end of the

trading session. Put another way, options with low cumulative trading vol-

ume on the day are more likely to have stopped trading during the relative

low-activity period in the middle of the day. Scaling down the importance

of low-volume options adapts end-of-day data to a technique, risk-neutral

probability inference, that assumes that all option prices are determined

simultaneously.

One justi�cation for using trading volume to discriminate among options

on the same underlying asset is grounded in economic theory: Models de-

veloped by Hu�man (1992) and Blume, Easley, and O'Hara (1994) suggest

that trading volume is higher when the agents' information about the true

value of the traded asset is more precise. Although the lack of reliable in-

dicator of the precision of traders' information hinders the testing of this

proposition, other predictions of these models are clearly borne out by the

data. For example, there is strong empirical support for the positive cor-

relation between trading volume and the absolute di�erence of the price of

an asset predicted by both these models, as documented by Karpo� (1987),

and Gallant, Rossi, and Tauchen (1992). Using a general-equilibrium econ-

omy where di�erently-informed agents exchange productive capital, Hu�-

man (1992) obtains a strong relationship between the transaction volume of

capital and a measure of its informativeness about the future state of the

economy. Blume, Easley, and O'Hara (1994) investigate the informational

role of trading volume in a noisy rational-expectations exchange economy

where the precision of the private signals observed by the traders is random.

The equilibrium trading volume is an increasing function of the precision of

the private signals and conveys information not revealed by the equilibrium

price. Dupont (1997) uses a noisy rational-expectations framework where

the precision of the informed traders' signals is deterministic but the sig-

nals' correlation structure is richer than that in Blume, Easley, and O'Hara

(1994). The mean trading volume and the informativeness of the equilib-

rium market price, measured by its correlation with the true value of the

traded asset, display very similar patterns to changes in the precision of the

informed traders' private signals or in the correlation between their signals.

Both the mean trading volume and the informativeness of the market price

are increasing in the precision of the private signals and decreasing in the
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correlation between those signals. The latter pattern con�rms the conclu-

sion of Shalen (1993) whose model generates a positive relation between the

dispersion of the traders' beliefs.

A simple method to use trading volume as a �lter

The method presented in this paper weights every option by a function of

its trading volume. To simplify, we neglect the early exercise clause of the

(American) options used and do not impose non-negativity constraints on

the implied probabilities. As shown in the next section, the early-exercise

feature does not seem to have much impact on the prices of options that are

not very far in the money. Ignoring positivity constraints allows us to solve

the optimization problem in closed form, using only linear algebra, because

the loss function is quadratic and the constraints linear in the implied prob-

abilities, so that the implied probabilities are linear in the option prices. In

contrast, Jackwerth and Rubinstein (1997) impose positivity constraints on

the implied probabilities and use an advanced algorithm (Broyden-Fletcher-

Goldfarb-Shanno) to compute them. Even those who prefer to use non-linear

optimization techniques to guarantee non-negative probabilities may be in-

terested in having a simpler, faster procedure ready, especially if they have

to recover implied probabilities daily or on demand.

The option prices can be weighted by their trading volume or a function

of their trading volume. We impose that options with zero volume be given

zero weight. We experiment with two speci�cations. Let �si be the weight

allocated to the option struck atKi by speci�cation s and V (i) be the trading

volume of this option.

�1i = V (i)=
Pm

k=1 V (k);

�2i = log(1 + V (i))=
Pm

k=1 log(1 + V (k)):
(16)

The second speci�cation gives high-volume options less predominance than

the �rst. One could also exclude options whose trading volume is below a

threshold.

Moreover, we fully use the exibility o�ered by the non-parametric char-

acter of the implied-tree method. For example, we choose di�erent distribu-

tions to build the initial p0i 's probabilities. In the heart of the distribution,

that is, for prices above the minimum strike and below the maximum strike,

the p0i 's are generated by a lognormal distribution with a volatility that min-

imizes the average square deviation between the asset prices implied by the

distribution and the asset prices observed in the market. In contrast, the

p0i 's in the tails of the distribution, are generated by a lognormal distribu-

tion with a higher volatility. The increase in the volatility of the lognormal

distribution which serves as a reference in the estimation of the implied risk-

neutral distribution matches the observation that implied volatilities tend to

be higher for strikes prices further away from the center of the distribution.

We also impose a quadratic smoothness criteria on the implied probabili-

ties. Using this smoothness criteria, we can dispense with imposing that the

implied probabilities be close to initial probabilities in the heart of the distri-

bution for the options on Eurodollar futures (but not for those on S&P 500

futures). However, it is still advisable to impose closeness to a well-behaved
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distribution in the tails. A major advantage of implied-tree methods over

parametric approaches is that the user can easily tailor the method to his

own needs.

