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LEARNING, NETWORK FORMATION AND
COORDINATION

Sanjeev Goyal and Fernando Vega-Redondo

A B S T R A C T

In many economic and social contexts, individual players choose their
partners and also decide on a mode of behavior in interactions with these
partners. This paper develops a simple model to examine the interaction
between partner choice and individual behavior in games of coordination.
An important ingredient of our approach is the way we model partner choice:
we suppose that a player can establish ties with other players by investing in
costly pair-wise links.
We show that individual e®orts to balance the costs and bene¯ts of links

sharply restrict the range of stable interaction architectures; equilibrium net-
works are either complete or have the star architecture. Moreover, the process
of network formation has powerful e®ects on individual behavior: if costs of
forming links are low then players coordinate on the risk-dominant action,
while if costs of forming links are high then they coordinate on the e±cient
action.

Keywords: Networks, social learning, equilibrium selection, coordination
games, e±ciency, risk dominance.
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1 INTRODUCTION

In recent years, several authors have examined the role of interaction struc-

ture { di®erent terms like network structure, neighborhood in°uences, and

peer group pressures, have been used { in explaining a wide range of social

and economic phenomena. This includes work on social learning and adop-

tion of new technologies, evolution of conventions, collective action, labor

markets, and ¯nancial fragility.1 This research suggests that the structure

of interaction can be decisive in determining the nature of outcomes. This

leads us to examine the reasonableness/robustness of di®erent structures and

is the primary motivation for developing a model in which the evolution of

the interaction structure is itself an object of study.

We propose a general approach to study this question. We suppose that

individual entities can undertake a transaction only if they are `linked'. This

link may refer to a social or a business relationship, or it may refer simply to

awareness of the others. We take the view that links are costly, in the sense

that it takes e®ort and resources to create and maintain them. This leads us

to study the incentives of individuals to form links and the implications of

this link formation for aggregate outcomes.

In the present paper, we apply this approach to a particular problem: the

in°uence of link formation on individual behavior in games of coordination.2

There is a group of players, who have the opportunity to play a 2 £ 2 co-
ordination game with each other. We start with the case where two players

1See e.g., Allen and Gale (1998), Anderlini and Ianni (1997), Bala and Goyal (1998),
Chwe (1996), Coleman (1966), Ellison and Fudenberg (1993), Ellison (1993), Ely (1996),
Goyal and Janssen (1997), Granovetter (1974), Haag and Laguno® (1999), and Morris
(2000), among others.

2Many games of interest have multiple equilibria. The study of equilibrium selec-
tion/problem of coordination therefore occupies a central place in game theory. We discuss
the contribution of our paper to this research in greater detail below.
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can only play with one another if they have a direct pair-wise link. Subse-

quently, we take up the case where players can play with one another if they

are directly or indirectly connected. These links can be made on individual

initiative but are costly to form. So each player prefers that others incur the

cost and form links with him. For simplicity, the game is assumed to yield

only positive payo®s in every bilateral interaction. Individuals care about

aggregate payo®s and, therefore, they always accept any link supported (i.e.

paid) by some other player. The link decisions of di®erent players de¯ne a

network of social interaction. In addition to the choice of links, each player

also has to choose an action that she will use in all the games that she will

engage in. We are interested in the nature of networks that emerge and the

e®ects of link formation on social coordination.

In our setting, links as well as actions in the coordination game are chosen

by individuals on an independent basis. This allows us to study the social

process as a non-cooperative game. We start with a consideration of the

situation in which two players can only play a game if they have a direct

link between them. We ¯nd that a variety of networks { including the com-

plete network, the empty network and partially connected networks { can be

supported in equilibria of the static game. Moreover, the society can coor-

dinate on di®erent actions and conformism as well as diversity with regard

to actions of individuals is possible in Nash equilibrium. This multiplicity

motivates an examination of the dynamic stability of di®erent outcomes.

We develop a dynamicmodel in which, at regular intervals, individuals choose

links and actions to maximize their payo®s. Occasionally they make errors

or experiment. Our interest is in the nature of long run outcomes, when

the probability of these errors is small. We ¯nd that the dynamics generate

clear-cut predictions both concerning the architecture of networks as well as

regarding the nature of social coordination.
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In particular, we show that the complete network is the unique stochastically

stable architecture (except for the case where costs of link formation are

very high and the empty network results).3 Figure 1a gives an example

of a complete network in a society with 4 players. This result shows that

partially connected networks are not stable. We also ¯nd that, if players

are at all connected, they always coordinate in the long run on the same

action, i.e. social conformism obtains. However, the nature of coordination

depends on the costs of link formation. We ¯nd that for low costs of link

formation, players coordinate on the risk-dominant action, while for high

costs of link formation they coordinate on the e±cient action (Theorem 3.1).

Thus our analysis reveals that, even though the eventual network is the same

in all cases of interest, the process of network formation itself has serious

implications for the nature of social coordination.
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Figure 1a
Complete Network
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Figure 1b
Center-sponsored Star

The above result says that equilibrium networks are complete or empty. In

practice, a variety of factors will lead to incomplete networks; these include

capacity constraints on the time and budget of individual players, increasing

costs to forming links, and it is also likely that indirect connections will

facilitate transactions making complete networks unnecessary. In the present

paper we explore the role of indirect linkages between players that facilitate

transactions. As before, our focus is on the architecture of stable networks

3In a complete network, every pair of players is directly linked, while in a empty network
there are no links.
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and the in°uence of link formation on the behavior of players in the games

with linked players.

We consider a model in which two players can play a game if they are directly

or indirectly linked with each other.4 In this setting, we ¯nd that the center-

sponsored star is the unique stochastically stable architecture. This is a

network in which one player forms a link with every other player and pays

for all the links. Figure 1b provides an example of this architecture for

a society with 4 players. We also ¯nd that there exists a critical cost of

forming links, such that, for costs below this level, players coordinate on the

risk-dominant action, while for costs above this level, they coordinate on the

e±cient action (Theorem 4.1). We thus ¯nd that in the two settings the

equilibrium network remains the same { the complete network in one case

and the star in the other case { but the nature of individual behavior is very

di®erent depending upon the cost of forming links. Moreover, the precise

relationship between costs of forming links and the nature of coordination

is robust across the di®erent settings. The general arguments we use in the

proofs of Theorems 4 and 14 are quite similar. We now sketch them brie°y.

We consider the case where the cost of forming links is such that both

types of coordination outcomes, the e±cient one as well as the ine±cient

(risk-dominant) one can be sustained in a social equilibrium. We study the

stochastic stability of the two outcomes: complete network with e±cient

coordination and complete network with ine±cient (but risk-dominant) co-

ordination. Roughly speaking, we need to assess the minimum number of

`mutations' required to exit from each state. Suppose that we are in the

following state: complete network with everyone choosing the ine±cient ac-

tion. We assess the minimum number of mutations needed to exit from this
4More precisely, two players can play a game with each other if there is a path between

them in the social network.
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state as follows: given a particular network structure a certain minimum of

players must be choosing the e±cient action for a player to prefer to play this

action. The ¯rst step is to ¯nd the minimum number of such players needed,

across the set of all possible networks. This step also derives the network

architecture that facilitates the transition. Clearly this number sets a lower

bound on the number of mutations and is therefore necessary to exit from

the e±cient state. The second step then shows that this minimum computed

in the ¯rst step is also su±cient for transition.

