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1 Introduction

A recent and large literature has examined the quality of inference based on traditional two

stage least squares (TSLS) or limited information maximum likelihood (LIML) methods when

the correlation between the endogenous regressors and the instruments is weak. This literature

has attempted to develop better estimators and more credible inference methods. Although

the inappropriateness of conventional normal approximations in the presence of weak or no

identification was discussed in earlier work, an empirical study by Angrist and Krueger (1991)

(henceforth, AK) and the critiques by Bound et al. (1995) (henceforth BJB) and Staiger and

Stock (1997) have mainly motivated the recent weak instruments literature, where conventional

large sample approximations were ex post detected to be misleading. The AK results are an

important benchmark in much of the recent micro-econometric literature on weak instruments

(see Stock et al. (2002) for an overview of the issues).

One of the lessons from the BJB’s subsequent analysis of AK’s data is that interactions of

exogenous covariates with one or a few basic instruments in an attempt to improve precision

can lead to substantially biased TSLS results, even with a high degree of overidentification

and hundreds of thousands of observations. In such cases, conventional inference methods can

be misleading. Although the LIML estimator usually performs better than TSLS (in terms

of bias), conventional LIML standard errors will be too small. In this paper, we discuss two

relatively new estimators aiming to overcome the weaknesses of the TSLS and LIML estimators.

Angrist and Krueger (1995) (henceforth AK-SSIV) propose a split sample instrumental variables

(SSIV) estimator that requires an arbitrary sample split while a jackknife instrumental variable

estimator (JIVE) is proposed by Angrist et al. (1999) (henceforth AIK-JIVE) and uses a leave-

one-out jackknife-type fitted value instead of the first-stage equation of TSLS.

We examine the performance of all of these estimators with AK’s data, paying special

attention to specification differences and the strength of instruments among different groups

of observations. We find that all of the estimators suffer from at least one defect. JIVE

seems to perform poorer than other IV estimators when some groups of observations have

substantial influence on first-stage coefficients and hence predicted values. LIML suffers from

a potential heteroskedasticity problem in the errors that may lead them to be inconsistent.

The estimates from SSIV are quite imprecise and depend very much on the random sample

split and the data set used. We find that none of the estimators is able to provide precisely

estimated and believable estimates for the return to education when controlling for important

wage determining variables available in the U.S Census, particularly age, and when using the
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full sample.

The rest of the paper is organized as follows. In section 2 we briefly present AK’s identifica-

tion strategy and discuss ex post problems that we find with it. In section 3 we discuss general

problems with conventional estimators and weak identification as well as briefly present the

JIVE and SSIV estimators that address those issues. In section 4 we report our recalculations

of return to education coefficients and in section 5 we briefly describe the implications of het-

eroskedasticity for the results. In section 6 we discuss the problem of outliers in the first-stage

regression. We offer some conclusions in Section 7.

2 Angrist and Krueger’s Setup

AK was a landmark in using instrumental variables to estimate the returns to education

(Card (1999)) and uses, perhaps, the most credible identification strategy of all papers in the

literature. They consider the following model:

y = Xβ + u , (1)

where y is log weekly earnings, and X contains a constant, years of education, variables con-

trolling for age, and in some specifications further relevant covariates. Following an extensive

literature in labor economics, AK treat years of schooling as an endogenous variable, while all

other variables are treated as exogenous. Education is not assumed to be randomly assigned,

but may be systematically related to the unobserved determinants of wages, u, inducing a bias

in ordinary least squares estimates.

To address this endogeneity issue, AK exploit the association between quarter of birth and

years of education arising from compulsory school attendance and school starting laws. During

the cohorts that AK study, the typical U.S. school district required students to have turned

six in the calendar year in which they entered school and to stay in school until their sixteenth

birthday. Thus, individuals born in the fourth quarter may obtain higher levels of schooling

than those born earlier in the year. AK also attempt to exploit variation across states and

over time in compulsory schooling laws to identify the returns to education. The crux of their

argument is, however, that the interaction of school age starting laws and compulsory school

attendance laws lead to variation in years of schooling by quarter of birth, and that this variation

is exogenous to the determination of wages. For TSLS estimation, the first-stage equation is
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then given by

X = Zπ + v . (2)

Z is the matrix of instruments containing quarter of birth dummies interacted with year of

birth dummies and the exogenous variables of X. π is the corresponding vector of coefficients.

AK use data from the five percent Public Use Microsample of the 1980 U.S. Census for

cohorts of men being born during the 1920s, 1930s and 1940s. As with much of the subsequent

literature that uses AKs data to explore the consequences of weak instruments, we limit our

attention to the cohort of men born between 1930 and 1939. The identifying variation in the

first stage comes from the relationship between quarter of birth and education. But because

wages also vary with labor market experience, and hence closely with age, controlling for age is

also important, even in the relatively older cohorts that AK study. As there are four quarters

of birth in each of the 10 birth-year cohorts that we examine, there are 40 degrees of freedom

associated with age in total. AK report estimated coefficients that are highly dependent on

the estimator and specification used. Besides a constant and years of schooling, X contains the

following variables:

• Specification (1): 9 year of birth dummies

• Specification (2): 9 year of birth dummies, race (1=black), smsa (1=central city), marital

status (1=married, living with spouse), and 8 regional dummies

• Specification (3): age (measured in quarters), age squared, 9 year of birth dummies

• Specification (4): age, age squared, 9 year of birth dummies, race, smsa, marital status,

and 8 regional dummies

In specifications 1 and 2 identification comes from within birth-year differences in schooling.