The new objective function is


(P ) = �1
P

i2I(pi � p0i )
2

+ �2
�Pm

j=1 �j
�Pn

i=1 pi e
�r� max(0; Si �Kj)�C(Kj)

�
+

Pn
i=1 piSi � F +

Pn
i=1 pi � 1

�
+ (1 � �1 � �2)

Pn�1
i=2 (pi�1 � 2pi + pi+1)

2;

(17)

where the �i's are the weights on the constraints, I indexes the pi's for which

a cost of deviating from the initial probabilities p0i 's is imposed, and the �i's

are the weights on the prices of the options observed in the market.

To express Eq. (17) in matrix form, write

S1 = Diag(I[i 2 I]);

� = Diag(�1; : : : ; �m; 1; 1);
(18)

and let R the matrix so that P 0RP =
Pn�1

i=2 (pi�1�2pi+pi+1)
2. The objective

function becomes


(P ) = �1 (P � P0)
0S1(P � P0) + �2 (M P �Q)0�(MP �Q) + (1� �1 � �2)P

0RP;

(19)

where the matrices M and Q follow from Eq. (4). The solution is, assuming

invertibility of the relevant matrix,

P =
�
�1S1 + �2M

0�M + (1� �1 � �2)R
�
�1

(�1S1P0 + �2M
0�Q): (20)

3 Early exercise

In this section, we review the impact of the early-exercise feature on the

prices of American-style options and the special character of options that

are very far in the money.6

Many options traded on �nancial exchanges can be exercised at any time

before expiry. Melick and Thomas (1997) take this early-exercise feature into

account by letting the model price of the option be a weighted average of

the upper and lower bounds on American options and by making the weight

a parameter of the objective function. As an alternative, Pirkner, Weigend,

and Zimmermann (1999) combine the mixture-of-distribution method and

implied binomial trees to capture the path-dependency generated by the

early-exercise clause. Clews et al. (2000) use the mixture-of-distribution

technique but adjust for the early exercise premium using the method de-

veloped by Barone-Adesi and Whaley (1987).

6The underlying asset is now assumed to be a futures contract, so that the prices of

American and European calls di�er. In contrast, these prices coincide when the underlying

asset is a stock that pays no dividend.
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However, recent research suggests that the early-exercise feature of traded

options could be ignored. S�oderling and Svensson (1997) compare the im-

plied pdfs obtained using the method of Melick and Thomas (1997) to those

obtained using the mixture-of-distribution technique while treating Ameri-

can options as though they were European options. They report that the two

pdfs are indistinguishable to the eye and that "the correction for American-

style is not important, at least not compared to pricing errors (which possibly

reect some other type of misspeci�cation)" [p. 405].

To gauge the impact of the early exercise feature on option prices, we

computed the implied volatilities of options on S&P 500 index futures traded

on the Chicago Mercantile Exchange (CME) neglecting and taking account

of the Americanness of these options (Figure 2). Except for options very far

in-the-money, the implied volatilities are identical across the two methods.

We show below why far-in-the-money options should be treated di�erently

than other options (or excluded entirely).

Since American-style options can be exercised at any time, no-arbitrage

lower bounds on their values are immediate. If Ft is the price of the under-

lying asset (a futures contract), Ct(Ft;K) the price of a call option struck

at K, and Pt(Ft;K) the price of a put option struck at K, then

Ct(Ft;K) � Ft �K;

Pt(Ft;K) � K � Ft:
(21)

The right-hand side of Eq. (21) represent the payment obtained from exercis-

ing the option when it is cash-settled or the net pro�t of exercising the option

and taking a counterbalancing trade in the underlying asset otherwise. Little

information about the future realizations of the underlying asset value can

be inferred from options whose prices coincide with their lower bounds. For

example, assume the underlying asset follows a geometric Brownian motion,

as in Black-Scholes. If the theoretical price of an American call coincides

with the market price of the option for a volatility � when the market price

hits its lower bound, any volatility lower than � will also be consistent with

the observed option price.

This relates to the trade-o� faced by the holder of an in-the-money Amer-

ican call option. He can either exercise it immediately and pocket the dif-

ference between the underlying asset price and the strike price or wait for

the underlying asset price to reach even higher levels. When the price of an

American option reaches its lower bound, investors are indi�erent between

exercising and selling the option. Let's study further the case when exer-

cising the option becomes optimal and the price of the option consequently

reaches its lower bound.7 First, holding constant the volatility of the asset,

exercising the option is more attractive the higher the realization of the asset

price compared to the strike. As a result, the price of an American option

is more likely to hit its lower bound when the option is far in the money.

7If the price of such an option, a call for example, were above its lower bound when

exercising the option is the optimal strategy, traders would realize arbitrage pro�ts by

writing calls (which would be immediately exercised) and booking a pro�t of Ct�(Ft�K)

per option.
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Second, holding constant the price of the underlying asset and lowering its

volatility decreases the likelihood that the asset price attains even higher

levels in the future. This tilts the balance toward exercising the option.

