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Using Linear Programming in a

Business-to-Business Auction Mechanism

Abstract

Business to business interactions are largely centered around contracts for procure-
ment or for distribution. Negotiation and sealed bid tendering are the most common
techniques used for price discovery and generating the terms and conditions for con-
tracts. Sealed bid tenders collect bids (that is private information between the two
companies) and then pick a winning bid/s from among the submitted bids. The out-
come of such interactions can be analysed based on the theory of sealed bid auctions
and have been studied extensively [7]. In contrast, negotiations tend to be more dy-
namic where a buyer (supplier) might be interacting with several suppliers (buyers)
simultaneously and the contractual terms being negotiated with one supplier might

directly impact the negotiations with another.

An approach that is often used for this setting is to design an interactive mechanism
where based on a “market signal” such as price for each item, the agents can propose
bids based on a decentralized private cost model. A general setting for decentralized
allocation is one where there are multiple agents with a utility function for the different
resources and the allocation problem is to distribute the resource in an optimal way.
A key difference from classical optimization is that the utility functions of the agents
are private information and are not explicitly known to the decision maker. The key
requirements for such a design to be practical are: (i) convergence to an “equilibrium
solution” in a finite number of steps, and (ii) the “equilibrium solution” is optimal
for each of the agents, given the market signal. One approach for implementing
such mechanisms is the use of primal-dual approaches where the resource allocation
problem is formulated as a linear program and the dual prices are used as market
signals [2, 3, 8, 1, 4, 6]. Each agent can then use the dual price vector to propose a

profit maximizing bid, for the next round, based on her private cost model. Here, the
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assumption is that the agents attempt to maximize their profits in each round. This
assumption is referred to as the myopic best response [5]. In a procurement setting
with a single buyer and multiple suppliers, the buyer uses a linear program to allocate
her demand by choosing a set of cost minimizing bids and then use the dual price
variables to signal the suppliers. In order to guarantee convergence a large enough

price decrement is used on all non-zero dual prices in each iteration.

In this paper we explore an alternate design where, the market signal provided to
each supplier is based on the current cost of procurement for the buyer. Each sup-
plier is then required to submit new bid proposals that reduce the procurement cost
(assuming other suppliers keep their bids unchanged) by some large enough decre-
ment § > 0. We show that, for each supplier, generating a profit maximizing bid that
decreases the procurement cost for the buyer by at least 6 can be done in polynomial
time. This implies that in designs where the bids are not common knowledge, each
supplier and the buyer can engage in an “algorithmic conversation” to identify such
proposals in a polynomial number of steps. In addition, we show that such a mech-
anism converges to an “equilibrium solution” where all suppliers are at their profit
maximizing solution given the cost and the required decrement 6. At the heart of
this design lies a fundamental sensitivity analysis problem of linear programming -
given a linear program and its optimal solution, identify the set of new columns such
that any one of these columns when introduced in the linear program reduces the

optimum solution by at least 9.
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Using Linear Programming in a

Business-to-Business Auction Mechanism

1 Introduction

Business to business interactions are largely centered around contracts for procure-
ment or for distribution. Negotiation and sealed bid tendering are the most common
techniques used for price discovery and generating the terms and conditions for con-
tracts. Sealed bid tenders collect bids (that is private information between the two
companies) and then pick a winning bid/s from among the submitted bids. The out-
come of such interactions can be analysed based on the theory of sealed bid auctions
and have been studied extensively [9]. In contrast, negotiations tend to be more dy-
namic where a buyer (supplier) might be interacting with several suppliers (buyers)
simultaneously and the contractual terms being negotiated with one supplier might

directly impact the negotiations with another.