When controlling for age and age squared, however, identification comes from deviations from

the smooth age function, allowing for changes across year of birth cohorts. By adding age and

age squared we control for within year of birth age effects on earnings. As it was pointed out

by AK and van der Klaauw (2002), the inclusion of age and age squared leads to a considerable

change in the estimated return to one additional year of education. Age and age squared seem

to be important omitted variables in the first two specifications. Therefore, following BJB, we

consider specification 4 to be the preferred one.

BJB were the first to show that because of the weak correlation between years of education

and the instruments used, in some specifications the normal approximations used by AK may
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not be appropriate, despite the large sample size of almost 330,000 observations. Especially

in specifications 3 and 4 the instruments explain little of the variation in schooling as age

and age squared already use up lots of the variation within the 40 birth year × quarter of

birth degrees of freedom. The most damning evidence presented by BJB are those where they

recalculate the AK estimates using randomly-generated rather than actual quarter of birth

to create the instruments and obtain quite reasonable looking estimates. The recent weak

instrument literature was largely motivated by these results. As noted by Cruz and Moreira

(2005) and others, however, the usual Gaussian large sample approximations for TSLS and

LIML are not valid in this case, as they rely on non-zero correlations between the endogenous

regressor and the instruments. If the instruments’ coefficients are close to zero, the TSLS and

LIML estimator may not be close to normally distributed.

Staiger and Stock (1997) formalize the problem. They consider an alternative asymptotic

sequence and model the instruments’ coefficient matrix, π, as a function of the sample size,

n, such that π = c/
√
n. In that specific sequence, the concentration parameter π′Z ′Zπ/σ2

v

converges to a constant, where σ2
v is the error variance of the first-stage equation. The TSLS

estimator is not consistent in that case but converges to a nondegenerate distribution similar to a

multivariate t distribution. Under this alternative asymptotic approximation Staiger and Stock

(1997) compare coverage properties of different confidence intervals. Their main concern is that

if under the alternative asymptotics a particular confidence interval does not have the correct

coverage, then in a potentially important part of the parameter space around πi = 0 there are

values of the error parameters so that the nominal coverage is considerably away from the actual

coverage independent of the sample size. More recently, Mikusheva (2007) therefore formulated

the requirement of asymptotically correct coverage probabilities of confidence intervals over the

whole parameter space.

3 Alternative Estimators

As an alternative to the TSLS and LIML estimators, two estimators have been proposed

that are based on the idea of estimating the first-stage equation on only part of the data. The

fundamental idea in both is to break any correlation between the errors in the structural and

reduced form equations. In the first of these, AK-SSIV proposed a split sample instrumental

variable (SSIV) estimator that is not as biased toward OLS as TSLS. In SSIV procedure,

parameters of the first stage are estimated using one randomly chosen half of the sample.
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These first-stage estimates are then used to calculate the fitted values for the other half of the

sample, which is used to obtain the second-stage parameters. The estimator is defined as

β̂SSIV = [X ′2Z2(Z
′
2Z2)

−1Z ′1Z1(Z
′
2Z2)

−1Z ′2X2]
−1X ′2Z2(Z

′
2Z2)

−1Z ′1y1 , (3)

where the indices denote the sample half. In the above notation the first-stage equation is esti-

mated with sample half 2. AK-SSIV argue that the SSIV estimator is biased toward zero. They

therefore propose a modified estimator that is unbiased under so-called “group asymptotics”,

where each cross-section replication provides m additional observations. In the AK data this

could mean obtaining additional instruments by adding new cross-sections for new years of

data, from new states, regions, or cohorts. The unbiased split-sample instrumental variables

(USSIV) estimator is given by

β̂USSIV = [X ′2Z2(Z
′
2Z2)

−1Z ′1X1]
−1X ′2Z2(Z

′
2Z2)

−1Z ′1y1 . (4)

One potential reason why the SSIV and USSIV estimator has not been explored extensively

in the literature is that that, at least with weak instruments, the point estimates are highly

dependent on the random sample split.

Subsequent to AK-SSIV, a different alternative estimator was proposed by Angrist et al.

(1999). As with SSIV, the idea behind the jackknife instrumental variables estimator (JIVE)

is to construct an instrument that is independent of the error in the reduced form equation,

especially in small samples. A ”leave-one-out” jackknife-type fitted value is used to eliminate

the correlation between the estimate of Ziπ and Xi. This estimator is first-order equivalent to

TSLS, but it has better finite sample properties. The JIVE1 estimator is given by

β̂J1 = [X̂ ′J1X]−1X̂ ′J1y , (5)

where X̂J1 is a n by k matrix with ith row

Zi(Z(i)′Z(i))−1Z(i)′X(i) = Zi
(Z ′Z)−1

1− Zi(Z ′Z)−1Z ′i
(Z ′X − Z ′iXi) . (6)

In this notation, X(i) and Z(i) are the matrices X and Z, respectively, without the ith row. k

is the number of instruments.