Moreover, when the volatility reaches the level that makes exercising the

option the best alternative, any volatility lower than this threshold will re-

sult in the same outcome. Consequently, only upper bounds on the implied

volatility can be inferred from American options whose prices equal their

lower bounds.

The overvaluation of the implied volatility linked with neglecting the

early exercise clause of American options tends to be the highest when the

option's price reaches its lower bound. Solving for the implied volatility of an

American-style option while ignoring its early-exercise clause should bias the

volatility estimate upwards because, all things equal, an American option is

more valuable than a European option. When the early-exercise clause is

ignored, the di�erence between theses two values shows up in the implied

volatility. However, as shown in Figure 2, the e�ect is small when the option

price is strictly above its lower bound and, because the implied volatilities

are only numerically-obtained approximations, they are sometimes slightly

lower when the early-exercise clause is ignored.

Even if some information can be extracted from options whose price

equal their lower bounds, they should not be handled in the same way as

options with prices strictly above their lower bounds. We decide to exclude

lower-bound option prices entirely because they typically do not correspond

to any transactions (trading volume for such options is zero). Using the

buttery spread on such data would be particularly misleading. When it

coincides with its lower bound, the option price is linear in the strike; the

buttery spread (which is determined by the curvature of the option price

as a function of the strike) would a�ect a zero probability of the underlying

asset value reaching the strike.

4 Application

In this section, we present the data used in the paper and the impact of

weighting the market price of each option by its trading volume when ex-

tracting implied probability distributions.

4.1 Data

We use daily, publicly available, data on Eurodollar and S&P 500 futures

and options maturing in March 2001 and traded on the Chicago Mercantile

Exchange (CME) on February 28, 2001. End-of-day quotes have some clear

disadvantages compared to intraday data. Prices of options with di�erent

strikes may correspond to transactions occurring at di�erent times over the

day. The implied-pdf procedure assumes that all prices are simultaneously

determined and the lack of information about actual transaction times makes

the validity of this assumption hard to assess. CME also makes available

intraday trading information updated every ten to twenty minutes. However,

these data yield a snapshot of trading activity at a point in time and much
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work would be necessary to reconstitute an approximate history of market

activity over the day. In contrast, Jackwerth and Rubinstein (1997) use

transaction-by-transaction data on the S&P 500 index options traded on

the Chicago Board Options Exchange (CBOE). Their rich data set also

allows them to distinguish whether the trade occurred at the bid or at the

ask, a distinction we cannot make with end-of-day data. (CME intraday

data sometimes indicate whether the transaction price is a bid or an ask.)

However, end-of-day data are much more available than high-frequency data

and answer the practical need for daily implied pdfs in banking or regulatory

institutions.

We exclude options with prices equal to their lower bounds. When calls

and puts are both available for the same strike, we select the option with the

highest trading volume. One should not use multiple options for the same

strike when attempting to perfectly replicate the option prices. If the market

prices of the put and the call verify the put-call parity, then the price of one

can be deduced from the other and the prices of the underlying asset and

the riskless bond, so that only one option contains information. If the prices

of the put and the call options at the same strike fail to verify the put-call

parity, no risk-neutral probability distribution can price simultaneously the

underlying asset, the riskless bond and the two options.8 Including prices

of calls and puts with the same strike is possible when attempting to only

approximate the option prices, as is the case in the volume-weighted implied

trees introduced above. However, including multiple same-strike options on

Eurodollar futures does not have any distinguishable impact on implied pdfs,

possibly because departure from the put-call parity is minimal and trading

volumes of out-the-money options are typically much lower than that of

in-the-money option with the same strikes.

Eurodollar futures and options are quoted according to the International

Money Market (IMM) conventions and a simple transformation of the data is

necessary before computing implied volatilities or implied probability distri-

butions. A Eurodollar futures contract pays out 100 minus the spot three-

month Eurodollar rate at expiry expressed in percentage points and the

Eurodollar futures rate is de�ned as 100 minus the corresponding futures

price. (Futures and options contracts used in the paper mature simulta-

neously, at which time the Eurodollar spot and futures rates coincide.) We

need to transform options based on futures prices to options based on futures

rates because the Eurodollar implied volatilities pertain to the volatility of

the Eurodollar rate. A call on a Eurodollar futures contract struck at K

translates into a put on the Eurodollar futures rate struck at 100�K.

