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A Stochastic Formulation of

the Bass Model of New-Product Diffusion

Abstract

In the past several decades, new-product diffusion models has been an active area of re-

search in marketing (see, e.g., Mahajan, Muller, and Wind 2000, and Mahajan and Wind

1986). Such models are useful because they can provide important insights into the timing

of initial purchase of new products by consumers. Much of the work in this area has been

spawned by a seminal paper of Bass (1969), in which it was postulated that the trajectory

of cumulative adoptions of a new product follows a deterministic function whose instanta-

neous growth rate depends on two parameters, one of which captures a consumer’s intrinsic

tendency to purchase, independent of the number of previous adopters, and the other cap-

tures a positive force of influence on a consumer by previous adopters. While Bass’s model,

or the Bass Model (BM), yields an S-shaped cumulative-adoptions curve that has proven

to provide excellent empirical fit for a wide range of new-product-adoptions data sets (espe-

cially for consumer durables), there also has been a common belief (see, e.g., Eliashberg and

Chatterjee 1986) that it would be of interest to have an appropriate stochastic version of his

model. The purpose of this paper is to formulate and study a stochastic counterpart of the

BM. Inspired by a very early paper of Taga and Isii (1959), we formulate the trajectory of

cumulative number of adoptions as a pure birth process with a set of state-dependent birth

rates that are judiciously chosen to closely parallel the roles played by the two parameters

in the deterministic BM. We demonstrate that with our choice of birth rates, the resulting

pure birth process exhibits characteristics that resemble those in the BM. In particular, we

show that the fraction of individuals who have adopted the product by time t in our formu-

lation agrees with (converges in probability to) the corresponding deterministic fraction in

a BM with the same pair of parameters, when the total number of consumers in the target

population approaches infinity. Our formulation, therefore, supports and expands the BM

by having explicit micro-level stochastic interactions amongst individual adopters.

PURE BIRTH PROCESSES; DIFFUSION MODELS; NEW-PRODUCT ADOPTIONS;

EPIDEMICS
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1 Introduction

It is well known (see, e.g., Mahajan, Muller, and Wind 2000, Mahajan and Wind 1986,

and Rogers 1995) that for a large variety of new products, the Bass model (Bass 1969)

describes the empirical cumulative-adoptions curve extremely well. The Bass Model (BM)

assumes that the instantaneous rate of adoption of a new product (or technology) at any

time epoch depends on two forces, one is an intrinsic tendency for an individual (given

that the individual has not yet adopted) to make a purchase, independent of the number of

previous adopters in the target population, and the other is a positive influence by previous

adopters on the remaining individuals in the population (via, e.g., word of mouth).

The mathematical formulation of the BM is as follows. Let p and q be two parameters

that represent the extent of the above-mentioned two forces, let m be the size of a target

population, and let N(t) be the cumulative number of adopters of a new product by time

t. Then, under the assumption that N(t) is a continuous function with N(0) = 0, Bass

postulates (Bass 1969, p. 217) that the following differential equation holds:

dN(t)
dt

= [m−N(t)]
[
p +

q

m
N(t)

]
, t ≥ 0 . (1)

That is, the growth rate of N(t) at time t is equal to the product of m − N(t) and p +

(q/m)N(t), where m −N(t) is the size of the remaining population and p + (q/m)N(t) is

the instantaneous adoption rate of every individual in the remaining population.

Notice that if we let F (t) be the (continuous) fraction of individuals who have adopted

the product by time t, i.e., let

F (t) ≡ N(t)
m

, (2)

then, equation (1) has the following equivalent form:

f(t)
1− F (t)

= p + qF (t), t ≥ 0 , (3)

where f(t) denotes the derivative of F (t). When m is large, the fraction F (t) as defined

in (2) can intuitively be thought of as the “probability” for a randomly-selected individual

in the target population to have adopted the product by time t. With this language,

the left-hand side of (3) is the failure-rate (or hazard-rate) function associated with the

“distribution” function F ; and equation (3) says that the failure-rate function of F equals

p + qF (t) at time t.
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In Bass (1969), it was shown that the solution of (3) is given by

F (t) =
1− e−(p+q)t

1 +
q

p
e−(p+q)t

, t ≥ 0 ; (4)

and that this S-shaped solution provides excellent empirical fit for the timing of initial

purchase for a wide range of consumer durables.

Bass (1969) referred to the parameter p as the “coefficient of innovation” and the pa-

rameter q as the “coefficient of imitation.” His terminology was motivated by the following

behavioral rationale:

“Initial purchases of the product are made by both “innovators” and “imitators,”

the important distinction between an innovator and an imitator being the buying

influence. Innovators are not influenced in the timing of their initial purchase by

the number of people who have already bought the product, while imitators are

influenced by the number of previous buyers. Imitators “learn,” in some sense,

from those who have already bought.”

Other researchers have referred to p as the coefficient of “external influence” and q as the

coefficient of “internal influence.” Thus, one can also interpret p and q as the respective

intensities of the transmission of information from an external source (or via an external

broadcast) and between any given pair of individuals within a target population.