The JIVE2 estimator adjusts only the Z ′X component of π̂ = (Z ′Z)−1Z ′X to achieve
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unbiasedness. The JIVE2 estimator is defined as

β̂J2 = [X̂ ′J2X]−1X̂ ′J2y , (7)

with

Zi(Z
′Z)−1Z(i)′X(i)

N

N − 1
= Zi

(Z ′Z)−1

1− 1/N
(Z ′X − z′iXi) (8)

being the ith row of X̂J2. Chao et al. (2007) show the asymptotic normality of JIVE estimators.

They consider the many instruments sequence of Bekker (1994) and the many weak instru-

ments sequence of Chao and Swanson (2005) and show the consistency of JIVE standard errors

under much weaker conditions on the strength of instruments than TSLS and LIML standard

errors require to be consistent even in the presence of heteroskedasticity. Of the estimators

discussed here, it would appear that JIVE has the most advantageous properties under weak

identification. This holds especially if the errors are heteroskedastic.

4 Estimation results

The estimated return to education from AK, AK-SSIV and AIK-JIVE for the cohort of

329,509 men born 1930-1939 are reported in Table 1. For TSLS, JIVE and SSIV estimation

30 instruments are used, which are generated by interacting quarter of birth with year of birth

dummies. As the first-stage F statistic and the partial R2 are relatively small, quarter of birth

× year of birth interactions seem to have very poor explanatory power as instruments for the

endogenous years of schooling variable. As proposed by BJB and later improved by Stock and

Yogo (2002), the first-stage F statistic on the excluded instruments serves as an indicator in

order to detect weak identification. Given the systematic relationship between the instruments

and age measured in quarters, it is not surprising that the first-stage F statistic becomes even

smaller in those specifications controlling for age and age squared.

Although AK find significant and fairly plausible-looking TSLS coefficients for the return

to education in all specifications, BJB and AK-SSIV point out the potentially substantial bias

of TSLS coefficients towards OLS when the instruments are very weakly correlated with the

endogenous explanatory variable. In reaction to BJB’s critique, AIK-JIVE present some results

that the TSLS, LIML, and JIVE estimators give similar estimates on the return to education.

They interpret this finding as evidence that the TSLS coefficients reported in AK are not

severely biased. In addition to the SSIV coefficients of specification (3) reported in AK-SSIV
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and the LIML and JIVE coefficients for specification (1) given in AIK-JIVE, in Table 1 we

also provide coefficients from all estimators in all four specifications. The variation in the

results makes clear that the specification chosen has a large influence on the estimated return

to education.1

The most noticeable result is probably the increase in the JIVE coefficient’s standard error

by factor 12 when controlling for age and age squared in a specification without further covari-

ates, leading to a decrease of almost factor 10 in terms of the t-statistic. From specification

(2) to (4) we observe an increase in the JIVE standard error by factor 8, implying a decrease

in the t-statistic by factor 8.5. In contrast, the TSLS coefficient’s standard error increases only

by factor 1.8 and the t statistic decreases by factor 2.1 when adding age and age squared to

specification (1). From specification (2) to (4) we observe an increase in the TSLS standard

error by factor 1.8 and a decrease in t-statistic by factor 2.4. Thus, the TSLS coefficients are

statistically significant on a 5% level in all specifications, while the JIVE estimates are highly

insignificant when controlling for age and age squared. The use of bootstrapped standard errors

also does not change this tendency. In contrast to the TSLS estimator, bootstrapped standard

errors for the JIVE estimator are very volatile in specifications including age and age squared

and appear to be highly dependent on the random bootstrap replicate samples chosen.

The problem with the split sample instrumental variables (SSIV) estimator is that the

coefficients and standard errors very much depend on the random sample split. Thus, they

are very volatile. The reported SSIV and USSIV values in Table 1 are mean coefficients and

standard errors from 500 estimations. What can be observed is that significance of SSIV

coefficients is similar to what we observe for the LIML and JIVE estimator. The USSIV

coefficients being statistically significant on the 5% level are quite close to the corresponding

LIML coefficients.2 Bootstrapped SSIV standard errors are not reported here as they are similar

to the usual ones in randomly drawn samples as long as the SSIV coefficient is significant with

usual standard errors. That is to say that in specification (3) and (4) bootstrapped SSIV

standard errors are much higher than in specifications without age and age squared. Given

these problems with SSIV, we focus our attention in the subsequent analysis on TSLS, LIML,

and JIVE.

1As JIVE1 and JIVE2 estimators lead to very similar coefficients and standard errors in all specifications,
we will concentrate on the JIVE1 estimator when interpreting our findings.