We now develop some intuition for the nature of the network that yields this

minimum number of mutations. Here for the sake of concreteness, we focus

on the case of direct links. In our model links are one-sided and this makes

them a public good. An action ® is particularly attractive for player i when

every player choosing ® forms a link with i, while no player choosing the

other action ¯ forms any links with i. In such a situation, if player i were to

choose ¯ then she would have to form a link with every player choosing the

same action, while if she chooses action ® then she can hope to `free-ride' on

the links that the others have created.

Number the players from 1 to n. Suppose that a player i forms a a link

with every other player with a higher index. This generates a complete

network. Now suppose that the ¯rst k players have their strategies `mutated',

and they all switch from the ine±cient action (¯) to the e±cient action

(®). Now consider the situation of player k + 1. This player is exactly in

the situation described above. If the costs of forming links are very small

then player k + 1 will choose to connect with everyone, irrespective of the

choice of actions. Thus the free-riding aspect is relatively unimportant; the

network is complete for all practical purposes and standard risk-dominance

considerations prevail if cost of forming links is small. Next suppose that

costs are relatively high in the sense that player k + 1 forms a link with
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players k+2; ::; n only if she chooses action ¯, i.e., the costs of forming links

are higher than the miscoordination payo®. In this case, the structure of

network becomes important and we show that the existence of the k `passive'

links makes it attractive to switch to the e±cient action, even with relatively

few players actually playing this action. This in turn leads to the e±cient

coordination outcome being stochastically stable when costs of forming links

are relatively high.

We now place the paper and the results in context. Traditionally, sociologists

have held the view that individual actions, and in turn aggregate outcomes,

are in large part determined by interaction structure. By contrast, economists

have tended to focus on markets, where social ties and the speci¯c features

of the interaction structures between agents are typically not important. In

recent years, economists have examined in greater detail the role of interac-

tion structure and found that it plays an important role in shaping important

economic phenomena (see the references given above, and also Granovetter,

1985). This has led to a study of the processes through which the structure

emerges. The present paper is part of this general research program.

We relate the paper to the work in economics next. The paper contributes to

two research areas: network formation games and equilibrium selection/coordination

problems. We suppose that an individual players can form pair-wise links by

incurring some costs, at their own initiative, i.e., link formation is one-sided.

This allows us to model the network formation process as a non-cooperative

game. This element of our model is similar to the work of Bala and Goyal

(2000). Related work on network formation includes Dutta, van den Nouwe-

land and Tijs (1995) and Jackson and Wolinsky (1996). Earlier work focuses

on the architectural and the welfare properties of strategically stable net-

works. The primary contribution of the present paper is the presentation of

a common framework within which the emergence of interaction networks
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and the behaviour of linked players can be studied.5 In particular, the indi-

rect links model in the present paper is closely related to the work in Bala

and Goyal (2000); this allows us to use arguments from Bala and Goyal

(2000) to prove results on equilibrium network structures in the current pa-

per (cf. Proposition 11). The analysis of the indirect links model builds on

this networks characterization result and its main contribution lies in estab-

lishing a clear relationship between the cost of forming links and behavior in

coordination games between linked players. This is the content of Theorem

14.

In many games of interest, multiple equilibria arise naturally and so the

problem of equilibrium selection occupies a central place in the theory of

games. In recent years, there has been a considerable amount of research on

equilibrium selection/coordination;6 An important ¯nding of this work is that

interaction structure and the mobility of players matters and that by varying

the structure, the rate of change as well as the long run outcome can be

signi¯cantly altered.7 It is therefore worthwhile to examine the circumstances

under which di®erent network structures emerge. From a theoretical point

of view, a natural way to do this is by examining the strategic stability of

di®erent interaction structures. This is the route taken in the present paper.

5In independent work, Droste, Gilles and Johnson (1999), and Jackson and
Watts (1999) have developed a related model which addresses similar concerns. The
primary di®erence between these papers and our paper is the model of link formation: the
other papers consider two-sided link formation while we study one-sided link formation.
Moreover, we allow for direct as well as indirect connections, while these papers consider
only direct connections. These di®erences have a signi¯cant impact on the conclusions.
We further discuss these papers in the conclusion.

6One strand of this work considers dynamic models. This work includes Blume (1993),
Canning (1992), Ellison (1993), Kandori, Mailath and Rob (1993), and Young (1993),
among others.
For a consideration of this same equilibrium selection problem from a di®erent (\eductive")
perspective, the reader may refer to the work of Harsanyi and Selten (1988) or the more
recent paper by Carlson and van Damme (1993).

7See, for example, Ellison (1993), Goyal (1996) and Morris (2000), among others.
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A well known result on equilibrium selection in the learning and evolution

literature is that risk-dominance considerations prevail over those of e±ciency

and, if there is a con°ict between these two considerations then, an ine±cient

but risk-dominant equilibrium can be stable, in the long run. This ¯nding

have been re-examined by several authors and the result has been shown to be

sensitive to di®erent assumptions, such as the nature of the strategy revision

rule, precise modeling of mutation, and mobility of players across locations.8

The results in our paper are closely related to the work on mobility.

The basic insight of the work on player mobility is that if individuals can

separate/insulate themselves easily from those who are playing an ine±-

cient action (e.g., the risk-dominant action), then e±cient \enclaves" will be

readily formed and eventually attract the \migration" of others (who will

therefore turn to playing e±ciently). In a rough sense, one may be inclined

to establish a parallel between easy mobility and low costs of forming links.

However, the considerations involved in each case turn out to be very di®er-

ent, as is evident from the sharp contrast between our conclusions (recall the

above summary) and those of the mobility literature.

There are two main reasons for this contrast. First, in our case, players

do not indirectly choose their pattern of interaction with others by moving

across a pre-speci¯ed network of locations (as in the case of player mobility).

Rather, they construct directly their interaction network (with no exogenous

restrictions) by choosing those agents with whom they want to play the

game. Second, the cost of link formation (which are paid per link formed)

act as a screening device that is truly e®ective only if it is high enough. In a

heuristic sense, we may say that it is precisely the restricted \mobility" these

costs induce which helps insulate (and thus protect) the individuals who are

8Bergin and Lipman (1996), Robson and Vega-Redondo (1996),, Ely (1996), Galesloot
and Goyal (1997), Mailath, Samuelson and Shaked (1994), Oechssler (1997), Bhaskar and
Vega-Redondo (1998) among others.
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choosing the e±cient action. If the link-formation costs are too low, the

extensive interaction they facilitate may have the unfortunate consequence

of rendering risk-dominance considerations decisive.