Since the publication of Bass’s paper more than three decades ago, the solution (4), or

its derivative,

f(t) =

(p + q)2

p
e−(p+q)t(

1 +
q

p
e−(p+q)t

)2 ,

has been used extensively to forecast the growth of sales volume of new products over

time. In such applications, it is important to develop good estimates for the parameters

p and q from historical data (see, e.g., Putsis and Srinivasan 2000, Section 11.2.1, for a

review). A standard framework for this purpose is to conduct a regression analysis (ordinary

least squares or nonlinear least squares) based on the assumption that the actual sales in

successive time intervals can be modeled as the sum of two independent components: the

(discretized) adoption-rate curve, mf(t), and a sequence of independent and identically

distributed (i.i.d.) error terms. Clearly, the adoption of such a framework can be attributed
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to the fact that the BM assumes that N(t) is a deterministic function. In other words, while

the BM is parsimonious, the assumption of a deterministic N(t) effectively forces one to

model deviations of the actual sales data from the adoption-rate curve as manifestations

of the presence of independent random errors, as opposed to being a consequence of the

underlying stochastic nature of the forces behind successive adoptions. This observation

suggests that it would be of interest to have a stochastic version of the BM in which

{N(t), t ≥ 0} is assumed to be a stochastic process.

Interestingly, in 1959, a decade prior to Bass’s work, Taga and Isii (1959) had introduced

a stochastic model to study the pattern of communication between an information source

and individuals within a social group. Specifically, Taga and Isii assume that transmissions

of a given piece of information can take place either directly from the source to an individual

or between individuals within the group; and that the growth of the number of individuals

who have received the information follows a pure birth process with a set of state-dependent

birth rates that are functions of two parameters that correspond to these two modes of

information transmission. Observe that while the intended application context is different,

the stochastic assumptions in Taga and Isii’s model are remarkably similar in spirit to the

deterministic ones in the BM.
In fact, in addition to Taga and Isii’s work, there exists a large body of stochastic models

of diffusion in the theory of epidemics (see Bailey 1957; Bartholomew 1982, Chapters 9 and

10; and Bartlett 1960). For detailed discussions of the stochastic diffusion literature, we

refer the reader to Bailey (1975) and to Eliashberg and Chatterjee (1986).

The purpose of this paper is to formulate and study a stochastic counterpart of Bass’s

new-product diffusion model. Our formulation, which we refer to as the Stochastic Bass

Model (SBM), is based on Taga and Isii (1959). We will, however, define a slightly different

set of birth rates, one that closely parallels the manner in which the two forces are captured

in the deterministic BM. Our primary aim is to prove that the fraction of individuals who

have adopted the product by time t in a SBM agrees with (converges in probability to) the

solution F (t) of a corresponding BM with the same pair of parameters, when the size of

the population approaches infinity. This asymptotic agreement shows that the family of

SBMs supports and expands the BM in the sense of having explicit micro-level stochastic

interactions amongst individual adopters (see, e.g., Roberts and Lattin 2000).

One potential application of our stochastic formulation of the BM is that it can serve

as a starting basis for empirical studies of new-product diffusions. Work in this direction is

currently in progress and will be reported in a subsequent paper.

The outline of the rest of this paper is as follows. In Section 2, we present the formulation
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of the SBM. In Section 3, we summarize our results; the basic theme is to describe properties

of the SBM that constitute counterparts to those in the deterministic BM. Finally, in Section

4, we provide detailed proofs.

2 The Stochastic Bass Model

Consider a product that has a potential market size of m individuals. We assume that each

individual in this potential market, which will be referred to as the target population, will

eventually adopt (or purchase) exactly one unit of the product. The timing of this adoption

is, however, uncertain. Let Am(t) be the cumulative number of adoptions by time t, with

Am(0) ≡ 0. Following Taga and Isii (1959), we assume that the cumulative-adoptions

process {Am(t), t ≥ 0} is a pure birth process. Our specific assumptions on the birth rates

are described as follows.
If an individual has not yet adopted the product by time t, then we assume that the

“intrinsic” probability for this individual to adopt the product during the time interval

(t, t + h) is (independently of everything else) given by

αh + o(h) . (5)

(A function g(h) is said to be o(h) if the ratio g(h)/h converges to zero as h goes to

zero.) If, on the other hand, an individual has already adopted the product by time t, then

we assume that the probability for this individual to “induce” any other member of the

remaining population at time t to adopt in (t, t + h) is (independently of everything else)

given by

β

m− 1
h + o(h) . (6)

(If m = 1, we define β/(m− 1) as 0.) Thus, each individual in the target population has an

intrinsic adoption rate and an induction rate, given by α and β respectively; moreover, the

induction rate β associated with each individual is apportioned uniformly to all other mem-

bers (m−1 in number) of the population. The parameters α and β correspond conceptually

to the parameters p and q in the original BM.

Suppose Am(t) = j, where 0 ≤ j ≤ m−1. Then, according to (5) and (6), the probability

for any individual in the remaining population at time t to adopt the product in (t, t+h) is

given by [α+ jβ/(m−1)]h+o(h). Since the size of this remaining population equals m− j,

the probability for Am(t) to increase to j + 1 (from j) in (t, t + h) is given by λmjh + o(h),
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where

λmj ≡ (m− j)
(

α +
β

m− 1
j

)
, j = 0, 1, . . . ,m− 1 . (7)

Since the growth of Am(t) stops upon reaching level m, it follows that the range for j in

(7) can be extended to cover the case j = m as well. We will refer to λmj as the birth

(or diffusion) rate at state j, and the resulting pure birth process {Am(t), t ≥ 0} with

state-dependent birth rates {λmj}m
j=0 as the Stochastic Bass Model.