2 That result does not depend on the size of the sample being used in the first-stage and second-stage
regression. A table reporting SSIV results from 10% till 90% sample splits is available upon request from the
authors.
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5 Implications of Heteroskedasticity

An additional criterion on which to evaluate estimators is their performance in the presence

of heteroskedasticity in the error term. While under homoskedasticity LIML may be preferred

to TSLS on consistency grounds when the number of instruments increases proportionally to the

sample size (Bekker (1994)), conventional standard errors will not be correct. Bekker (1994)

provide valid standard errors, which can differ substantially from the conventional standard

errors even with a small number of instruments. In a recent working paper, however, Hausman

et al. (2008) point out that LIML can become inconsistent if heteroskedasticity is present.

They also derive an exact condition for LIML to be consistent. Chao and Swanson (2004)

argue that in the context of instrumental variables regression with many weak instruments,

JIVE coefficients are consistent and asymptotically normal when errors are heteroskedastic of

unknown form.

We apply heteroskedasticity tests after OLS, TSLS and LIML regressions in order to get

an idea of whether a potential heteroskedasticity problem could influence the estimators’ per-

formance. Following the most commonly used testing procedure proposed by White (1980),

one would regress the squared OLS, TSLS and LIML residuals each on levels, squares, and

cross products of all instruments including all exogenous regressors, giving a test statistic of

nR2 ∼ χ2
j , where j is the number of linearly independent regressors within these artificial re-

gressions. The idea behind the Breusch and Pagan (1979), White (1980), and Pagan and Hall

(1983) test is that the errors are conditionally heteroskedastic if any of the exogenous variables

can predict the squared residuals.

Nevertheless, we only have 40 degrees of freedom with age which we already use up when

including only levels of instruments. Therefore, in Table 2 we report results from regressing

squared OLS, TSLS and LIML residuals each on levels of all excluded and included instru-

ments.3 Our results suggest that heteroskedasticity might be a problem especially in speci-

fications (2) and (4), which include 8 regional, and race, smsa, married dummies as further

controls. The null hypothesis of homoskedasticity cannot be rejected for TSLS and LIML on a

5% level in specifications (1) and (3). Although we cannot be sure of the presence of this type

of heteroskedasticity causing the LIML estimator to become inconsistent in the AK data, we

find some evidence for the presence of a heteroskedasticity problem of unknown form especially

in our preferred specification (4).

3 Test decisions do not change when regressing the squared residuals on levels, squares, and cross products
of the instruments and dropping those regressors, whose coefficients show the lowest significance, afterwards.
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6 The Problem of First-Stage Outliers

Our earlier results indicated that there is a large difference between the estimated return to

education using TSLS and the estimates using JIVE in our preferred specification controlling for

age and age squared in AK’s data. The TSLS estimator and JIVE are asymptotically equivalent,

however, and large differences in coefficients and estimated standard errors are therefore likely

to be due to different first-stage predictions of the endogenous years of schooling variable. We

can summarize the influence of leaving out observation i on the estimate of years of education by

comparing êduciIV to êduciJ. Since for each observation i there is a different vector of first-stage

JIVE coefficients π̂iJ, we follow a method proposed by Cook (1977) to provide a combination

of information from π̂iJ in a scalar. Cook’s Distance (henceforth CD) for observation i can

be interpreted as the ordinary Euclidean distance between êduciIV and êduciJ and gives the

squared distance from π̂iIV to π̂iJ relative to the fixed geometry of Z ′Z. It is defined by

CDi =
(π̂IV − π̂iJ)′Z ′Z(π̂IV − π̂iJ)

k σ̂2
IV

=
(êduciIV − êduciJ)2

k σ̂2
IV

(9)

where the second equality holds if Z contains only excluded instruments. Although CDi does

not follow an F distribution, Cook and Weisberg (1982) point out the convertibility of CDi to

that familiar scale. If CDi equals the 1− α value of F k
n−k, then deletion of the ith observation

would move π̂ to the edge of a 1− α% confidence ellipsoid relative to π̂.

We use CD to identify outliers conditioning only on the excluded instruments and focus on

estimation results from specifications (2) and (4). We calculate CD on the basis of a regression

of education on only excluded instruments from the first-stage regression of each specification.

In Figure 1 we plot the distribution of CD against years of schooling for the case with 28

excluded instruments (the graph for the case with 30 excluded instruments is quite similar);

the line of observations with relatively small CD are the observations for which none of the

dummy variables of the excluded instruments is equal to 1. From Figure 1 it is clear that CD is

the larger the more extreme the value of years of education of person i is. In other words, the

correlation between quarter of birth and years of schooling is especially weak for people with

either a very low or a very high number of years of education. This is not surprising, because

compulsory schooling laws are likely to be binding only on individuals who received somewhere

around 11 years of schooling. For those groups of observations having a substantial influence

on both the estimate of π and the fitted value êduc, CD will be larger than for others. Deletion

of those observations may lead to important changes in first-stage predictions and therefore in
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estimated second-stage coefficients. Typically, in very large data sets the cases with the largest

CDs will be of interest. To investigate the influence of those observations, we experiment with

dropping different shares of the sample with the largest CDs and recompute TSLS and JIVE

return to education coefficients to examine how those estimates change.