The rest of this paper is organized as follows. Section 2 describes the frame-

work. Section 3 presents the results for the case of direct links, while Section

4 studies the case where players can play a game if they are either directly

or indirectly connected to each other. Section 5 concludes.

2 THE MODEL

2.1 Networks

Let N = f1; 2; : : : ; ng be a set of players, where n ¸ 3. We are interested

in modelling a situation where each of these players can choose the subset

of other players with whom to play a ¯xed bilateral game. Formally, let

gi = (gi;1; : : : gi;i¡1; gi;i+1; : : : gi;n) be the set of links formed by player i. We

suppose that gi;j 2 f1; 0g, and say that player i forms a link with player j
if gi;j = 1. The set of link options is denoted by Gi. Any player pro l̄e of
link decisions g = (g1; g2 : : : gn) de¯nes a directed graph, called a network.

Abusing notation, the network will also be denoted by g:

Speci¯cally, the network g has the set of players N as its set of vertices and its

set of arrows, ¡ ½N£N; is de¯ned as follows, ¡ = f(i; j) 2 N£N : gij = 1g.
Graphically, the link (i; j) may be represented as an edge between i and

j , a ¯lled circle lying on the edge near agent i indicating that this agent

has formed (or supports) that link. Every link pro l̄e g 2 G has a unique

representation in this manner. Figure 1 below depicts an example. In it,
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player 1 has formed links with players 2 and 3, player 3 has formed a link

with player 1, while player 2 has formed no links.9

1 2

3

¡
¡¡r ¡¡¡
r

r
Figure 1

Given a network g; we say that a pair of players i and j are directly linked

if at least one of them has established a linked with the other one, i.e. if

maxfgi;j; gj;ig = 1. To describe the pattern of players' links, it is useful

to de¯ne a modi¯ed version of g , denoted by ¹g, that is de¯ned as follows:

¹gi;j = maxfgi;j; gj;ig for each i and j in N . Note that ¹gi;j = ¹gj;i so that the
index order is irrelevant. We say there is a path in g between i and j if either

¹gi;j = 1 or there exist agents j1,: : :,jm distinct from each other and i and j

such that ¹gi;j1 = ¢ ¢ ¢ = ¹gjk;jk+1 = ¢ ¢ ¢ ¹gjm ;j = 1. We write i
¹gÃ! j to indicate

a path between players i and j in network ¹g.

Let Nd(i; g) ´ fj 2 N : gi;j = 1g be the set of players in network g with whom
player i has established links, while ºd(i; g) ´ jNd(i; g)j is its cardinality.
Similarly, let Nd(i; ¹g) ´ fj 2 N : ¹gi;j = 1g be the set of players in network
g with whom player i is directly linked, while ºd(i; ¹g) ´ jNd(i; ¹g)j is the
cardinality of this set. Let N(i; g) ´ fj 2 N : i

¹gÃ! jg be the players with
whom player i has a path (is directly or indirectly linked) in a network g; we

also de¯ne º(i; ¹g) ´ jN(i; ¹g)j to be the cardinality of this set.

A subgraph g0 ½ g is called a component of g if for all i; j 2 g0, i 6 =j,
there exists a path in g0 connecting i and j, and for all i 2 g0 and j 2 g,

gi;j = 1 implies g 0ij = 1. A network with only one component is called

9Since agents choose strategies independently of each other, two agents may simulta-
neously initiate a two-way link, as seen in the ¯gure.
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connected. Given any g; the notation g+ ij will denote the network obtained

by replacing gi;j in network g by 1. Similarly, g¡gi;j will refer to the network
obtained by replacing gi;j in network g by 0. A connected network g is said to

be minimally connected if the network obtained by deleting any single link,

g¡gi;j, is not connected. A special example of minimally connected network
is the center-sponsored star: a network g is called a center-sponsored star if

there exists some i 2 N such that, for all j 2 Nnfig; gij = 1, and for all

j; k 2 Nnfig; j 6= k;, gjk = 0.

2.2 Social Game

Individuals located in a social network play a 2£2 symmetric game in strate-
gic form with common action set. The set of partners of player i depends on

her location in the network. We shall consider two di®erent models: in the

¯rst model we will assume that two individuals can play a game if and only if

they have a direct link between them. In this case, player i will play a game

with all other players in the set N d(i; ¹g). In the second model a player can

play a game with all other players with whom she is directly or indirectly

linked. In this case, player i will play a game with other players in the set

N (i; ¹g).

We now describe the two-person game that is played between players. The

set of actions is A = f®; ¯g: For each pair of actions a; a0 2 A; the payo®

¼(a; a0) earned by a player choosing a when the partner plays a0 is given by

the following table:

2
1

® ¯

® d e

¯ f b

Table I
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We shall assume that this is a coordination game, with two pure strategy

equilibria, ®; ®) and ¯; ¯). Without loss of generality we will assume that

the (®; ®) equilibrium is the e±cient one. Finally, in order to focus on the

interesting case, we will assume that there is a con°ict between e±ciency

and risk-dominance. These considerations are summarized in the following

restrictions on the payo®s.10

d > f; b > e; d > b; d + e < b+ f: (1)

An important feature of our approach is that links are assumed costly. Specif-

ically, every agent who establishes a link with some other player incurs a cost

c > 0. Thus, we suppose that the cost of forming a link is independent of the

number of links being established and is the same across all players. Another

important feature of our model is that links are one-sided. This aspect of

the model allows us to use standard solution concepts from non-cooperative

game theory in addressing the issue of link formation. We shall assume that

the payo®s in the bilateral game are all positive and, therefore, no player has

any incentive to refuse links initiated by other players.11

10Our results extend in a natural way in case the risk-dominant equilibrium is also
e±cient, i.e., if d + e > b + f . In particular, the network is either complete or a star
(depending on the nature of links), while players coordinate on the (®; ®) equilibrium,
which is risk-dominant as well as e±cient, in the long run.

11There are di®erent ways in which the assumption of one-side links and positive payo®s
in the coordination game can be relaxed. One route is to retain the one-sided links aspect
but to incorporate negative payo®s. This motivates the following formulation: suppose
that a link between players i and j formed by player i allows payo®s to °ow to player i
only. In this case, both the payo® °ow (which may be negative) and costs are one-sided.
This model may be interpreted as a model of peer groups and fashion, with asymmetric
°ow of in°uence allowed. An analysis of this model suggests that the relationship between
costs of forming links and equilibrium networks and actions is similar to the one obtained
in Theorem 4.
Another way would be to allow for players to have the option of refusing links initiated
by others (and possibly also negative payo®s.) This would lead to a model with two-sided
links which requires di®erent methods of analysis and lies outside the scope of the present
paper.
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We shall assume that every player i is obliged to choose the same action in

the (possibly) several bilateral games that she is engaged in. This assumption

is natural in the present context; if players are allowed to choose a di®erent

action for every two-person game this will make the behaviour of players in

any particular game insensitive to the network structure. The strategy space

of a player can be identi¯ed with Si = Gi£ A; where Gi is the set of possible
link decisions by i and A is the common action space of the underlying

bilateral game.12

We can now present the payo®s of the social game. First, we present the

payo® for the case where only directly linked players can play with each

other. Given the strategies of other players, s¡i = (s1; : : : si¡1; si+1; : : : sn),

the payo® to a player i from playing some strategy si = (gi; ai) is given by:

¦i(si; s¡i) =
X

j2Nd(i;¹g)

¼(ai; aj) ¡ ºd(i; g) ¢ c (2)

We note that the individual payo®s are aggregated across the games played

by him. In some of the earlier work, e.g., Ellison (1993), Kandori, Mailath

and Rob (1993), authors have assumed that individuals care about average

payo®s. In our framework, the number of games a player plays is endogenous,

and we would like to explicitly account for the in°uence of the size of the

neighborhood. This motivates the aggregate payo® formulation.