We conclude this section by noting that the difference between the SBM and Taga and

Isii’s original formulation is that in the latter, the probability in (6) is defined as βh + o(h)

(Taga and Isii 1959, pp. 27–28). The apportionment, or scaling, of β in the SBM parallels

the term q/m in (1) (apart from using m − 1 in place of m); and it ensures that the total

potential influence by any single individual on the rest of the population does not grow

without bound as m increases to infinity.

3 Summary of Results

Clearly, the variable Am(t) is the stochastic counterpart to N(t) in the BM. We say that

the process {Am(t), t ≥ 0} is in state j at time t if Am(t) = j. The first question of interest

is: What is the state distribution of {Am(t), t ≥ 0} at time t? For pure birth processes in

general, explicit formulas for the state distribution can be found in Bartlett (1955, Section

3.2), Taga and Isii (1959, p. 28), Bartholomew (1982, p. 252), or Ross (2000, p. 324). In

terms of our notation, these formulas are:

P{Am(t) = j} =
1

λmj

j∑
i=0

cm;ijλmie
−λmit, 0 ≤ j ≤ m− 1 , (8)

where

cm;ij ≡
j∏

k=0
k 6=i

λmk

λmk − λmi
, 0 ≤ i ≤ j ≤ m− 1 . (9)

We note that for the cm;ijs in (9) to be well defined, it is necessary that λmi 6= λmj

whenever i 6= j. If λmi = λmj for some i 6= j, then (8) requires a modification. Mechanically,

the L’Hôpital’s rule can be applied for this purpose. We will leave out this nonessential

complication and assume similar qualifications without further comment for other related

formulas below.
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The state distribution (8) can, in principle, serve as the starting point for the calculation

of many other characteristics of interest (e.g., moments) for the process {Am(t), t ≥ 0}. For

its basic relevance and for self-containedness, we will sketch the standard proof of (8) in

Section 4.1.
Denote by ηm(t) the expected total number of adoptions by time t; that is, let ηm(t) ≡

E[Am(t)]. The function ηm(t) is the expected-value counterpart to the cumulative-adoptions

curve N(t) (or mF (t)) in the BM. In Section 4.2, we show that a formula for ηm(t), stated

next, can be derived easily from (8).

Theorem 1 The expected total number of adoptions by time t in the SBM is given by:

ηm(t) = m

(
1−

m−1∑
i=0

amie
−λmit

)
, t ≥ 0 , (10)

where

ami ≡
1
m

m−1∑
j=i

cm;ij , 0 ≤ i ≤ m− 1 . (11)

Consider a randomly-selected individual in the target population, and refer to this indi-

vidual as the tagged individual. Denote by Fm(t) the distribution of the adoption time of the

tagged individual; then, Fm(t) can be taken as a counterpart (for another counterpart, see

(17) below) to the fraction F (t) in the BM. Observe that if Am(t) = k, where 0 ≤ k ≤ m,

then the conditional probability for the tagged individual to have adopted the product by

time t equals k/m. This observation immediately yields

Fm(t) = E

[
Am(t)

m

]
=

ηm(t)
m

, (12)

a basic relation that parallels (2).

One consequence of (12) is that the distribution Fm(t) can be derived from the expec-

tation ηm(t). Thus, from (10) and (12), we immediately have the following result.

Theorem 2 The distribution of time to adoption of a randomly-selected individual in the

SBM is given by:

Fm(t) = 1−
m−1∑
i=0

amie
−λmit , t ≥ 0 . (13)
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Another observation regarding (12) is that it can be written in the form:

Fm(t) =
∫ t

0

1
m

dηm(y) ,

which implies that we can interpret dηm(y) as the probability for having an adoption in the

time interval (y, y + dy) (this corresponds to the notion of “renewal” density in classical

renewal theory; see Ross 1996, p. 114, Remark (2)) and 1/m as the probability for the

tagged individual to be responsible for this adoption. It follows that

η′m(t) ≡ d

dt
ηm(t)

is the instantaneous population adoption rate at time t, and

fm(t) ≡ η′m(t)
m

=
d

dt
Fm(t) (14)

is the corresponding individual adoption rate. In other words, the functions η′m(t) and fm(t)

constitute the counterparts to mf(t) and f(t), respectively, in the BM.

Theorem 2 (together with (11) and (9)) can be used to derive expressions for the Fms

that are explicitly in terms of the original parameters α and β. As examples, it can be

shown (details omitted) that for m = 1 to 4, we have:

F1(t) = 1− e−αt,

F2(t) = 1− −β

α− β
e−2αt − α

α− β
e−(α+β)t,

F3(t) = 1− β2

(2α− β)(α− β)
e−3αt

− −β

α− β
e−2(α+β/2)t − 2α + β

2α− β
e−(α+β)t,

and

F4(t) = 1− −2β3

(α− β)(3α− β)(3α− 2β)
e−4αt − 2β2

(α− β)(3α− β)
e−3(α+β/3)t

− −9β

(3α− 2β)(3α− β)
e−2(α+2β/3)t − 3α + 2β

3α− β
e−(α+β)t.
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In principle, the above calculations can be executed up to any m. Observe, however, that

the algebra quickly becomes extremely complicated as m increases. Despite this complexity,

we prove in Section 4.3 that the sequence of Fms converges; and this result is stated in the

following theorem.