Table 2 presents some summary statistics on the trading volume for op-

tions on the S&P 500 and the Eurodollar March futures traded on February

28, 2001.9 The number of options and the average trading volume per op-

8The put-call parity holds exactly for European options and only approximately for

American options. However, our pdf-extraction technique treats all options as if they were

European-style, so that, including multiple same-strike options in the data set could still

result in numerical failure when the American option prices do not verify the put-call

parity.
9This day is chosen as an example. The trading volume patterns that day are fairly
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tion greatly di�er across underlying assets. The S&P 500 futures support

the most options (73), about ten times as many as the Eurodollar futures

(7). The average trading volume, in number of contracts, is higher for op-

tions on the Eurodollar than on the S&P 500 futures (but the average price

of options on Eurodollar futures is lower than that of options on S&P 500

futures). Trading activity is low or nil for many options on S&P 500 futures.

About 23 per cent of the options on S&P 500 futures have zero volume, and,

in total, about half of the options have trading volumes of 10 contracts or

less, a trading volume more than 10 times lower than the mean. In contrast,

none of the options on Eurodollar futures used in the paper has zero volume.

Figure 3 shows the cumulative distribution of trading volume and the

trading volume per strike for options on S&P 500 futures and Eurodollar

futures. The distance between the distribution function and the diagonal

line (which joins the lowest to the highest trading volumes) measures the

concentration of the trading volume because the cumulative distribution

function of a uniformly distributed random variable would coincide with the

diagonal line. Extreme volumes dominate the distribution of trading volume

on S&P 500 futures options whereas that on Eurodollar futures options is

more balanced.

Although, low volumes tend to be more frequent at strikes farther away

from the heart of the distribution, low volumes can occur at any strike (as

shown by the options on S&P 500 futures) and strikes in the tail of the

distribution can support high trading volumes (as shown by the options on

Eurodollar futures). This con�rms the idea of this paper that one should

take into account trading volume option by option and not merely select

options according to their moneyness.

4.2 Results

The following section presents the results of extracting risk-neutral proba-

bility distributions alternatively striving to perfectly replicate the market

prices of the derivatives on the underlying asset and being satis�ed with

only an approximate �t, a choice that allows the use of the options' trading

volumes to weight their prices.

Implied pdf perfectly replicating the option prices

Figure 4 shows the implied volatilities and the implied probability distri-

butions using the buttery-spread method and the implied-tree method ob-

tained from options on S&P 500 and Eurodollar futures. The high proportion

of zero-volume quotes in S&P 500 futures options does not seem to a�ect

the overall smoothness of the smile, suggesting that zero-volume quotes may

be the results of interpolating the smile or the option prices.

The implied probability distributions in Figure 4 are designed to per-

fectly match the market prices of the options and no positivity constraint is

representative of those on other days. Statistics below pertain to data excluding options

whose prices coincide with their lower bounds and options with a lower trading volume

than options with identical strike and maturity.
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imposed. The implied pdf obtained using the buttery method on the S&P

500 futures options shows multiple local peaks and troughs and is sometimes

negative. The implied probabilities are negative when a triplet of consecutive

option prices is not convex in the strike price. Hence, the implied buttery

distribution would not perfectly replicate the market prices of the options

if positivity constraints were imposed. Introducing more states of the world

than derivatives assets and letting the probability distribution be close to a

reference probability distribution while striving to match exactly the option

prices|the principle behind the implied-tree method|does not improve the

shape of the implied pdf obtained from options on S&P 500 futures. Every

spike in the buttery-spread pdf is matched by a spike in the implied-tree

pdf of similar or greater magnitude (the vertical axis in the graph in the

lower panel is truncated). Imposing positivity constraints, if possible, would

only hide the basic fact that some triplets of option prices are not convex in

the strike price.

Using the buttery method to construct the implied probability distribu-

tion yields better results when dealing with options on Eurodollar futures.

However, the implied-tree method assigns negative implied probabilities to

regions where the buttery-spread probabilities were positive. Imposing non-

negativity constraints would address this problem. The advantage of the

implied-tree method is that it allows extending the support of the distribu-

tion further in the tails. In the buttery-spread framework, the probabili-

ties of the lowest and the highest possible values of the underlying asset are

qualitatively di�erent from the other implied probabilities because these two

probabilities measure the probability mass in the tails. In this regard, the

pickup in the implied pdf at both ends of the Eurodollar rate range suggests

that the Eurodollar rate at expiry is likely to equal values outside this range.

The implied-tree method spreads the probability mass over a greater range

of values of the Eurodollar rate and yields longer and thinner tails. In this

region, the constraint that the implied pdf be close to a reference pdf sig-

ni�cantly a�ects the implied probability distribution because of the relative

paucity of option data in the tails.

Alternative to the implied-tree method

Instead of implied trees, one could use the method of Breeden and Litzen-

berger (1978), summarized in Eq. (9), on previously smoothed option prices.