From Figure 2 it becomes clear that the distribution of years of education among the 2%

sample of all observations with the largest values of CD looks quite different from the full sample

distribution. Deleting observations with high CD values coincides with the deletion of extreme

years of schooling observations, but not vice versa. In other words, for those observations the

difference between π̂IV and π̂iJ is relatively large and quarter of birth performs particularly poor

in explaining years of education.

Cook’s Distance of observation i is determined by two components. The first is the stan-

dardized residual ri reflecting the lack of fit of the model at the ith case and the second is the

location of Zi relative to Z̄ over all observations, where Z in our case contains information on

the quarter and year of birth. Weisberg (2005) point out that CD can numerically identically

to equation (9) be calculated by

CDi =
1

k
r2
i

Zi(Z
′Z)−1Z ′i

1− Zi(Z ′Z)−1Z ′i
=

1

k

v̂2
i

σ̂2
IV(1− Zi(Z ′Z)−1Z ′i)

Zi(Z
′Z)−1Z ′i

1− Zi(Z ′Z)−1Z ′i
, (10)

where v̂iIV is the ith residual from TSLS first-stage estimation. In Figure 3, we plot the stan-

dardized residual from the regression of years of education on the 28 year of birth × quarter

of birth instruments, sorted ascendingly by CDi. There is a clear relationship. In Figure 4 we

also plot the leverage of each observation, Zi(Z
′Z)−1Z ′i, against CDi. Here we find essentially

no relationship, strongly suggesting that standardized residuals mainly determine CD in our

case.

As first-stage JIVE predictions use a different vector π̂iJ for each observation i and êducJ

depends on how π is estimated, large differences of π̂iJ dependent on the left-out observation

will lead to large estimated standard errors of JIVE coefficients. From Table 3 we can see that

deletion of 2% of those observations with the largest CDs, we end up with highly significant

and reasonable looking JIVE return to schooling coefficients. The JIVE return to schooling

coefficients’ standard errors decrease remarkably when those observations are deleted for which

the instruments are especially poor, and the first-stage F statistics also indicate that any

finite-sample bias is also substantially reduced.4 We hypothesize first-stage outliers will also

4We should note that we obtain very similar results if we also condition on the year-of-birth dummies and
age and age squared. If we additionally include the other exogenous covariates in the regression we use to
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be a serious problem for the SSIV estimator. As we have seen, the sample split is random and

thus the coefficients depend very much on the randomly chosen sample.

In very large data sets it can easily happen that a group of cases is influential en bloc

although this influence measured through CD is small when cases are examined individually.

In our application, good candidates for exclusion out of the sample are those with the largest

standardized residuals what coincides with a relatively large CD. While deletion of only one

observation at a time in JIVE first-stage estimation does not seem to have substantial influence

on the estimation of π measured by CDi, the estimated variance of JIVE coefficients is substan-

tially inflated by the extreme years of schooling observations as a group for which identification

is extremely weak. Unfortunately, although our diagnostic analysis finds an outlier problem,

it does not tell us what to do next. Sample truncation will probably affect other variables

distributions and therefore influence the coefficient estimates. In terms of the covariates in

specifications (2) and (4), observations with very low years of education are e.g. more likely to

be black and not married. By dropping those observations from the sample we alter the dis-

tribution of those covariates. We interpret our findings as evidence for AIK-JIVE coefficients’

standard errors to be especially high when identification is weak and a group of observations

has substantial influence on the estimation of π and on the first-stage fitted values êduc.

In order to shed further light on large estimated JIVE standard errors in specifications

where identification is very weak, it is worth looking at the different components of the estimated

coefficients’ variance-covariance matrices. Let X be the matrix of structural equation regressors.

Then Z is the matrix of instruments and X̂J is the matrix used in the second step of JIVE

estimation with ith row Ziπ̂(i) = Zi(Z(i)′Z(i))−1(Z(i)′X(i)). The TSLS and LIML standard

errors are estimated by taking the square root of the corresponding diagonal entry of

V̂ar(β̂) = σ̂2
[
X ′
(
I − κ̂Z(Z ′Z)−1Z ′

)
X
]−1

, (11)

where σ̂2 and κ̂ are calculated differently for the two estimators. The estimated TSLS coeffi-

cients’ variance-covariance matrix results from setting κ̂IV = 1 and plugging in σ̂2
IV = û′IVûIV/N

due to the large sample size. The residuals ûIV are taken from the second-stage regression

of TSLS estimation. In order to get the estimated variance-covariance matrix for the LIML

coefficients, σ̂2
L = û′LûL/N is calculated using residuals from the LIML regression. To see how

κ̂L is estimated, we split X into a possibly endogenous part X1 and an exogenous part X2. Fur-

identify the first-stage outliers, however, we obtain similar results to those in Table 1 for TSLS and JIVE. This
is becaue race and marital status, in particular, also predict low and high levels of education.
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thermore, we define MZ = I −Z(Z ′Z)−1Z ′ and MX2 = I −X2(X
′
2X2)