Theorem 3 The distribution of time to adoption for a randomly-selected individual in the

SMB agrees in the limit with the solution (4) in a BM with parameters p = α and q = β,

when the size of the target population in the SBM approaches infinity. That is,

lim
m→∞

Fm(t) = F∞(t) , t ≥ 0 ,

where

F∞(t) ≡ 1− e−(α+β)t

1 +
β

α
e−(α+β)t

. (15)

Denote by δm(t) the variance of the total number of adoptions by time t; that is, let

δm(t) ≡ V ar[Am(t)]. Clearly, this is one important characteristic (see, e.g., Cohen, Ho, and

Matsuo 2000, p. 245) of the SMB that does not have a counterpart in the BM. From (8), it

immediately follows that δ1(t) = F1(t)[1 − F1(t)]. For m ≥ 2, we derive in Section 4.4 the

following formula for δm(t).

Theorem 4 For m ≥ 2, the variance of the total number of adoptions by time t in the

SBM is given by:

δm(t) =
m2

β
{[1− Fm(t)][α + βFm(t)]− fm(t)}

+
m

β
{fm(t)− α [1− Fm(t)]} , t ≥ 0 . (16)

Finally, define

Bm(t) ≡ Am(t)
m

; (17)

that is, let Bm(t) be the fraction of individuals who have adopted the product by time t

in the SBM. Observe that in contrast with Fm(t), which is an expectation (see (12)), the

fraction Bm(t) is the random-variable counterpart to N(t)/m in the BM. In Section 4.5, we

show that Theorem 3 can be strengthened to the following “weak law” for Bm(t).
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Theorem 5 For any ε > 0, we have

lim
m→∞

P{|Bm(t)− F∞(t)| > ε} = 0 , t ≥ 0 . (18)

That is, for every t ≥ 0, the sequence of random variables Bm(t) converges in probability to

the constant F∞(t) as m →∞.

If we interpret (3) as

f∞(t)
1− F∞(t)

= α + βF∞(t), t ≥ 0 , (19)

then Theorem 5 says that (3) can be viewed as an attempt at a “direct formulation” of the

limiting trajectory of Bm(t) in a family of SBMs indexed by m. It is in this sense that the

family of SBMs supports and expands the BM.

4 Proofs

The pure birth process {Am(t), t ≥ 0} can also be defined by specifying a sequence of inter-

adoption times as follows. For j = 1, 2, . . . , m, denote by Xmj the jth inter-adoption time.

Then, it is well known (see, e.g., Ross 2000, pp. 323–324 and pp. 330–331) that the model

specification in Section 2 is tantamount to the assumption that {Xmj , j = 1, 2, · · · ,m} is a

sequence of independent exponential random variables with parameters {λmj}m−1
j=0 . In other

words, for 1 ≤ j ≤ m, the inter-adoption time Xmj has density λm,j−1e
−λm,j−1t, t ≥ 0; and

the Xmjs are independent.

For j = 1, 2, . . . , m, denote by Amj the jth adoption epoch. We will next derive the

density function of Amj , which we denote by fmj(t). Clearly, we have

Amj =
j∑

i=1
Xmi ; (20)

therefore,

fmj(t) =
d

dt
P{Xm1 + · · ·+ Xmj ≤ t}, j = 1, 2, . . . ,m .

By conditioning on Xm1 + · · ·+ Xm,j−1, we obtain

fmj(t) =
∫ t

0
λm,j−1e

−λm,j−1(t−y)dP{Xm1 + · · ·+ Xm,j−1 ≤ y}

=
∫ t

0
λm,j−1e

−λm,j−1(t−y)fm,j−1(y) dy ; (21)
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and repeated applications of this recursion, starting with the initial condition fm1(t) =

λm0e
−λm0t, lead to (see, e.g., Ross 2000, pp. 253–255)

fmj(t) =
j−1∑
i=0

cm;i,j−1λmie
−λmit, (22)

where the cm;i,j−1s are defined by (9).

We are now ready for the proofs of (8) and Theorem 1.

4.1 Proof of (8) The distribution of Am(t) can be linked to the fmj(t)s via the following

simple relation:

fm,j+1(t) = P{Am(t) = j}λmj , j = 0, 1, , . . . , m− 1 . (23)

To see this, note that

P{Am(t) = j} =
∫ t

0
e−λmj(t−y)P{Am(y) = j − 1}λm,j−1 dy , (24)

which follows by observing that P{Am(y) = j − 1}λm,j−1dy is the probability for the jth

adoption to occur in the (infinitesimal) time interval (y, y +dy) (i.e., for Am(y) = j−1 and

Am(y + dy) = j) and e−λmj(t−y) is the (conditional) probability for the (j + 1)th adoption

not to occur during (y, t]. Comparison of (21) and (24) then establishes (23).

To complete the proof, we rewrite (23) as P{Am(t) = j} = fm,j+1(t)/λmj , which, upon

substitution of (22), yields (8). �

4.2 Proof of Theorem 1 Denote by Imj(t) the indicator function of the event that the

jth adoption occurs no later than time t (i.e., of the event {Amj ≤ t}); then,

Am(t) =
m∑

j=1

Imj(t) .