Figure 5 shows the result of �tting a smooth function through the prices of

all put options on the S&P 500 futures and taking the �rst and the second

derivatives of this function. As shown in the upper panel, the interpolation

scheme delivers an apparently increasing and convex function. However, as

shown in the lower panels, deviations from monotonicity and convexity that

are barely visible in the top panel translate into slight bumps in the �rst

derivative and much sharper spikes in the second derivative. Choosing a

cubic spline for the option-price function like in Figure 5|an interpolat-

ing function that is cubic on the segments between two strikes and passes

smoothly through the market prices of the options| results in linear second

derivatives and coincides with the buttery spread in the heart of the distri-

15



bution. Choosing a higher order for the polynomial interpolating function

often results in even more pronounced swings in the second derivatives. In-

creasing the order of the interpolating polynomial may allow the imposition

of smoothness conditions on the second derivative of the price function at

every strike but typically causes the second derivative function to behave

erratically between some strikes.

Shimko (1993) and Campa et al. (1997) �t the implied volatilities using

a polynomial function of the strike price. We do not apply their methods

to our data because the volatility smile obtained from options on the S&P

500 futures is even less smooth than the put price function in Figure 5.

More generally, interpolation schemes that work well on data set of small

size and good quality may deliver less acceptable results when applied to

more numerous and lower-quality data. One may suspect that some options

on S&P 500 futures with consecutive strikes correspond to transactions that

occurred at di�erent times over the trading day. A way of improving the

quality of our end-of-day data would be to �lter out options that most likely

traded at a di�erent time than the others. Trading volume can be used as

such a �lter when no information on transaction time is available.

The undesirable behavior of the pdf also seems to be due more to the

constraint of replicating the price of every option than to the selected in-

terpolation scheme. To remedy this, one could smooth the prices of the

options using a spline with fewer knot points than option prices and obtain

the implied pdf by taking the second derivative of this function (and scaling

results by exp(�r�)). The procedure is simple but the resulting pdf depends
on the order of the polynomial used and on the choice of knot points. Those

willing to forgo the perfect replication of the market prices of the options

may prefer the method outlined in the paper (where a non-matching cost

replaces the requirement to perfectly recover the option prices) because of

the greater transparency between the parameters (the weight a�ected to the

non-matching cost, etc.) and the resulting pdf.

Deleting from the data the observations that cause the price of the op-

tions not to be convex in the strike price, or slightly modifying the data

to convexify the option prices, would guarantee the non-negativity of the

implied probabilities when the buttery spread is used and diminish the

likelihood of negative probabilities when the implied tree method is cho-

sen. However, as shown in Figure 6, there is no unique way to select the

data to make the call price a convex function of the strike price because the

buttery-spread based implied probability at any point in the asset-price

range depends on the price of three options. In Figure 6, the prices of the

put options, represented by the dots joined by the solid line, do not de�ne a

convex function of the strikes, because a line joining points B and E would

pass below D. This can be remedied by pulling down D, shifting up B or E,

for example towards C and F, respectively, or deleting B or E altogether and

using A or G instead in the buttery spread. Each of these choices results

in a di�erent implied probability distribution.

Implied pdf imperfectly replicating the option prices
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The e�ect of not requiring the implied distribution to perfectly match the

market prices of the options and of weighting each option price by a func-

tion of its trading volume is shown in Figure 7. The upper panels show

the implied probability distribution when only an approximate �t with the

option prices is acceptable and every option price has the same weight. The

constraint that the implied pdf replicate the market prices of the option is

more signi�cantly lessened for options on S&P 500 futures than for those

on Eurodollar futures to insure a relatively smooth pdf for the S&P 500.

The weight on the cost of non matching (�2 in equation (19)) is 0.5 for the

S&P 500 futures options but 0.98 for Eurodollar futures options. However,

weights on the non-matching cost are not directly comparable across di�er-

ent types of assets. For example, there are more options on the S&P 500

futures than on the Eurodollar futures, and hence relatively more probable

discrepancies between the market prices of the options and those implied by

the pdf. Even with the lessened matching constraint, the pdf obtained from

the S&P 500 futures options is fairly erratic. Using trading volume to weight

each option price smoothes some of the wiggles, especially when the level of

the trading volume is used instead of its logarithm. The pdf obtained from

options on Eurodollar futures is hardly a�ected by weighting each option by

the logarithm of its trading volume but is signi�cantly smoother when the

level of the trading volume is chosen.

The two weighting schemes used a�ect options with zero trading volume

a zero weight. Figure 8 shows the implied pdfs based on options on S&P 500

futures excluding zero-volume options while a�ecting the same weight to all

remaining options, whatever their trading volumes. The implied pdfs are

computed using the buttery spread method, the implied-tree method im-

posing a perfect match with the option prices, and the implied-tree method

requiring only a partial match with those prices (the weight on the non-

matching cost is unchanged). Methods with perfect match results in wiggly

and sometimes negative pdfs while relaxing this constraint improves the

smoothness of the implied pdf. Weighting each observation by its trading

volume improves further the smoothness of the pdf.