−1X ′2. In the application

considered here, X1 is years of education and X2 contains all exogenous regressors. κ̂L is the

smallest eigenvalue of

[(y, X1)
′MX2(y, X1)] [(y, X1)

′MZ(y, X1)]
−1

, (12)

which can be characterized similarly by

κ̂L = min
µ

µ′(y, X1)
′MX2(y, X1)µ

µ′(y, X1)′MZ(y, X1)µ
. (13)

The JIVE coefficients’ standard errors are calculated from

V̂ar(β̂J) = σ̂2
J

[
X ′X̂J(X̂ ′JX̂J)−1X̂ ′JX

]−1

, (14)

where the residuals ûJ used to estimate σ̂2
J = û′JûJ/N are taken from the JIVE regression.

Theil (1953) derives the difference between his TSLS estimator and the LIML estimator

to be op(1/
√
n). In other words, LIML and TSLS have the same asymptotic distribution and

√
n(κ̂− 1)→ 0 as n→∞ as noted by Anderson (2005) and Imbens and Wooldridge (2007).

As all estimated variance-covariance matrices are positive definite, we can apply theorem

A.12 of Greene (2003) to the AK application to find [V̂ar(β̂J)− V̂ar(β̂IV)], [V̂ar(β̂J)− V̂ar(β̂L)],

and [V̂ar(β̂L)− V̂ar(β̂IV)] to be positive definite matrices.5 This results are independent of the

specification used. Every eigenvalue of V̂ar(β̂J) is larger than the corresponding eigenvalue of

V̂ar(β̂IV) when both sets of eigenvalues are ordered from largest to smallest. The same holds

true when comparing JIVE to LIML and LIML to TSLS.

For an invertible matrix the sum of its eigenvalues is equal to its trace. Therefore, for all

considered estimators it holds that the sum of estimated variances of each component of β̂ is

equal to the sum of eigenvalues of the variance-covariance matrix of coefficients, i.e.

k∑
j=1

V̂ar(β̂j) = tr(V̂ar(β̂)) =
k∑
l=1

λl , (15)

where λl is the lth eigenvalue of V̂ar(β̂). As can be seen from Table 4, the relation between

traces of estimated coefficients’ variance-covariance matrices is tr(V̂ar(β̂J)) > tr(V̂ar(β̂L)) >

5 When using 28 instruments in specification (4), the difference of the smallest eigenvalues of V̂ar(β̂L) and
V̂ar(β̂IV) equals −2.474∗10−13. As this value is almost equal to zero, we can at least consider V̂ar(β̂L)−V̂ar(β̂IV)
to be positive semidefinite.
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tr(V̂ar(β̂IV)) in all specifications. Furthermore, when using the full sample tr(V̂ar(β̂J)) is ex-

tremely high compared to tr(V̂ar(β̂)) of other estimators and to tr(V̂ar(β̂J)) in specifications

(1) and (2).

Although the estimated error variance of the TSLS estimator, σ̂2
IV, is smaller than the

estimated error variance of the LIML estimator, σ̂2
L, and σ̂2

L is smaller than the estimated

error variance of the JIVE estimator, σ̂2
J, in each specification, this alone will probably not be

sufficient to explain the relation between the estimated variance-covariance matrices. Thus, it

is worth to have a closer look on differences in the smallest eigenvalues of the matrices being

defined by A ≡ σ̂2[V̂ar(β̂)]−1 for any one estimator. This is also the inverse of the second

factor on the right hand side of equations (11) and (14). As we know about the equality

described in equation (15) and that the eigenvalues of A are reciprocal to the eigenvalues of

A−1 = V̂ar(β̂)/σ̂2, a smallest eigenvalue of A close to zero will inflate
∑k

j=1 V̂ar(β̂j).

In the top panel of Table 4 we present the trace, error variance, and smallest root for the

TSLS, LIML, and JIVE estimates in Table 1. In the AK data, the smallest eigenvalue of AIV

in specification (3) equals 2.24 and is 4.5 times smaller than in the specification with only

year of birth dummies. tr(V̂ar(β̂IV)) increases by the same amount and is 4.5 times larger in

specification (3) than in specification (1). The smallest characteristic root of AJ in specification

(3) is around 0.03 and 186 times smaller than in specification (1), while tr(V̂ar(β̂J)) is 191.7

times larger. When including age and age squared in specification (2), the smallest eigenvalue

of AIV equals 2.09 and thus, decreases by factor 4.2 as tr(V̂ar(β̂IV)) increases by the same

factor. In contrary, the smallest characteristic root of AJ equals 0.04 and is 88 times smaller in

specification (4) than in specification (2). tr(V̂ar(β̂J)) increases by factor 88 when controlling for

age and age squared in specification (2). When using the full sample, the smallest eigenvalues

of AJ in the specifications including age and age squared are still positive, but quite close to

zero. The characteristic roots of AIV are all farther away from zero. This result coincides with

tr(V̂ar(β̂J)) being very large while tr(V̂ar(β̂IV)) is comparatively small.