It follows that

ηm(t) = E

 m∑
j=1

Imj(t)

 =
m∑

j=1

P{Amj ≤ t} . (25)
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From (22), we have

P{Amj ≤ t} =
∫ t

0
fmj(y) dy

=
j−1∑
i=0

cm;i,j−1

(
1− e−λmit

)

= 1−
j−1∑
i=0

cm;i,j−1e
−λmit, (26)

where the last equality is due to the fact that limt→∞ P{Amj ≤ t} = 1. Now, upon

substitution of (26), (25) evaluates to

ηm(t) =
m∑

j=1

(
1−

j−1∑
i=0

cm;i,j−1e
−λmit

)

= m−
m∑

j=1

j−1∑
i=0

cm;i,j−1e
−λmit

= m

1−
m−1∑
i=0

 1
m

m−1∑
j=i

cm;ij

 e−λmit

 ;

and this completes the proof. �

We will next establish several preliminary lemmas that are needed for the proofs of

Theorems 3–5.
Let Tmj be the adoption time of the jth individual. Note that Tmj is not the same as

Amj , the time of the jth adoption. In the next lemma, we relate the Tmjs to the Amjs.

Lemma 1 Let π1, π2, . . . , πm be a random permutation of 1, 2, . . . ,m; then,

(Tm1, Tm2, . . . , Tmm) =d (Amπ1 , Amπ2 , . . . , Amπm), (27)

where =d denotes equality in distribution.

Proof This is clearly a consequence of symmetry. Formally, observe that the rates α,

β/(m − 1), and λmj in (5), (6), and (7) are, at any time epoch t, symmetric with respect

to the pool of remaining individuals in the target population. Therefore, from a standard

13Niu: Stochastic Formulation

Produced by The Berkeley Electronic Press, 2011



property of the exponential distribution (see, e.g., Ross 2000, p. 249, equation (5.6), and/or

p. 296, Exercise 10), we can reinterpret the inter-adoption time Xmj , for any j, as the

minimum of m − j + 1 competing i.i.d. exponential random variables. This implies that

the identity of the individual who adopts at time Am1 is equally likely to be any one of

the m individuals in the target population. Similarly, at time Am2, regardless of who was

responsible for the adoption at time Am1, each of the remaining m − 1 individuals has an

equal probability of generating the second adoption. Continuation of this argument now

shows that the vector (Tm1, Tm2, . . . , Tmm) is stochastically identical to one that is obtained

from (Am1, Am2, . . . , Amm) by a random permutation of its components; and this establishes

(27). �

Recall that a random vector is said to be exchangeable if all vectors obtained from it

by permuting its components have the same joint distribution. It follows from Lemma 1

that the vector (Tm1, Tm2, . . . , Tmm) is exchangeable, and hence that the Tmjs (while being

dependent) are identically distributed. Moreover, the adoption time of the tagged individual

is distributed as AmJm , where Jm is a random index distributed uniformly over 1, 2, . . . , m

(independently of the Amjs). In other words, we have

Fm(t) =
m∑

j=1

P{AmJm ≤ t | Jm = j}P{Jm = j}

=
1
m

m∑
j=1

P{Amj ≤ t} . (28)

While the relation (28) is exact, its evaluation is extremely complicated. The key idea

in our proof of the convergence of the Fms is to develop a family of tight upper bounds for

the Fms. The starting point is the following lemma.

Lemma 2 For m = 1, we have

f1(t)
1− F1(t)

= α , t ≥ 0 ;

and for m ≥ 2, we have

fm(t)
1− Fm(t)

≤ α + βmFm(t) , t ≥ 0 , (29)

where

βm ≡ mβ

m− 1
. (30)
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Proof The statement for m = 1 is an immediate consequence of the standard fact that

an exponential random variable with parameter α has constant failure rate α.

We now assume m ≥ 2. Observe that with Am(t) replacing j in (7), we have

λmAm(t) = [m−Am(t)]
[
α +

β

m− 1
Am(t)

]
; (31)

and upon taking expectations and dividing by m, this becomes

E
[
λmAm(t)

]
m

= α
E [m−Am(t)]

m
+ β

E{[m−Am(t)]Am(t)}
m(m− 1)

. (32)

By conditioning on Am(t), we have

E
[
λmAm(t)

]
m

=
1
m

m−1∑
k=0

λmk P {Am(t) = k}

=
1
m

m∑
j=1

fmj(t)

= fm(t) , (33)

where the second equality is due to (23) and the third equality is due to (28) and (14).

Next, from (12), we have

E [m−Am(t)]
m

= 1− E [Am(t)]
m

= 1− Fm(t) . (34)

Finally, since E{[Am(t)]2} ≥ {E[Am(t)]}2, we have

E{[m−Am(t)]Am(t)} ≤ E [m−Am(t)]E [Am(t)] ;

and therefore,

E{[m−Am(t)]Am(t)}
m(m− 1)

≤ m

m− 1
E [m−Am(t)]

m

E [Am(t)]
m

=
m

m− 1
[1− Fm(t)]Fm(t) . (35)

Substitution of (33), (34), and (35) into (32) now leads to (29), and the proof is complete.