The improvement in the overall smoothness of the implied probability

distribution does not come at signi�cant costs for the �t between the implied

distribution and the market prices of the derivatives. For options on the

Eurodollar futures, the mean absolute deviation between the prices implied

by the distribution and those observed in the market is about $11 when a

lognormal distribution is �tted to the option prices, $4 when the implied-tree

with imperfect matching but no volume-weighting is used, and $5 when the

volume-weighting scheme is used. The respective �gures for options on S&P

500 futures are $633, $7 and $9.10

10Options and futures used in the paper are quoted in "points" and 1 point is worth

$25 for derivatives on the Eurodollar and $2.5 for those on the S&P 500 index. The mean

prices are $54 for options on the Eurodollar futures and $2,257 for options on the S&P

500 futures. The sample excludes options whose prices equal their lower bounds or with

zero trading volume. When both a call and a put option are traded at a given strike, the

option with the highest trading volume is selected.
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The weighting scheme as bandwidth

As shown in Figure 7, choosing the logarithm or, alternatively, the level

of the trading volume of each option signi�cantly impacts the implied pdf.

Weighting the option prices by the logarithm of the trading volume has

roughly the same result as not weighting the option prices at all for options

on Eurodollar futures but has a signi�cant e�ect for options on the S&P 500

futures. Figure 9 shows the weights on the options for both underlying as-

sets. Choosing to weight the option prices by the logarithm of their trading

volume limits the inuence of high trading volumes. It nearly a�ects each

option on Eurodollar futures the same weight but preserves some variation

across weighted traded volumes for options on S&P 500 futures, while still

signi�cantly reducing the weight of highly traded options. Figure 9 suggests

that it is advisable to graph the weight given to each option by potential

weighting schemes before computing implied pdfs. As shown in Figure 10,

which displays the relative weights as functions of the option's trading vol-

ume when the weights are based on the level and on the logarithm of trading

volume, the weights based on the logarithm of the trading volume atten

out as soon as trading volume increases away from zero so that this weight-

ing scheme di�ers little from not weighting the options. (Trading volume is

assumed to be uniformly distributed across strikes, so that the cumulative

probability distribution of the trading volume is the 45-degree line.) The

volume-based weighting scheme plays a role somewhat similar to that of the

bandwidth in a kernel regression. Favoring options with high trading vol-

ume reduces the e�ective number of options used to compute the implied

pdf; weighting options more equally includes less relevant data.

5 Conclusion

The paper presents a new way of inferring the probability distribution of

an asset from the prices of derivatives based on this asset. The approach

recognizes that market prices of options and futures are inherently noisy and

introduces two changes. First, instead of requiring that the implied proba-

bility distribution perfectly replicate the market prices of the derivatives, the

new procedure only imposes a cost of non-matching those prices. Second, it

uses trading volume as an indicator of how relevant the price data are and

weight each option by a function of its trading volume.

The user selects such a function according to how much he wants to fa-

vor high-volume options against low-volume options in the weighting scheme.

Comparing the implied probability distributions obtained with the new method

to those obtained using the buttery-spread or the implied-tree methods re-

veals signi�cant improvements in the degree of smoothness of the distribu-

tions with a minimal deterioration of the �t between the derivatives prices

obtained from the implied probability distributions and the corresponding

market prices.

Although we only use the trading volume-weighting scheme to implied

trees, the method can be applied to any other technique mapping market

quotes on derivatives contracts to the risk-neutral probability distribution of
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the underlying asset. Computational changes are minimal and trading vol-

ume data are as easily available as price data. Users of parametric methods

do not even need to consider the appropriate weight on the non-matching

cost to be able to use trading volume to weight option prices because para-

metric methods typically cannot replicate observed option prices. (In con-

trast, when perfect replication of the option prices is possible, one needs to

loosen the matching constraint for a weighting scheme on the option prices

to make any di�erence.) Weighting each option by its trading volume could

reduce the problems linked with over�tting the data and produce implied

probability distributions that are both smoother and more reective of fun-

damentals.
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Appendix

A Retrieving risk-neutral distributions when there

are as many marketable assets as states of the

world

Setting the number of states of the world equal to the number of assets and

ignoring the positivity constraint on the risk-neutral probabilities, one can

easily recover the (unique) risk-neutral probability distribution. From Eq.