In the bottom panel of Table 4 we repeat the same exercise, recalculating the estimates using

the truncated 98% sample from Table 3. Note that tr(V̂ar(β̂)) decreases for all estimators. AJ’s

characteristic root is now much farther away from zero and tr(V̂ar(β̂J)) is of reasonable size.

Our eigenvalue analysis findings support an interpretation of JIVE coefficients’ standard errors

being inflated by outliers, for which the instruments are especially weak.
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7 Conclusion

The TSLS estimator is know to be potentially seriously biased if identification is weak.

Using well-known data from AK, we estimate the returns to education using a variety of es-

timators that might be preferred on prior grounds (LIML, JIVE, and SSIV). In our preferred

specification that includes year-of-birth dummies, age, age squared, and further covariates, we

find evidence highly variable results across the different estimation methods. In particular,

results from SSIV and JIVE, which is the preferred estimator on a priori grounds with weak

identification, are never statistically significant. We reject the LIML and TSLS estimates as

likely to be inconsistent because of heteroskedasticity.

We obtain plausible and statistically significant results from JIVE only from a truncated

sample by dropping the most influential observations with either extremely few or many years

of education; it is precisely these observations where the natural experiment that AK utilize

for identification would be expected to be roughly binding. We conclude from this exercise

that in the full sample JIVE coefficients’ standard errors are inflated by those observations for

which identification is especially weak. As sample truncation alters the distribution of other

variables we cannot interpret return to education estimates from those estimations as generally

applicable.
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Table 1

Years of education (1) (2) (3) (4)

OLS Coefficient 0.0711 0.0632 0.0711 0.0632

Std. Error 0.0003 0.0003 0.0003 0.0003

Bootstrapped Std. Error 
(a) 0.0004 0.0004 0.0004 0.0004

TSLS Coefficient 0.0891 0.0806 0.0760 0.0600

Std. Error 0.0161 0.0164 0.0290 0.0290

Bootstrapped Std. Error 
(a) 0.0168 0.0154 0.0282 0.0266

First-stage F 4.91 4.75 1.61 1.61

Partial R
2
 *100 0.04 0.04 0.01 0.01

LIML Coefficient 0.0929 0.0838 0.0810 0.0574

Std. Error 0.0177 0.0179 0.0412 0.0388

Bootstrapped Std. Error 
(a) 0.0248 0.0226 0.6243 0.2116

SSIV Coefficient
 (b) 0.0638 0.0570 0.0217 0.0144

Std. Error 
(b) 0.0223 0.0223 0.0350 0.0346

USSIV Coefficient
 (b) 0.0941 0.0853 0.0791 0.0543

Std. Error 
(b) 0.0317 0.0326 0.4416 0.4557

JIVE1 Coefficient 0.0959 0.0904 0.1150 0.0860

Std. Error 0.0222 0.0258 0.2644 0.2110

Bootstrapped Std. Error 
(a) 0.0213 0.0242 0.5337 2.1461

JIVE2 Coefficient 0.0959 0.0904 0.1155 0.0862

Std. Error 0.0222 0.0258 0.2643 0.2094

Bootstrapped Std. Error 
(a) 0.0214 0.0244 0.2298 2.7670

Age, age squared No No Yes Yes

Year of birth dummies Yes Yes Yes Yes

Other covariates 
(c) No Yes No Yes

Number of instruments 30 30 28 28

Source:  Authors' tabulations from 1980 U.S.Census used by Angrist and Krueger (1991).

Note: Sample size is 329,509. The 30 instruments are a set of  3 quarter-of-birth times 10 year-of-

birth interactions. The dependent variable is the log of weekly earnings. Age and age squared are 

measured in quarters of years. 

a: 500 bootstrap replications.

b: Mean from 500 estimations.

c: 8 regional, and race, smsa, married dummies as further controls.

Estimation of the Return to Education for Men Born 1930-1939
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Table 2

Years of education (1) (2) (3) (4)

OLS Coefficient 0.0711 0.0632 0.0711 0.0632

Std. Error 0.0003 0.0003 0.0003 0.0003

White nR
2 150.52 744.40 153.80 747.62

(degrees of freedom, p-value) (10, 0.00) (21, 0.00) (12, 0.00) (23, 0.00)

TSLS Coefficient 0.0891 0.0806 0.0760 0.0600

Std. Error 0.0161 0.0164 0.0290 0.0290

White nR
2 47.98 750.61 45.79 737.23

(degrees of freedom, p-value) (39, 0.15) (50, 0.00) (39, 0.21)  (50, 0.00)

First-stage White nR
2 647.36 3273.70 647.36 3273.70

(degrees of freedom, p-value) (39, 0.00) (50, 0.00) (39, 0.00) (50, 0.00)

LIML Coefficient 0.0929 0.0838 0.0810 0.0574

Std. Error 0.0177 0.0179 0.0412 0.0388

White nR
2 48.78 753.97 46.48 735.58

(degrees of freedom, p-value) (39, 0.14) (50, 0.00) (39, 0.19) (50, 0.00)

Age, age squared No No Yes Yes

Year of birth dummies Yes Yes Yes Yes

Other covariates 
(a) No Yes No Yes

Number of instruments 30 30 28 28

Source:  Authors' tabulations from 1980 U.S.Census used by Angrist and Krueger (1991).