�
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Observe that if we replace the inequality in (29) with an equality, then we will have

a corresponding differential equation that is of the same form as (3). This observation

naturally suggests that we compare Fm against the solution of this corresponding differential

equation.

Formally, we define, for every m ≥ 2, a BM with parameters p = α and q = βm; and

denote by Gm(t) the fraction of individuals who have adopted by time t in this model.

Then, according to (3), the Gms satisfy

gm(t)
1−Gm(t)

= α + βmGm(t) , t ≥ 0 ,

where gm(t) denotes the derivative of Gm(t); moreover, in light of (4), we have

Gm(t) =
1− e−(α+βm)t

1 +
βm

α
e−(α+βm)t

. (36)

To have full correspondence between the Gms and the Fms, we further define

G1(t) ≡


1 , for t ≥ 0,

0 , otherwise.

The function G1 can be viewed as the limiting solution of the BM when q → ∞ (for any

fixed p).

Let D1 and D2 be two distribution functions and denote by D̄1 and D̄2, respectively,

their corresponding tail distributions (i.e., let D̄i(t) ≡ 1 −Di(t) for i = 1, 2). Recall that

D1 is said to be stochastically less than D2 whenever the inequality D̄1(t) ≤ D̄2(t) holds

for all t ≥ 0 (see, e.g., Ross 1996, pp. 404–405). In the next lemma, we show that Gm is

stochastically less than Fm, for all m ≥ 1.

Lemma 3 For all m ≥ 1, we have

Ḡm(t) ≤ F̄m(t) , t ≥ 0 . (37)

Proof Since Ḡ1(t) = 0 for all t ≥ 0, the lemma is clearly true for m = 1.

We now assume m ≥ 2. Observe that (29) is equivalent to:

fm(t)
[1− Fm(t)][α + βmFm(t)]

≤ 1 . (38)

16 Review of Marketing Science Working Papers Vol. 1 [2002], No. 4, Working Paper #1

http://www.bepress.com/roms/vol1/iss4/paper1



Next, it is easily seen that the left-hand side of (38) can be expanded as:

1
α + βm

fm(t)
1− Fm(t)

+
βm

α + βm

fm(t)
α + βmFm(t)

. (39)

Now, substituting (39) into (38) and integrating both sides of the resulting inequality from

0 to t yields (after a little bit of algebra)

− 1
α + βm

ln

 1− Fm(t)

1 +
βm

α
Fm(t)

 ≤ t .

It follows that
1− Fm(t)

1 +
βm

α
Fm(t)

≥ e−(α+βm)t,

which, after a rearrangement, becomes

Fm(t) ≤ 1− e−(α+βm)t

1 +
βm

α
e−(α+βm)t

. (40)

Finally, since the right-hand side of (40) is precisely Gm(t) (see (36)), we see that (40) is

equivalent to (37), and this completes the proof. �

Lemma 3 can also be rephrased as that the function Gm lies entirely above the function

Fm for every m. In the next lemma, we consider the region bounded between Gm and Fm;

and we prove that as a function of m, the areas of these regions converge to 0 when m

increases to infinity.

Lemma 4 As m →∞, the sequence of integrals (or areas)

∫ ∞

0
[Gm(t)− Fm(t)] dt

converges to 0. Moreover, the convergence is monotone.

Proof It is easily seen that

∫ ∞

0
[Gm(t)− Fm(t)] dt =

∫ ∞

0
[F̄m(t)− Ḡm(t)] dt . (41)
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Denote by µD the mean of a given distribution function D, and recall the standard formula

that µD =
∫∞
0 D̄(t) dt. Then, the right-hand side of (41) can be evaluated as µFm

− µGm
,

provided that both µFm
and µGm

are finite. We will, therefore, examine µFm
and µGm

separately.

We begin with µGm
. Since µG1

= 0, we will consider µGm
for m ≥ 2. From (4), it easily

follows that

F̄ (t) =
(p + q)e−(p+q)t

p + qe−(p+q)t
. (42)

By differentiating (42) with respect to q, it is straightforward to show that F̄ (t) is strictly

decreasing in q (for fixed p and t). Since βm (see (30)) is strictly decreasing in m with

limm→∞ βm = β and since F̄ (t) is continuous in q, it follows from (36) that for all t ≥ 0,

the Ḡm(t)s converge monotonically from below to F̄∞(t), where F∞(t) is given by (15). (In

other words, the Gms increase stochastically to F∞.) With p = α and q = β in (42), it is

easily shown that

µF∞ =
∫ ∞

0
F̄∞(t) dt =

1
β

ln
(

α + β

α

)
(43)

(a result noted in Bass 1969, p. 219); and with βm replacing β in (43), we also have

µGm
=
∫ ∞

0
Ḡm(t) dt =

1
βm

ln
(

α + βm

α

)
.