Second, we present the payo®s for the case where two players can play a

game if they are either directly or indirectly linked with each other. Given

12In our formulation, players choose links and actions in the coordination game at the
same time. An alternative formulation would be to have players choose links ¯rst and then
choose actions, contingent on the nature of the network observed. We discuss the timing
of moves in the concluding remarks.
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the strategies of other players, s¡i = (s1; : : : si¡1; si+1; : : : sn), the payo® to a

player i from playing some strategy si = (gi; ai) is given by:

¦̂i(si; s¡i) =
X

j2N(i;¹g)
¼(ai; aj) ¡ ºd(i; g) ¢ c (3)

These payo® expressions allow us to particularize the standard notion of

Nash Equilibrium as follows. A strategy pro¯le s¤ = (s¤1; : : : s
¤
n) is said to be

a Nash equilibrium for the game if, for all i 2 N;

¦i(s
¤
i ; s

¤
¡i) ¸ ¦i(si; s

¤
¡i);8si 2 Si: (4)

The set of Nash equilibria will be denoted by S¤: A Nash equilibrium is

said to be strict if every player gets a strictly higher payo® with her current

strategy than she would with any other strategy. The equilibrium notions for

the indirect links model are obtained by substituting ¦̂(:) in place of ¦(:).

2.3 Dynamics

Time is modeled as being discrete, t = 1; 2; 3; : : :. At each t, the state of the

system is given by the strategy pro¯le s(t) ´ [(gi(t); ai(t))]ni=1 specifying the

action played, and links established, by each player i 2 N: At every period t,
there is a positive independent probability p 2 (0; 1) that any given individual
gets a chance to revise her strategy.13 If she receives this opportunity, we

assume that she selects a new strategy

si(t) 2 arg max
si2Si

¦i(si; s¡i(t¡ 1)): (5)

That is, she selects a best response to what other players chose in the pre-

ceding period. If there are several strategies that ful¯ll (5), then any one

of them is taken to be selected with, say, equal probability. This strategy

13This formulation may be interpreted as saying that, with some positive probability, a
player dies and is replaced by another player.
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revision process de¯nes a simple Markov chain on S ´ S1 £ :::£ Sn: In our
setting, which will be seen to display multiple strict equilibria, there are sev-

eral absorbing states of the Markov chain.14 This motivates the examination

of the relative robustness of each of them.

To do so, we rely on the approach proposed by Kandori, Mailath and Rob

(1993), and Young (1993). We suppose that, occasionally, players make

mistakes, experiment, or simply disregard payo® considerations in choosing

their strategies. Speci¯cally, we assume that, conditional on receiving a

revision opportunity, a player chooses her strategy at random with some

small \mutation" probability ² > 0. For any ² > 0, the process de¯nes a

Markov chain that is aperiodic and irreducible and, therefore, has a unique

invariant probability distribution. Let us denote this distribution by ¹². We

analyze the form of ¹² as the probability of mistakes becomes very small,

i.e. formally, as ² converges to zero. De¯ne lim²!0 ¹² = ¹̂. When a state

s = (s1; s2; : : : ; sn) has ¹̂(s) > 0, i.e. it is in the support of ¹̂, we say that

it is stochastically stable. Intuitively, this re°ects the idea that, even for

in¯nitesimal mutation probability (and independently of initial conditions),

this state materializes a signi¯cant fraction of time in the long run.

3 DIRECT LINKS

This section provides an analysis of the model in which two players can

undertake a transaction only if they have a direct link between them. We

¯rst characterize the Nash equilibrium of the social game. We then provide a

complete characterization of the set of stochastically stable social outcomes.

14We note that the set of absorbing states of the Markov chain coincides with the set of
strict Nash equilibria of the one-shot game.
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3.1 Equilibrium outcomes

Let s¤ = [(g¤i ; a
¤
i )]

n
i=1 be a Nash equilibrium of the population game described

and denote by g¤ ´ (g¤i )ni=1 the corresponding equilibrium network.15

Our ¯rst result concerns the nature of networks that arise in equilibria. If

costs of link formation are low (c < e), then a player has an incentive to link

up with other players irrespective of the actions the other players are choos-

ing. On the other hand, when costs are quite high (speci¯cally, b < c < d)

then everyone who is linked must be choosing the e±cient action. This, how-

ever, implies that it is attractive to form a link with every other player and

we get the complete network again. Thus, for relatively low and high costs,

we should expect to see the complete network. In contrast, if costs are at an

intermediate level (f < c < b) a richer set of con¯gurations is possible. On

the one hand, since c > f(> e); the link formation is only worthwhile if other

players are choosing the same action. On the other hand, since c < b(< d);

coordinating at either of the two equilibria (in the underlying coordination

game) is better than not playing the game at all. This allows for networks

with two disconnected components in equilibria. These considerations un-

derlie the following result.

Proposition 1 Suppose (1 and (2) hold. (a) If c < minff; bg; then an equi-
librium network is complete. (b) If f < c < b; then an equilibrium network

is either complete or can be partitioned into two complete components.16 (c)

If b < c < d; then an equilibrium network is either empty or complete. (d) If

c > d; then the unique equilibrium network is empty.

15The fact that links are costly immediately implies the absence of super°uous links,
i.e. if g¤

i;j = 1 then g¤
j;i = 0.

16Our parameter conditions allow both f < b and b < f: If the latter inequality holds,
Part (b) of Proposition 1 (and also that of Proposition 2 below) applies trivially.
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The proofs of Propositions 1 and 2 are given in Appendix A. We now char-

acterize the Nash equilibria of the static game. First, we introduce some

convenient notation. On the one hand, recall that ge denotes the empty

network characterized by geij = 0 for all i; j 2 N (i 6= j): We shall say

that a network g is essential if gijgji = 0, for every pair of players i and

j . Also let Gc ´ fg : 8i; j 2 N; ¹gij = 1; gijgji = 0g stand for the set
of complete and essential networks on the set N: Analogously, for any given

subsetM ½N; denote by Gc(M ) the set of complete and essential subgraphs
on M: Given any state s 2 S; we shall say that s = (g; a) 2 Sh for some

h 2 f®; ¯g if g 2 Gc and ai = h for all i 2 N: More generally, we shall

write s = (g; a) 2 S®¯ if there exists a partition of the population into two
subgroups, N® and N ¯ (one of them possibly empty), and corresponding

components of g; ga and g¯ ; such that: (i) ga 2 Gc(N®); g¯ 2 Gc(N¯); and

(ii) 8i 2 N ®; ai = ®; 8i 2 N¯, ai = ¯:With this notation in hand, we may

state the following result.