An approach that is often used for this setting is to design an interactive mechanism
where based on a “market signal” such as price for each item, the agents can propose
bids based on a decentralized private cost model. A general setting for decentralized
allocation is one where there are multiple agents with a utility function for the different
resources and the allocation problem is to distribute the resource in an optimal way.
A key difference from classical optimization is that the utility functions of the agents
are private information and are not explicitly known to the decision maker. The key
requirements for such a design to be practical are: (i) convergence to an “equilibrium
solution” in a finite number of steps, and (ii) the “equilibrium solution” is optimal
for each of the agents, given the market signal. One approach for implementing

such mechanisms is the use of primal-dual approaches where the resource allocation
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problem is formulated as a linear program and the dual prices are used as market
signals [2, 3, 11, 1, 4, 8]. Each agent can then use the dual price vector to propose a
profit maximizing bid, for the next round, based on her private cost model. Here, the
assumption is that the agents attempt to maximize their profits in each round. This
assumption is referred to as the myopic best response [5]. In a procurement setting
with a single buyer and multiple suppliers, the buyer uses a linear program to allocate
her demand by choosing a set of cost minimizing bids and then use the dual price
variables to signal the suppliers. In order to guarantee convergence a large enough

price decrement is used on all non-zero dual prices in each iteration.

In this paper we explore an alternate design where, the market signal provided to
each supplier is based on the current cost of procurement for the buyer. Each sup-
plier is then required to submit new bid proposals that reduce the procurement cost
(assuming other suppliers keep their bids unchanged) by some large enough decre-
ment ¢ > 0. We show that, for each supplier, generating a profit maximizing bid that
decreases the procurement cost for the buyer by at least 6 can be done in polynomial
time. This implies that in designs where the bids are not common knowledge, each
supplier and the buyer can engage in an “algorithmic conversation” to identify such
proposals in a polynomial number of steps. In addition, we show that such a mech-
anism converges to an “equilibrium solution” where all suppliers are at their profit
maximizing solution given the cost and the required decrement §. At the heart of
this design lies a fundamental sensitivity analysis problem of linear programming -
given a linear program and its optimal solution, identify the set of new columns such
that any one of these columns when introduced in the linear program reduces the

optimum solution by at least 9.

The paper is organized as follows: In Section 2, we introduce a fundamental question
in linear programming and answer it in Section 2.1. This result is then used in
Section 2.2 to solve an optimization problem central to the allocation problem. A
variant of the problem in Section 2.1 is described in Section 2.3. The iterative scheme
for the allocation problem is described in detail in Section 3 followed by the properties

at termination in Section 3.1. We conclude in Section 4.
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2 A Question in Linear Programming

Consider the linear programming problem
P: min{cz: Az > b,z € R}

Let FP={x € R} : Az > b}. We assume that all data is rational, F'P is non-empty
and P has an optimum solution. Let z* be the optimum solution to P. Now, consider

the following problem:

Question 1: Given § > 0, characterize the set S C R™*! of vectors (¢,a) where
¢ € R,a € R” such that

min{[c cJw : [A aJw > byw e R}T'} < 2" —§
The question asks for a characterization of the set of column vectors, with their

corresponding costs, such that any one of these columns when introduced in the

constraint matrix A of P guarantees a decrease in the objective function by at least §.

2.1 Characterization of the set S

It is easy to see that S is a closed cone minus the origin: if (¢,a) € S then A(¢,a) €
S VYA > 0. Let
P: min{[cdw: [Aaw>bwe R7%}

Consider the dual of P:
D: max{yb:yA<cya<éy€ R}

and let F'D = {y : yA < c,ya < ¢,y € R}}. Note that (¢,a) € S if and only if
the inequality yb < z* — 4 is a valid inequality [10] for #'D. This then implies that
3 (u,v) >0, v # 0 where u € Q*,v € Q such that

Zujaij + Udi 2 bZ 1= 1, ey N (1)
7=1

Zujcj—l—vé < =4
=1
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Let g; = va;, ©+ = 1,...,m; gny1 = ve and let () be the polyhedron of the feasible

points corresponding to the following system of inequalities:
n
Zujaij—l—gi 2 bZ izl,...,m (2)
j=1
Zujcj + g1 < 2T =46
i=1

Theorem 2.1 S = {Ah: h € proj,(Q),\ > 0}

Proof: If g* € proj,(Q), then 3 u > 0 such that (2) is satisfied and hence (¢, a) = ¢*
satisfies (1). Thus, g* € S and hence A\g* € SV X > 0. If s = (¢,a) € 5, there exists
(u,v) > 0,v > 0 satisfying (1). Then, g = vs € proj,(Q). n

Corollary 2.2 SU{0} is a polyhedral convex cone.