It follows that µGm
is strictly increasing in m with

lim
m→∞

µGm
= µF∞ < ∞ . (44)

We now turn our attention to µFm
. From (28), we have

µFm
=

1
m

m∑
j=1

E[Amj ] . (45)

Since E[Xmi] = 1/λm,i−1, it follows from (20) that

E[Amj ] =
j−1∑
i=0

1
λmi

, (46)
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where the λmis are given by (7). Finally, substitution of (46) into (45), followed by an

interchange of the order of summation, yields

µFm
=

1
m

m−1∑
i=0

1

α +
β

m− 1
i

. (47)

It follows easily from (47) that µF1
= 1/α and

µF2
=

1
2

(
1
α

+
1

α + β

)
;

therefore, we have µF1
> µF2

. We will next consider µFm
for m ≥ 2, and prove that the

sequence of µFm
s decreases monotonically to µF∞ . (Actually, we conjecture that the Fms

decrease stochastically to F∞, but have been unable to prove this stronger result.)

For 0 ≤ y ≤ 1, define

φ(y) ≡ 1
α + βy

;

and observe that in terms of the function φ, (47) can be written as µFm
= E[φ(Um)], where

Um is distributed uniformly over i/(m − 1) for i = 0, 1, . . . , m − 1. Now, consider Um

and Um+1, for any m ≥ 2; and observe further that the probability-mass function of Um is,

intuitively, more “spread out” than that of Um+1. Since the function φ is strictly convex in

y, these observations naturally suggest that the following inequality should hold:

E[φ(Um)] > E[φ(Um+1)] . (48)

We will prove that (48) is valid via a coupling argument.

The first step is to construct Um from Um+1 as follows. Let Um = Um+1 if Um+1 equals

either 0 or 1; and let

Um =


i− 1
m− 1

, with probability
i

m

i

m− 1
, with probability 1− i

m

if Um+1 = i/m, for i = 1, . . . , m − 1. Note that for this construction to be valid, the

resulting Um must satisfy P{Um = i/(m− 1)} = 1/m for all i = 0, 1, . . . , m− 1; this can

be easily verified, and we omit the details.
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Next, observe that the coupling above can be restated as

Um = Um+1 + Zm+1 , (49)

where, by definition, Zm+1 = 0 if Um+1 equals either 0 or 1, and

Zm+1 =


− m− i

m(m− 1)
, with probability

i

m

i

m(m− 1)
, with probability 1− i

m

if Um+1 = i/m, for i = 1, . . . , m− 1. Moreover, it is easily shown that we have

E[Zm+1 | Um+1] = 0 (50)

with probability 1. (Relations (49) and (50) show that Um is greater than Um+1 in the

sense of what is known as convex order.) It now follows in a standard manner from (49),

Jensen’s inequality, and (50) that

E[φ(Um)] = E[φ(Um+1 + Zm+1)]

= E[E[φ(Um+1 + Zm+1) | Um+1]]

> E[φ(Um+1 + E[Zm+1 | Um+1]]

= E[φ(Um+1)] ;

and this proves that for m ≥ 2, µFm
is strictly decreasing. In addition, recall that µF1

=

1/α > µF2
; therefore, it also follows that µFm

is finite for all m.

To determine the limit of the µFm
s, observe that (47) can be written as

µFm
=

m− 1
m

sm−1 +
1
m

1
α + β

, (51)

where

sm−1 ≡
1

m− 1

m−2∑
i=0

1

α + β
i

m− 1

.

Now, the fact that the function φ is decreasing implies that sm−1 is an upper Riemann sum

of φ in the interval [0, 1]. Since φ is integrable, it follows that sm−1 converges to∫ 1

0
φ(y) dy =

∫ 1

0

1
α + βy

dy =
1
β

ln
(

α + β

α

)
,
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which is µF∞ (see (43)); and this, together with the fact that the second term in (51)

converges to 0, proves that

lim
m→∞

µFm
= µF∞ . (52)

Finally, we return to (41) and rewrite its right-hand side as

∫ ∞

0
[F̄m(t)− Ḡm(t)] dt = (µFm

− µF∞) + (µF∞ − µGm
) .

It now follows from (52) and (44) that both µFm
− µF∞ and µF∞ − µGm

converge to 0 as

m →∞. Since we have also shown that the convergence is, for both cases, monotone, this

completes the proof of the lemma. �

We are finally in position to prove Theorems 3, 4, and 5.

4.3 Proof of Theorem 3 The strategy is to establish, for all t ≥ 0, the following two

inequalities:

F∞(t) ≥ lim sup
m→∞

Fm(t) (53)

and
F∞(t) ≤ lim inf

m→∞
Fm(t) . (54)

Observe that if both (53) and (54) hold, then

F∞(t) ≤ lim inf
m→∞

Fm(t) ≤ lim sup
m→∞

Fm(t) ≤ F∞(t) ;

and since this implies (see, e.g., Rudin 1976, pp. 56-57) that limm→∞ Fm(t) exists and the

limit is equal to F∞(t), the theorem follows.

Consider (53) first. Since Gm(t) ≥ Fm(t) (Lemma 3), we have

lim sup
m→∞

Gm(t) ≥ lim sup
m→∞

Fm(t) , t ≥ 0 . (55)

In the proof of Lemma 4, we showed that for all t ≥ 0, Ḡm(t) converges monotonically from

below to F̄∞(t). The convergence of Ḡm, and hence of Gm, implies that

lim sup
m→∞

Gm(t) = lim
m→∞

Gm(t) = F∞(t) ;

and this, together with (55), proves (53).
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We now turn our attention to (54), which we prove by contradiction. Consider an

arbitrary fixed t, say t∗; and suppose (54) does not hold at t∗. Then, there exists a positive

ε and a subsequence {nk}k≥1 of positive integers such that

Fnk
(t∗) ≤ F∞(t∗)− ε (56)

for all k ≥ 1. Now, consider the function Gnk
and recall from Lemma 3 that Gnk

(t) ≥ Fnk
(t)

for all t ≥ 0. Moreover, as a consequence of Lemma 4, we have that the sequence of areas

bounded between Gnk
and Fnk

converges to 0 as k →∞, that is,

lim
k→∞

∫ ∞

0
[Gnk

(t)− Fnk
(t)] dt = 0 . (57)

We will show that (56) is in contradiction with (57).