(5), it follows that8<
:

Si = S1 +�(i� 1) for i = 1 : : : ; n;

Kj = K1 +�(j � 1) for j = 1 : : : ;m;

Si �Kj = �(i� 1� j):

(22)

Consequently, Eq. (3) is equivalent to8<
:
Pm+2

i=1 (i� 1) pi = (F � S1)=�;Pm+2
i=1 max(0; i � 1� j) pi = er�C(Kj)=�;Pm+2
i=1 pi = 1:

(23)

Eq. (23) is equivalent to

A :P = Z (24)

with the components of A and Z given by8>>>><
>>>>:

aj;i = max(0; i � j) for j = 1; : : : ;m+ 1; i = 1; : : : ;m+ 2;

am+2;i = 1 for i = 1; : : : ;m+ 2;

z1 = (F � S1)=�;

zj = er�C(Kj�1)=� for j = 2; : : : ;m+ 1;

zm+2 = 1:

(25)

A�1 = B with the components of B equal to 0 except8>><
>>:

b1;1 = �1; b1;2 = 1; b1;m+2 = 1;

bi;i�1 = 1; bi;i = �2; bi;i+1 = 1 for i = 2; : : : ;m;

bm+1;m = 1; bm+1;m+1 = �2;
bm+2;m+1 = 1:

(26)

To prove that B :A is the identity matrix, let ci;j =
Pm+2

k=1 bi;k ak;j and show

that ci;j = 1 if i = j and 0 otherwise.

1. Case 2 � i � m:

For 2 � i � m, bi;m+2 = 1 if i = 1 and bi;m+2 = 0 if i � 2 and for

k � m+ 1, ak;j = max(0; j � k). Hence,

ci;j =
Pm+1

k=1 bi;k ak;j;

= max(0; j � i+ 1) � 2max(0; j � i) + max(0; j � i� 1):

(27)
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Eq. (27) implies that, when 2 � i � m, ci;j = 1 if i = j and 0

otherwise.

2. Case i = 1;m+ 1;m+ 2:

8<
:

c1;j = �max(0; j � 1) + max(0; j � 2) + 1;

cm+1;j = max(0; j �m)� 2max(0; j �m� 1);

cm+2;j = max(0; j �m� 1):

(28)

Eq. (28) shows that, when i = 1;m+ 1;m + 2, ci;j = 1 if i = j and 0

otherwise.

Likewise, A :B is the identity matrix.

B More states than marketable assets

Assume that the matrix M in Eq. (4) is full-rank and let S be the n � n

selection matrix such that the �rst m+ 2 columns of ~M =MS0 are linearly

independent. Eq. (3) is equivalent to ~M ~P = Q with ~P = SP . Let ~M =

[ ~M1
~M2] and ~P = [ ~P1 ~P2]. Then,

~P1 = ( ~M1)
�1
h
Q� ~M2

~P2

i
:

Let S1 and S2 be the selection matrices so that ~M1 = ~MS1 and ~M2 = ~MS2.

Using the inverse of the selection matrix S, we write P = S0 ~P and developing

terms,
~P = AU +B;

where

U = ~P2; A =

�
�[MS0S1]

�1 [MS0S2]

In�m�2

�
; B =

�
[MS0S1]

�1Q

On�m�2

�
;

where In�m�2 is the (n�m� 2)� (n�m� 2) identity matrix, and On�m�2

is a n�m� 2 dimensional vector of zeroes.

Let P0 = (p0i )
n
i=1, then, Eq. (10) is equivalent to

min(P � P0)
0(P � P0): (29)

Hence, combining this equation with the constraints, we get


(U) = (AU +B � P0)
0(AU +B � P0):

The solution to this problem, assuming the relevant matrix is non-singular

is

U� = (A0A)�1A0(P0 �B): (30)

Finally, the resulting probability vector is

P � = AU� +B:
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Underlying Asset Event Period

1 Crude oil Persian Gulf crisis 1990-91

2 10-year Bunds M3 growth release 1994

3 US Dollar/Canadian Dollar Quebec sovereignty referundum 1995

4 Deutsche Mark/French Franc French Budget 1996

5 3-month eurodollar Employment data release 1997

6 3-month euromark Bundesbank comments 1997

Table 1: Event studies using implied distributions. The implied pdfs are based on

options on the assets mentioned above or on futures on these assets. Sources: 1. Melick

and Thomas (1997) ; 2. S�oderling and Svensson (1997); 3. ibid. p. 405; 4. Campa et al.

(1997); 5. and 6. Melick and Thomas (1998)

variable Eurodollar S&P 500 S&P 500

excludes obs. with

zero trading volume

number of observations 7 73 56

minimum 100 0 1

maximum 17,000 1,112 1,112

mean 6,962 114 149

median 6,350 10 30

Table 2: Trading volume of options on Eurodollar and S&P 500 futures traded

on February 28, 2001 and maturing in March 2001. The data exclude the options

whose prices coincide with their lower bounds. When both a put and a call option are

traded at a given strike, the option with the highest trading volume is selected.
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Figure 1: Buttery spread. If the asset price, S, takes values 90, 100, 110 on the

interval [90,110], the portfolio constituted by a long position in 1/10 calls struck at 90 and

110, and two short positions in 1/10 calls struck at 100 pays out $1 if S = 100 and nothing

otherwise.