2.2 The Separation Problem on S
We consider the separation problem on the set S € R"*! obtained as a solution to
Question 1.

Separation Problem: Given a vector sq = (¢*,a*) € Q"' decide whether s € S
or not, and, in the latter case, find a vector { € Q™! such that ts < tsg Vs e S.

For so = (a*,¢*) € Q"' membership in S can be checked by solving the linear
program min{[c ¢*Jw : [A @*]w > b,w € R} }. Otherwise, it is easy to see that the

system
n
E U5 2 bZ — di* 1= 1, ey N
=1

n

* —%
E ujc; < Z"—d—c¢
j=1

is infeasible. Farkas’ lemma [12] provides us with multipliers ¢; > 0,2 = 1,...,m + 1,
t; € Q such that
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LYt (—ag)ti+citmpr 20,5 =1,...,n
3.0 0 =biti4 (2 — )ty <0

Let t = (—t1,..., —~tm,tms1). Then tsg > 0. If s € S, then ts < 0 for otherwise (1)
would be infeasible. Thus, ts < tsq Vs € 5.

2.3 Related Problems

The description of S can easily be extended for arbitrary linear programs. For 0 <

p < g, consider the linear program :
P': min{cz: Az > bp <z <gq}
Let z* be the optimum solution to P’.

Question 1: Given § > 0, characterize the set S C R™*! of vectors (¢,a) where
¢ € R,a € R” such that

min{lcclw:[Aaduw>bp<w<q<z—4§
if and only if (¢,a) € S.

Let Q" = {(u,9) : (u,qg) satisfies (2), p <u < q}. Then, S ={ v :h € projg(Q'),% <
A < %} Of particular interest is the case when p = 0,¢g = 1. In this case, S is a

closed, convex, polyhedral set.

A similar analysis can be used to investigate replacing a given column (instead of

adding a new column).

Question 2: Given § > 0 and j € {1,2,...,n}, characterize the set S; C R"*! of
vectors (¢,a) where ¢ € R,a € R” such that

min{[¢/ dw: [A auw>bp<w<qt <z —§

if and only if (¢,a) € S;, where ¢/ and A are the cost vector and constraint matrix,

respectively, obtained after removing variable z; from P

The separation problems on the solution sets of Question 1" and Question 2 can be

solved similarly.

http://www.bepress.com/roms/vol 1/iss4/paper3



Dawande et al.: Using Linear Programming in a Business-to-Business Auction Mechan 9

3 An Allocation Problem

A buyer is soliciting bids to buy m items [y, ..., [,,. The quantity required for item /;
is d; € Q4. Supplier j, j = 1,...,n proposes a bid (¢;, a;) where a; € Q7 is the vector
indicating the number of units of each item supplier j will supply and ¢; € Q4 is the
total price charged to supply all the items in a;. Let d = (di, dy, ..., dy) € QF.

We make the following assumptions in an iterative allocation scheme described below.

(a) Any fractional allocation of her bid vector is acceptable to each supplier. If a
bid (¢, a) gets a fractional allocation, say f, where 0 < f < 1, then the supplier

promises to supply the item vector fa for a total price of fe.

(b) For each supplier, the production cost for each item is proportional to the
number of items. The utility function of each supplier is her profit obtained as
the difference between the price she charges for the allocation and her production

cost for that allocation.

(c) All bids are bounded above by the demand vector d. That is, for any bid (¢, a),
a <d.

Fix § > 0. The iteration scheme can be summarized as follows: Given the bids by the
suppliers, the buyer solves an allocation problem with the objective of minimizing her
procurement cost. Each supplier’s allocation is privately reported to her. The buyer
and each supplier then engage in a private (algorithmic) conversation to come up
with a bid which is (a) at least as profitable to the supplier (if fully awarded) as the
profit resulting from current allocation and (b) guaranteed to decrease the buyer’s
cost by at least 0. If such a bid is available, the supplier proposes it as her new
bid. Otherwise, the previous bid is retained. The scheme now proceeds to the next

iteration. If none of the suppliers propose a new bid, the allocation process stops.