Proposition 2 Suppose (1) and (2) hold. (a) If c < minff; bg; then the set
of equilibrium states S¤ = S®[S¯ . (b) If f < c < b; then S®[S¯ ½ S¤ ½ S®¯;

the ¯rst inclusion being strict for large enough n: (c) If b < c < d; then

S¤ = S® [ f(ge; (¯; ¯; :::; ¯))g. (d) If c > d; then S¤ = fgeg £ An.

Parts (a) and (c) are intuitive; we elaborate on the coexistence equilibrium

identi¯ed in part (b). In these equilibria, there are two unconnected groups,

with each group following a single action. The strategic stability of this

con¯guration rests on the appeal of `passive' links. A link such as gij = 1

is paid for by player i, but both players i and j derive payo®s from it. We

refer to gij as an active link for player i and a passive link for player j.

In the mixed equilibrium con¯guration the links in each group are evenly

distributed. This means that players enjoy the bene¯ts of passive links. If a

player were to switch actions, then to derive the full bene¯ts of this switch,
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she would have to form (active) links with everyone in the new group. This

lowers the incentives to switch. These incentives are decisive if the relative

number of passive links is large enough (hence the requirement of large n.)

The above result indicates that, whenever the cost of links is not excessively

high (i.e. not above the maximum payo® attainable in the game), Nash

equilibrium conditions allow for a genuine outcome multiplicity. For exam-

ple, under the parameter con¯gurations allowed in Parts (a) and (c), this

multiplicity permits alternative states where either of the two actions is ho-

mogeneously chosen by the whole population. Under the conditions of Part

(b), the multiplicity allows for a wide range of possible states where neither

action homogeneity nor full connectedness necessarily prevails. Therefore,

the model raises a fundamental issue of equilibrium selection.17

3.2 Dynamics

This section resolves the problem of equilibrium selection using the tech-

niques of stochastic stability. As a ¯rst step in this analysis, we establish

convergence of the unperturbed dynamics. Let ¹S denote the set of absorbing

states of this dynamics. Given the de¯nition of the adjustment process, it

follows that there is an one-to-one correspondence between ¹S and the class

of strict Nash equilibria of the social game which are characterized in Propo-

sition 2. If c < b; all Nash equilibria are strict, while if b < c < d; only the

Nash equilibria in S® are strict. Finally, if c > d; no strict Nash equilibria

exist. In the next result, therefore, we focus on the case where c < d.

Proposition 3 Suppose (1) and (2) hold and c < d. Then, starting from any

initial strategy con¯guration, the best response dynamics converges, almost

surely, to a strict Nash equilibrium of the social game.

17We note that the equilibria identī ed in parts (a)-(b) and those in S® are also strict
equilibria.
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The proof of the above result is given in Appendix A. This result delimits

the set of states that can potentially be stochastically stable since, obviously,

every such state must be a limit point for the unperturbed dynamics. Let the

set of stochastically stable states be given by Ŝ ´ fs 2 S : ¹̂(s) > 0g. The
following result summarizes our analysis of the dynamics in the direct-link

model.

Theorem 4 Suppose (1) and (2) hold. There exists some ¹c 2 (e; b) such

that if c < ¹c then Ŝ = S¯ while if ¹c < c < d then Ŝ = S®; provided n is large

enough.18 Finally, if c > d then Ŝ = fgeg £ An.

In order to determine the support of the limit distribution ¹̂, we use the well-

known graph-theoretic techniques developed by Freidlin and Wentzell (1984)

for the analysis of perturbed Markov chains, as applied by the aforementioned

authors (Kandori et al. and Young) and later simpli¯ed by Kandori and Rob

(1995). They can be summarized as follows. Fix some state s 2 ¹S. An s-tree

is a directed graph on ¹S whose root is s and such that there is a unique

(directed) path joining any other s0 2 ¹S to s: For each arrow s0 ! s00 in

any given s-tree, a \cost" is de¯ned as the minimum number of simultaneous

mutations that are required for the transition from s0 to s00 to be feasible

through the ensuing operation of the unperturbed dynamics alone. The cost

of the tree is obtained by adding up the costs associated with all the arrows

of a particular s-tree. The stochastic potential of s is de¯ned as the minimum

cost across all s-trees. Then, a state s 2 ¹S is found to be stochastically stable

if it has the lowest stochastic potential across all s 2 ¹S.

In our framework, individual strategy involves both link formation and ac-

tion choice in games with linked individuals. This richness in the strategy

18The proviso on n is simply required to deal with possible integer problems when
studying the number of mutations required for the various transitions.
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space leads to a corresponding variety in the nature of (strict) Nash equilib-

ria of the social game. There are two facets of this variety: one, we obtain

three di®erent types of equilibria in terms of action con¯guration , S®, S¯

and S®¯ ; and two, there are a large number of strategy pro l̄es that sup-

port the equilibrium network con¯gurations. For example, in a game with

10 players, there are 245 di®erent (links) strategy pro l̄es that can support

a complete network. This proliferation of equilibria necessitates the devel-

opment of speci¯c arguments to asses the stochastic potential of di®erent

equilibrium pro l̄es.

The ¯rst step in the analysis is concerned with establishing a simple re-

lationship between the strategy pro¯les within the sets Sh, for h = ®;¯.

Speci¯cally, we show that states in each of these sets can be connected

by a chain of single-mutation steps, each such step followed by a suitable

operation of the best-response dynamics. To state this result precisely, it

is convenient to introduce the metric d(¢) on the space of networks that,
for each pair of networks g and g0, has their respective distance given by

d(g; g0) = d(g0; g) ´ P
i;j jgi;j ¡ g0i;jj=2. In words, this distance is simply a

measure of the number of links that are di®erent across the two networks.

With this metric in place, we have the following Lemma.

Lemma 5 For each s 2 Sh, h = ®; ¯; there exists an s-tree restricted to Sh
such that for all arrows s0 ! s00 in it, d(g0; g00) = 1; where g 0 and g00 are the

networks respectively associated to s0 and s00.