Note: Sample size is 329,509. The 30 instruments are a set of  3 quarter-of-birth times 10 year-of-

birth interactions. The dependent variable is the log of weekly earnings. Age and age squared are 

measured in quarters of years. 

a: 8 regional, and race, smsa, married dummies as further controls.

Heteroskedasticity Tests for the Estimation of the Return to Education
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Figure 1
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Figure 3
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Table 3

Years of education TSLS JIVE1 TSLS JIVE1

Full sample (N = 329,509)

Coefficient 0.0806 0.0904 0.0600 0.0860

Std. Error 0.0164 0.0258 0.0290 0.2110

First stage:

F statistic 
(b) 4.7474 4.7474 1.5871 1.6131

99% sample (N = 326,213) 
(a)

Coefficient 0.0761 0.0886 0.0616 0.0597

Std. Error 0.0201 0.0408 0.0193 0.0366

First stage:

F statistic 
(b) 3.3785 3.3785 3.8839 3.8841

98% sample (N = 322,919) 
(a)

Coefficient 0.0747 0.0765 0.0735 0.0761

Std. Error 0.0111 0.0130 0.0137 0.0177

First stage:

F statistic 
(b) 11.6307 11.6307 8.1116 8.1127

Age, age squared Yes Yes Yes Yes

Year of birth dummies Yes Yes Yes Yes

Other covariates 
(c) No No Yes Yes

Number of instruments 30 30 28 28

Source:  Authors' tabulations from 1980 U.S.Census used by Angrist and Krueger (1991).

Note: The 30 instruments are a set of  3 quarter-of-birth times 10 year-of-birth interactions. The

dependent variable is the log of weekly earnings. Age and age squared are measured in quarters of

years. Cook's Distance is calculated from regressing years of schooling on the excluded instru-

ments of the corresponding TSLS first stage regression.

a: Sample is truncated by dropping observations with largest Cook's Distance.

b: F statistic of excluded instruments.

c: 8 regional, and race, smsa, married dummies as controls.

Estimation of the Return to Education for Men Born 1930-1939
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Table 4

(1) (2) (3) (4)

Full Sample (N = 329,509)

TSLS Estimation

Trace of estimated Var(β) 0.0411 0.0449 0.1868 0.1896

Estimated Error Variance 0.4100 0.3878 0.4068 0.3849

Smallest Root
 (a) 10.0371 8.7268 2.2359 2.0850

LIML Estimation

Trace of estimated Var(β) 0.0498 0.0533 0.3702 0.3332

Estimated Error Variance 0.4116 0.3890 0.4076 0.3851

Smallest Root
 (a) 8.3060 7.3521 1.1157 1.1733

JIVE1 Estimation

Trace of estimated Var(β) 0.0780 0.1105 14.9497 9.6703

Estimated Error Variance 0.4131 0.3953 0.4273 0.3900

Smallest Root
 (a) 5.3133 3.5926 0.0286 0.0404

98% sample (N = 322,919) 
(b)

TSLS Estimation

Trace of estimated Var(β) 0.0195 0.0208 0.0426 0.0452

Estimated Error Variance 0.4020 0.3808 0.4033 0.3808

Smallest Root
 (a) 20.8527 18.7371 10.6813 9.4527

LIML Estimation

Trace of estimated Var(β) 0.0209 0.0221 0.0459 0.0485

Estimated Error Variance 0.4021 0.3810 0.4036 0.3809

Smallest Root
 (a) 19.4611 17.5745 9.8462 8.7470

JIVE1 Estimation

Trace of estimated Var(β) 0.0247 0.0283 0.0582 0.0705

Estimated Error Variance 0.4162 0.3991 0.4184 0.3943

Smallest Root
 (a) 16.9784 14.3011 7.8508 6.0226

Age, age squared No No Yes Yes

Year of birth dummies Yes Yes Yes Yes

Other covariates 
(c) No Yes No Yes

Number of instruments 30 30 28 28

Source:  Authors' tabulations from 1980 U.S.Census used by Angrist and Krueger (1991).

Note: The 30 instruments are a set of  3 quarter-of-birth times 10 year-of-birth interactions. The

dependent variable is the log of weekly earnings. Age and age squared are measured in quarters of

years. Cook's Distance is calculated from regressing years of schooling on the excluded instru-

ments of the corresponding TSLS first stage regression.

a: Smallest eigenvalue of the inverse of the estimated variance-covariance matrix times the 

estimated error variance.

b: Sample is truncated by dropping observations with largest Cook's Distance.

c: 8 regional, and race, smsa, married dummies as controls.

Properties of the Estimated Variance-Covariance Matrices

∧

∧

∧

∧

∧

∧

22


	Introduction
	Angrist and Krueger's Setup
	Alternative Estimators
	Estimation results
	Implications of Heteroskedasticity
	The Problem of First-Stage Outliers
	Conclusion