Suppose (56) holds. For any given k, define a distribution function Hnk
as follows:

Hnk
(t) ≡


Gnk

(t) , for 0 ≤ t < G−1
nk

(Fnk
(t∗)) ,

Fnk
(t∗) , for G−1

nk
(Fnk

(t∗)) ≤ t < t∗,

Gnk
(t) , for t∗ ≤ t < ∞ ,

(58)

where the superscript “−1” in G−1
nk

denotes functional inverse. Since Gnk
(t) and Hnk

(t)

agree at t = G−1
nk

(Fnk
(t∗)) and at t = t∗ and since the function Gnk

is strictly increasing in

t, we have Gnk
(t) ≥ Fnk

(t∗) for G−1
nk

(Fnk
(t∗)) ≤ t < t∗; and therefore, Gnk

(t) ≥ Hnk
(t) for all

t ≥ 0. Moreover, since the function Fnk
is strictly increasing in t, so that Fnk

(t) < Fnk
(t∗) for

G−1
nk

(Fnk
(t∗)) ≤ t < t∗, and since Gnk

(t) ≥ Fnk
(t) for all t, we also have that Hnk

(t) ≥ Fnk
(t)

for all t ≥ 0. Thus, the function Hnk
is, by construction, sandwiched between Gnk

and Fnk
.

It follows that ∫ ∞

0
[Gnk

(t)− Fnk
(t)] dt ≥

∫ ∞

0
[Gnk

(t)−Hnk
(t)] dt . (59)

Now, observe that

G−1
nk

(Fnk
(t∗)) ≤ G−1

nk
(F∞(t∗)− ε) < F−1

∞ (F∞(t∗)− ε) < F−1
∞ (F∞(t∗)) = t∗;

and that these inequalities, together with (58), (56), and Gnk
(t) > F∞(t), imply that the
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right-hand side of (59) can be further bounded as follows:∫ ∞

0
[Gnk

(t)−Hnk
(t)] dt =

∫ t∗

G−1
nk

(Fnk
(t∗))

[Gnk
(t)− Fnk

(t∗)] dt

≥
∫ t∗

F−1
∞ (F∞(t∗)−ε)

[Gnk
(t)− Fnk

(t∗)] dt

≥
∫ t∗

F−1
∞ (F∞(t∗)−ε)

[F∞(t)− (F∞(t∗)− ε)] dt . (60)

Finally, since F∞ is strictly increasing and since F−1
∞ (F∞(t∗) − ε) < t∗, the last bound

in (60) is positive; moreover, notice that this lower bound is independent of k. We have,

therefore, arrived at a contradiction to (57). This establishes (54), and the proof of the

theorem is complete. �

4.4 Proof of Theorem 4 Upon taking expectations, (31) becomes

E[λmAm(t)] = α{m− E[Am(t)]}+
β

m− 1
{mE[Am(t)]− E{[Am(t)]2}},

which, after a rearrangement, yields

E{[Am(t)]2} =
(m− 1)α

β
{m− E[Am(t)]}+ mE[Am(t)]− m− 1

β
E[λmAm(t)] .

Hence,

δm(t) = E{[Am(t)]2} − {E[Am(t)]}2

=
{

(m− 1)α
β

+ E[Am(t)]
}
{m− E[Am(t)]} − m− 1

β
E[λmAm(t)] .

Upon substitution of E[Am(t)] = mFm(t) and E[λmAm(t)] = mfm(t) (see (33)), the last

expression rearranges straightforwardly to (16), and this completes the proof. �

4.5 Proof of Theorem 5 From (17) and (16), we have

V ar[Bm(t)] =
1

m2
δm(t)

=
1
β
{[1− Fm(t)][α + βFm(t)]− fm(t)}

+
1

mβ
{fm(t)− α [1− Fm(t)]} .
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It is easily seen from (29) that fm(t)− α [1− Fm(t)] is uniformly bounded; hence,

lim
m→∞

1
mβ

{fm(t)− α [1− Fm(t)]} = 0 .

Next, since F∞(t) satisfies (3) with p = α and q = β, Theorem 3 implies that

lim
m→∞

{[1− Fm(t)][α + βFm(t)]− fm(t)} = 0 .

It follows that
lim

m→∞
V ar[Bm(t)] = 0 . (61)

Finally, from Markov’s inequality, we have, for any positive ε,

P{|Bm(t)− F∞(t)| > ε} = P{[Bm(t)− F∞(t)]2 > ε2}

≤ E{[Bm(t)− F∞(t)]2}
ε2

=
V ar[Bm(t)] + {E[Bm(t)]− F∞(t)}2

ε2
,

which, together with (61) and Theorem 3, yields (18) upon taking limits. This completes

the proof. �
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