The proof of this lemma is given in Appendix A. This lemma implies that,

provided Sh ½ ¹S; the (restricted) tree established by Lemma 5 for any s 2 Sh
involves the minimum possible cost

¯̄
Sh

¯̄
¡1: This Lemma also indicates that,

in the language of Samuelson (1994), S® (if c < d) and also S¯ (if c < b) are

recurrent sets. This allows each of them to be treated as a single \entity"

in the following two complementary senses: (i) if any state in one of these
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recurrent sets is stochastically stable, so is every other state in this same

set; (ii) in evaluating the minimum cost involved in a transition to, or away

from, any given state in a recurrent set, the sole relevant issue concerns the

minimum cost associated to a transition to, or away from, some state in

that recurrent set. Using (i)-(ii), the analysis of the model can be greatly

simpli¯ed. To organize matters, it is useful to consider the di®erent range of

c separately.

Let us start with the case where 0 < c < e. In this range, Proposition 3 tells

us that the set of absorbing states S¤ = S® [ S¯ . Since, by Lemma 5, the
sets S® and S¯ are each recurrent, the crucial point here is to assess what is

the minimum mutation cost across all path joining some state in Sh to some

state in Sh
0
for each h; h0 = ®; ¯; h 6= h0: Denote these mutation costs by

mhh0; (which are integer numbers).

Lemma 6 Suppose that 0 < c < e. Then m¯® > m®¯; for large enough n.

The proof, given in Appendix A, re°ects the standard considerations arising

in much of the recent evolutionary theory when the ¯xed pattern of inter-

action involves every individual of the population playing with all others.

Now, if costs are low (c < e); such full connectivity is not just assumed but

it endogenously follows from players' own decisions, both at equilibrium (i.e.

when the unperturbed best-response dynamics is at a rest-point) and away

from it. In e®ect, this implies that the same basin-of-attraction considera-

tions that privilege risk-dominance in the received approach also select for it

in the present case.

We next examine the case where e < c < minff; bg. From Proposition 3, we
have that ¹S = S® [ S¯. If e < c < minff; bg then players who choose action
® no longer ¯nd it attractive to form links with other players who choose

action ¯. This factor plays a crucial role in the analysis. The following result

derives the relative magnitude of the minimum mutation costs.
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Lemma 7 Suppose e < c <minff; bg. There is a ~c; e < ~c � minff; bg; such
that if c < ~c; then m¯® ¡m®¯ > 0, while if c > ~c; then m¯® ¡m®¯ < 0, for

large enough n.

The methods used to prove this lemma are quite general; we use them in

the proofs of Theorem 4 as well as in Theorem 14. It is therefore useful to

provide them in the text.

Proof of Lemma 7: Let s® and s¯ be generic states in S® and S¯ , respec-

tively.

Step 1: Consider transitions from state s¯ to state s® and let k be the number

of mutations triggering it. If this transition is to take place after those many

mutations, there must be some player currently choosing ¯ (i.e. who has

not mutated) that may then voluntarily switch to ®. Denote by qh the

number of active links this player chooses to support to players choosing h

(h = ®; ¯) and let rh stand for the number of passive links she receives from

players choosing h (h = ®; ¯): If she chooses ®; her payo® is given by:

¼® = r
®d+ r¯e + q®(d ¡ c); (6)

where we implicitly use the fact that q¯ must equal zero { since c > e;

an agent who switches to ® will not ¯nd it worthwhile to support any link

to players choosing ¯: On the other hand, if the agent in question were to

continue adopting ¯; her payo® would be equal to:

¼¯ = r̂
®f + r̂¯b + q̂®(f ¡ c) + q̂¯(b¡ c); (7)

where q̂h and r̂h are interpreted as the active and passive links that would be

chosen by the player if she decided to adopt ¯: Clearly, we must have rh = r̂h

for each h = ®; ¯: Thus, if a switch to ® is to take place, it must be that

¼® ¡ ¼¯ = (r®+ q®)d ¡ (r®+ q̂®)f ¡ r¯(b¡ e) ¡ q̂¯(b¡ c) ¸ 0: (8)
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Note that r®+ q® = k, since c < d and therefore the player who switches to

® will want to be linked (either passively or by supporting herself a link) to

all other players choosing ®; i.e. to the total number k of ®-mutants. On the

other hand, since c <minff; bg; we must also have that r̂¯ + q̂¯ = n¡ k ¡ 1
and r®+ q̂® = r̂®+ q̂® = k, i.e. the player who chooses ¯ must become linked

to all other players, both those choosing ¯ and those choosing ®:

We now ask the following question: What is the lowest value of k consistent

with (8)? Since c > e; the desired payo® advantage of action ® will occur for

the lowest value of k when r¯ = r̂¯ = 0 and therefore q̂¯ = n¡k¡ 1. That is,
if the desired transition is to take place, the necessary condition (8) holds for

the minimum number of required mutations when the arbitrary agent that

must start the transition has no passive links to individuals choosing action

¯: Recall that m¯® stands for the minimum number of mutations required

for the transition. Now introducing the above observations in (8), we obtain

the following lower bound

m¯® ¸ b¡ c
(d ¡ f) + (b¡ c) (n¡ 1) ´ H: (9)

The above expression gives the minimum number of players choosing ® that

are needed to induce some player to switch to action ® across all possible

network structures. Next, we argue that this number of mutations is also

su±cient to induce a transition from some s¯ to some s®. The proof is

constructive. The main idea is to consider a particular state s¯ where its

corresponding (complete) network displays the maximal responsiveness to

some suitably chosen mutations. Using the observations on the distribution

of active and passive links, this occurs when there are some players who

support links to all others { those are, of course, players with a \critical"

role whose mutation would be most e®ective. Speci¯cally, suppose that the

network prevailing in s¯ has every player i = 1; 2; :::; n support active links
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to all j > i. (This means, for example, that player 1 supports links to every

other player whereas player n only has passive links.) Then, denoting by

dze the smallest integer no smaller than z; the most mutation-e®ective way
of inducing the population to switch actions from ¯ to ® is precisely by

having the players ` = 1; 2; :::; dHe simultaneously mutate to action ® and
maintain all their links. Thereafter, a transition to some state s® will occur

if subsequent strategy revision opportunities are appropriately sequenced so

that every player with index j = dHe+1; :::; n is given a revision opportunity
in order. This, in e®ect, shows that the lower bound in (9) is tight and

m¯® = dHe:

Step 2: Consider next the transition from some state s® to a state s¯ and let

again k be the number of mutations (now towards ¯) triggering it. Using

arguments from part (1) above, it is easy to show that m®¯; must satisfy:

m®¯ ¸ d¡ f
(d ¡ f) + (b¡ e) (n¡ 1) ´ H 0: (10)

We can use arguments from part (1) to also show that dH 0e is su±cient.
Step 3: Finally, we wish to study the di®erencem¯®¡m®¯ as a function of c:

For low c (close to e), and large n, this di®erence is clearly positive in view

of the hypothesis that b¡ e > d ¡ f . Next, to verify that it switches strict
sign at most once in the range c 2 (e;minff; bg); note that H¡H 0 is strictly

declining with respect to c in the interval (e;minff; bg). 2

Lemma 7 applies both to the case where b < f and that where b > f:

Suppose ¯rst that b < f: Then, since ¢(b) < 0; a direct combination of

former considerations leads to the desired conclusion for the parameter range

c 2 (e; b]: We now take up the case f < b and focus on the range c 2 (f; b).
We ¯rst derive the relative magnitude of the minimum mutation costs for

s 2 Sh, where h = f®; ¯g.
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Lemma 8 Suppose f < c < b. There is a threshold �c 2 [f; b) such that if

c < �c then m¯® ¡ m®¯ > 0, while if c > ~c then m¯® ¡m®¯ < 0, for large

enough n.