We now describe the process in detail.

Step 1: (initialization) Let (c?,a?), j = 1,2,...,n be the initial set of bids submitted by
the suppliers. Let A° = [a @)... a®] € Q™" and ¢ = (},¢),...,%) € Q™. Fix

6 >0 and set r = 0.
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Step 2: (buyer’s problem) The buyer solves an allocation problem to minimize her cost:
P": min{c'z: A"z >d;0 <z <1}

Let z" and z" be the optimum cost and the corresponding solution vector,

respectively, for this problem. The buyer now executes the following steps:

(a) Reports the allocation 2% privately to each supplier j, 7 =1,...,n.

(b) For each j, computes the set ST of column vectors, with their corresponding
cost, such that replacing the bid of supplier j, in P", by any vector in S7
guarantees a decrease (over that of z") in the optimum solution to the

allocation problem by at least § (Question 2 in Section 2.3).

Step 3 (algorithmic interaction between buyer and suppliers) The profit of supplier j

from the allocation z% is v} = (¢} — alip;)x}, where p; € QT is the vector of unit

production costs for supplier j.

Let So = {(¢,a) : a < d} C R"*'. The optimization problem for the supplier j
is
L% : max{c —p;ja —v;:(c,a) € S; N Sop}

The buyer and supplier 5, 7 = 1,...,n, cooperate privately to solve the opti-
mization problem L7. In this cooperation, the buyer offers supplier j the use of
the polynomial time separation oracle over ST N Sy as a blackbox. Supplier j

iteratively uses this oracle to solve L? in polynomial time.

If it exists, let (¢}, a}) be the optimum solution vector for L’. Since the extreme
points and extreme rays of ST N Sq are rational vectors, (c},a}) € Q). If the

optimum value to L7 is non-negative, supplier j updates her bid: (C;H, a;H) =

(¢f,a3). Otherwise, supplier j retains her previous bid (c;‘H, a;‘H) = (¢}, a}).

Step 4 (exit criterion) If (c;""l,a;H) = (c},a}) ¥V j, STOP; otherwise r = r + 1 and

return to Step 2.

3.1 Properties at Termination
Since the cost of the buyer reduces by at least 0 in each iteration, the allocation

process terminates in a finite number of iterations. It is easy to see that the allocation

problem satisfies the following properties at termination.
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e Given the bids by the suppliers, the buyer minimizes her cost.

e For each supplier j, given the bids of all other suppliers k # j, # any bid
(¢,a), which if she were to propose would satisfy the following two conditions
simultaneously: (i) gives more profit and (ii) reduces the buyers cost by at
least 4.

Given an optimum basic solution to a linear program, there exists a finite, non-trivial
perturbation of its cost function such that the optimum basic solution to the perturbed
problem stays the same. Using this well-known property of linear programs [12], an
interesting ex-post d-optimality property can be proved when the iterative scheme

terminates:

e At termination, let the buyer’s total cost be ¢*. Then 3 § > 0 such that the
following property is true for each supplier: Given the bids of all other suppliers
k # j, B any bid (a,¢) for supplier j which keeps the buyer’s cost at ¢* and

increases her profit by more than 9.

4 Conclusions

The main purpose of this note is to introduce a fundamental question in linear pro-
gramming which asks for a description of the set of column vectors, with their corre-
sponding costs, such that any one of these vectors when introduced in the constraint
matrix guarantees a fixed decrease in the objective function. A variant in which a
column is replaced instead of being added is also considered. We characterize the sets
and show that the separation problem over these sets can be solved in polynomial

time.

The solution to these problems is then used to design an iterative allocation scheme
in which a single buyer wants to acquire a set of items by soliciting bids from multiple

suppliers via a competitive bidding process.

11
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