1000 1200 1400 1600 1800
strike price

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

i
m
p
l
i
e
d

v
o
l
a
t
i
l
i
t
y

European HsolidL and American HdashedL

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

Figure 2: Implied volatility smiles obtained from options on S&P 500 futures

traded on February 28, 2001 and maturing in March 2001. Implied volatilities

are based on Black-Scholes (solid line) and on numerical schemes taking into account the

option's early-exercise clause (dashed line). Outside the two vertical lines the market prices

of options coincide with their lower boundaries; inside the two vertical lines options whose

market prices coincide with the lower boundaries are excluded and, when both a call and

a put are available at the same strike, the option with the highest trading volume on the

day is selected.
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Figure 3: Cumulative distribution of trading volume (upper panels) and trad-

ing volume per strike (lower panels) of options on S&P 500 futures (left panels)

and Eurodollar futures (right panels) traded on February 28, 2001 and matur-

ing in March 2001. Zero-volume options are included in the data set. When both a call

and a put are available at the same strike, the option with the highest trading volume on

the day is selected.
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Figure 4: Implied volatilities (upper panels), implied probability distribu-

tions using the buttery-spread method (middle panels) and the implied-tree

method (lower panels) obtained from options on S&P 500 futures (left panels)

and Eurodollar futures (right panels) traded on February 28, 2001 and ma-

turing in March 2001. The dashed lines in the lower panels show the lognormal pdfs

that best match the market prices of the options. The option prices computed from the

implied distributions perfectly �t market prices. No positivity constraint is imposed on

the implied probabilities. Options whose market prices coincide with the lower boundaries

are excluded. The trading volume of some options may be zero. When both a call and

a put are available at the same strike, the option with the highest trading volume on the

day is selected. The futures rate on the Eurodollar was 5.0075 percent and the futures

price on the S&P 500 was 1242.
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Figure 5: Smooth interpolation of the prices of the puts on S&P 500 futures

(the upper panel) and its �rst and second derivatives (the lower panels). The

interpolating function is a cubic spline that passes smoothly through all the option prices.

Nearly imperceptible deviations from convexity by the interpolating function translates

into large spikes in its second derivative.
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Figure 6: Convexifying non-convex option prices. Put prices, represented by the

solid circles, do not de�ne a convex function of the strikes because D lies above the line

joining B and E. There exist multiple ways of convexifying the option price function, each

yielding a di�erent implied probability distribution.
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Figure 7: Implied probability distributions using variants of the implied-tree

method obtained from options on S&P 500 futures (left panels) and Eurodollar

futures (right panels) traded on February 28, 2001 and maturing in March

2001. Option prices computed based on the implied distributions match market prices

only partially. The implied distributions minimize a loss function penalizing the following

three features: deviations between the market prices of the options and the prices based

on the implied distributions; deviations between the implied probabilities and a reference

probability function; and roughness of the implied probability density. The weighting of

the options in the loss function is as follows: options are unweighted in the upper panels,

they are weighted by the logarithm of their trading volumes in the middle panels, and by

their trading volumes in the lower panels. Except in the upper panels, options with zero

volume have zero weight in the loss function.

30



900 1000 1100 1200 1300 1400
Price

0

0.0025

0.005

0.0075

0.01

0.0125

D
e
n
s
i
t
y

S&P500 Futures

800 1000 1200 1400 1600
Price

-0.004

-0.002

0

0.002

0.004

0.006

0.008

D
e
n
s
i
t
y

S&P500 Futures

900 1000 1100 1200 1300 1400 1500 1600
Price

0

0.002

0.004

0.006

D
e
n
s
i
t
y

S&P500 Futures

Figure 8: Implied probability distributions obtained from options on S&P 500

futures traded on February 28, 2001 and maturing in March 2001 excluding

zero-volume options. The upper panel uses the buttery-spread method; the other

panels use variants of the implied-tree method. The method used in the middle panel

imposes a perfect �t between the market prices of the options and those based on the

implied probability distribution; the method used in the lower panel only imposes a cost

of not matching the market prices of the options. Every option is given the same weight.
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Figure 9: Weights on each option on S&P 500 futures (upper panel) and on

Eurodollar futures (lower panel) traded on February 28, 2001 and maturing

in March 2001 based on the option's trading volume (solid line) and on the

logarithm of its trading volume (dashed line).
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Figure 10: Relative weights as functions of the option's trading volume when

the weights are based on the option's trading volume (solid line), on the loga-

rithm of its trading volume (dashed line), and when every option is given the

same weight (light-gray line). Trading volume is assumed to be uniformly distributed

across strikes (so that the cumulative probability distribution of the trading volume is the

45-degree line). When the upper bound on the trading volume is high, the weights based

on the logarithm of the trading volume atten out as soon as trading volume increases

away from zero so that this weighting scheme yields di�ers little from not weighting the

options. The relative weight of an option is its weight multiplied by the number of options.
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