The arguments needed to establish this result are very similar to those used

in the proof of Lemma 7; we provide the computations in Appendix A.

The principal complication in case c 2 [f; b) is that the set of absorbing

states in not restricted to S® [ S¯ but will generally include mixed states
where the population is segmented into two di®erent action components (cf.

Propositions 2 and 3). Let mh;®¯, for h = ®; ¯, denote the minimum number

of mutations needed to ensure a transition from some s 2 Sh to some s 2 S®¯.
The ¯rst point to note is that by the construction in Lemma 7, m®;®¯ ¸ m®¯.

Similarly, m¯;®¯ ¸ m¯®. The following lemma characterizes the process of

transiting from some s 2 S®¯ to a state in Sh for h = ®; ¯.

Lemma 9 Let f < c < b and consider any equilibrium state s 2 S®¯ involv-
ing two non-degenerate (® and ¯) components, g® and g¯ , with cardinalities

j A(s) j> 0 and j B(s) j> 0, respectively. Then, there is another equilibrium
state s0 with cardinality for the resulting ® component jA(s0)j ¸ jA(s)j+ 1
that can be reached from s by a suitable single mutation followed by the best-

response dynamics. An identical conclusion applies to some equilibrium state

s00 with j A(s00) j�j A(s) j ¡1.

The proof of this Lemma is given in Appendix A. We brie°y sketch the

argument here. Fix some mixed state, and suppose the strategy of some

player i 2 A(s) mutates as follows: she switches to action ¯, while everything
else remains as before. Now, have all the players in the ® group move; suppose

that they wish to keep playing action ®. Since c < f, their best response is to

delete their links with player i. Next, have all the players in group ¯ move;

their best response is to form a link with player i. This is true since the
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original state was an equilibrium, and c < b. Finally, have player i choose a

best response; since the original state was an equilibrium and c > f, her best

response is to play action ¯ and delete all links with players in the ® group.

We have thus increased the number of ¯ players with a single mutation. This

argument extends in a natural manner to prove the above result. We now

have all the information to complete the proof of the Theorem.

Proof of Theorem 3.1: Take any such state s 2 Sh for some h = ®;¯:

With the help of Lemmas 5 and 9 we can infer that the minimum-cost s-

tree for s 2 S® will have the following cost: m¯® + jS®j+
¯̄
S¯

¯̄
+

¯̄
S®¯

¯̄
¡ 2:

For any s0 2 S¯; the situation is symmetric, the minimum cost being equal
to m®¯ + jS®j +

¯̄
S¯

¯̄
+

¯̄
S®¯

¯̄
¡ 2: We also note that for any s 2 S®¯ , the

corresponding s-tree would have to display a path joining some state in S®

to s and some path joining some state in S¯ to s: Proceeding as above, the

minimum cost of such an s-tree will be at least m®¯ +m¯® + jS®j+
¯̄
S¯

¯̄
+¯̄

¯ ~S®¯
¯̄
¯ ¡ 1. This expression is greater than the mutation costs for s 2 Sh,

for h = ®; ¯, since each mhh
0
> 1 if the population is large. We therefore

conclude that a state s 2 S®¯ cannot be stochastically stable. Finally, in

comparing the stochastic potential of any s 2 S® to that of s 2 S¯ ; the key
issue concerns the comparison of m®¯ versus m¯®: If c < b, then the proof

now follows from this observation and the computations reported in Lemmas

6-8.

If b < c < d the key point to observe is that the set of strict Nash equilibria

and hence the set of absorbing states is simply ¹S = S®. Similar considerations

apply to the case where c > d; in which case Propositions 2 and 3 establish

that ¹S = fgeg £ An: 2
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4 INDIRECT LINKS

In this section, we turn to the context where each player interacts with all

players to whom she is joined by a path in the network. As for the direct-link

scenario, we ¯rst characterize the Nash equilibria of the social game and then

provide a complete characterization of the set of stochastically stable states.

4.1 Equilibrium outcomes

Our ¯rst result, whose proof is provided in Appendix B, derives some basic

properties of equilibrium networks and actions.

Proposition 10 Suppose (1 and (3) hold. Then; any equilibrium network

is either minimally connected or empty. Furthermore, if the equilibrium net-

work is connected, everyone chooses the same action and social conformism

obtains.

Thus, when any pair of indirectly linked agents play the game, the social

disconnectedness and heterogeneity allowed in the direct-link model is no

longer possible: at equilibrium, any non-empty equilibrium network must

now be connected (i.e. de¯ne a single component), every player then choosing

the same action.

Equilibrium already impose some obvious, but nevertheless interesting,

condition on associated networks, i.e. they must beminimal (or non-redundant).

This minimal connectivity, however, is too permissive a requirement and al-

lows for a wide range of network architectures. This motivates imposing the

requirement of strictness on Nash equilibria, a condition which was obtained

\for free" in the direct-link model when the social network is non-empty.

Of course, a further justi¯cation for our interest in strict Nash equilibria is

that, in view of the adjustment (best-response) mechanism postulated, all of
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the rest points of the unperturbed dynamics must correspond to Strict Nash

equilibria of the social game.

The following proposition, proven in Appendix B, provides a characteri-

zation of strict Nash architectures.

Proposition 11 Suppose (1 and (3) hold. Then, a strict Nash network is

either empty or a center-sponsored star.

To gain some intuition on the above result, consider any Nash equilibrium

network (minimally connected, by virtue of Proposition 10) that is not a

center-sponsored star. { recall that a center-sponsored star is a network in

which a single agent supports a link with every other player. Then, there

has to be a player i who forms a link with some player j; the latter in turn

being linked to some third player k 6= i: To see that the underlying strategy
con¯guration cannot de¯ne a Strict Nash equilibrium, simply note that player

i can interchange her link with player j for a link with player k and still get

the same payo®s. Of course, the only kind of network which is immune to

this problem is one in which a single player supports all existing links. A

center-sponsored star, in other words, is the only candidate for a strict Nash

networks.

The above result on strict Nash networks helps us achieve a full char-

acterization of strict Nash equilibria for di®erent values of c; as established

by the following result. Let Gcs stand for the collection of networks that

de¯ne a center-sponsored star. Furthermore, denote ~S® ´ Gcs£f®; ::®g and
~S¯ ´ Gcs £ f¯; ::¯g; whereas S¤¤ represents the set of strict Nash equilibria.
Then, we have the following result, whose proof is found in Appendix B.

Proposition 12 Suppose (1 and (3) hold: (a) if 0 < c < b; S¤¤ = ~S® [ ~S¯ ;

(b) if b < c < d, S¤¤ = ~S®; (c) if c > d, there is no strict Nash equilibrium.
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The above result parallels for the present context the characterization

provided by Proposition 2 for the direct-link scenario. The underlying intu-

ition is somewhat akin to that discussed for that scenario, but also displays

important di®erences. One of them is that, since all equilibrium networks

must presently be connected (cf. Proposition 10), co-existence of the two

actions, ® and ¯; is ruled out at any equilibrium con¯guration. A second

interesting di®erence is that the requirement of strictness amounts here to a

genuine re¯nement criterion (i.e. many Nash equilibria are not strict), even

when c < b:

4.2 Dynamics

We now examine the dynamic properties of the di®erent equilibrium out-

comes. We start by studying the (unperturbed) best response dynamics in

the extended model. The following result summarizes our analysis.

Proposition 13 Suppose (1 and (3) hold. If c < d, the best response dynam-

ics converges, almost surely, to one of the states identi¯ed in parts (a)-(b)

of Proposition 12. If c > d, the best response dynamics converges to the set

fgeg £ An.

The proof of the above result follows from suitable adaptations of ar-

guments used in Bala and Goyal (2000) for the present strategic context.

Thus, since they are long and involved, we dispense with them here. In

essence, it involves four steps, each of them establishing that the following

corresponding transitions have positive probability:

(i) from any given state to one that is minimally connected;

(ii) if c < d; from a minimally connected state to one where every two

players are \agglomerated" in the following sense: every two players have a

path no longer than two links which joins them;
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(iii) if c < d; from an agglomerated state, as described above, to a center-

sponsored star where every agent plays the same action;

(iv) if c > d; from a minimally connected state to the empty network.

Proposition 13 establishes that the unperturbed dynamics converges a.s.

to one of strict Nash equilibria identi¯ed in Proposition 12. This, of course,

still leaves us with the need to tackle the essential multiplicity arising when

c < d: Again, we shall approach the issue by perturbing the dynamics with

small and independent mutation rates (recall Subsection 2.3), then focusing

on the induced stochastically stable states. As before, the set of these states

will be denoted by Ŝ:

Theorem 14 Suppose (1 and (3) hold. There exists some ¹c 2 (e; b) such

that if c < ¹c then Ŝ = ~S¯, while if ¹c < c < d then Ŝ = ~S®; provided n is large

enough. Finally, if c > d then Ŝ = fgeg £ An.

Concerning the long-run actions selected, this result is analogous to The-

orem 4 for the direct-link scenario. That is, there is a certain threshold ¹c

(higher than the minimum payo® e but still lower than the minimum equilib-

rium payo® b) which separates the regions where the ine±cient and e±cient

equilibrium actions are selected. However, pertaining to the associated net-

works, we ¯nd the interesting contrast between the two contexts that was

already anticipated by our former preparatory analysis: if indirect links are

allowed, a center-sponsored star is the only robust architecture that supports

the full connectivity required when c < d:

Our proof of Theorem 14 closely mimics the steps undertaken in proving

Theorem 4. First, we note that, in view of Proposition 13, only the states

in ~S® (if c < d) and also those in S¯ (if c < b).are possible candidates

for stochastic stability. Furthermore, it is easy to see that, as with their

counterparts S® and S¯ in the direct-link context, each of these two sets are

recurrent in each case (recall Lemma 5 and its ensuing discussion).
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To verify the latter claim, assume for concreteness that c < b and consider

any two states s; s0 2 ~Sh (h = ®; ¯): We argue that a transition from s to

s0 can be triggered by a single mutation followed by the operation of the

unperturbed dynamics. Speci¯cally, let i and j be the two central players

in the center-sponsored stars de¯ned by s and s0, respectively. Then, if the

central player imutates at s and removes all her links (still keeping her former

action), a transition to s0 will materialize provided that, subsequently, player

j alone is given a revision opportunity.

As explained, the fact that ~S® and ~S¯ are recurrent states (provided c < d

or c < b; respectively) simpli¯es the analysis substantially. Consider ¯rst the

case where b < c < d: Then, we know from Proposition 13 that Ŝ ½ ~S® and,

consequently, since ~S® is recurrent, Ŝ = ~S®. On the other hand, if c < b

(and therefore c < d as well), we have Ŝ ½ ~S®[ ~S¯ and the conclusion hinges
upon the minimum number of mutations needed to implement the transitions

from some state s 2 ~Sh (h = ®; ¯) to some other state s0 2 ~Sh
0
(h 6= h0). In

analogy with previous notation, denote by ~mhh
0
such a minimum number of

mutations. Then, the recurrent set ~Sh selected (i.e. Ŝ = ~Sh) is that one for

which ~mhh0 > ~mh0h.

Now, we compute ~mhh0 (h; h0 = ®; ¯; h 6= h0) for di®erent subranges of c
in the interval (0; b): As direct counterparts of the corresponding results es-

tablished for the direct-link scenario, we have the following Lemmata, whose

proofs may be found in Appendix B (recall that dze denotes the smallest
integer no smaller than z):

Lemma 15 Suppose that 0 < c < e. Then,

~m¯® =

»
b¡ e

(d ¡ f) + (b ¡ e)(n¡ 1)
¼

~m®¯ =

»
d ¡ f

(d¡ f) + (b¡ e) (n¡ 1)
¼
:
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Lemma 16 Suppose e � c � minff; bg. Then,

~m¯® =

»
b ¡ c

(d ¡ f) + (b¡ c) (n¡ 1)
¼

~m®¯ =

»
d ¡ f

(d¡ f) + (b¡ e) (n¡ 1)
¼
:

Lemma 17 Suppose f � c � b. Then,

~m¯® =

»
b ¡ c

(d ¡ f) + (b¡ c) (n¡ 1)
¼

~m®¯ =

»
d ¡ c

(d¡ c) + (b¡ e) (n¡ 1)
¼
:

In view of Lemmas 15-17, the proof of Theorem 14 then follows from

the observation that, for all c 2 (0; b), the minimum number of mutations

required to make the transition from ~Sh to ~Sh
0
(h; h0 = ®; ¯; h 6= h0) in the

present indirect-link model is exactly the same as that required to make the

transition from Sh to Sh
0
in the former direct-link model. Thus, ~mhh

0
= mhh

0

for any c in each of the three considered subranges, which leads to the desired

conclusions by relying on the same arguments as for Theorem 4.

5 CONCLUDING REMARKS

In many economic and social contexts, individuals can interact (e.g. under-

take a transaction) only if they are `linked' or related to each other. It is

therefore natural to postulate that individual players invest e®ort and re-

sources in forming links with others, their link decisions then de¯ning the

network of social interaction. In this paper, we have studied the nature of

networks that form and the e®ects of link formation on social coordination.
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We start with a basic model in which two players can interact, or play a game,

only if they have a direct link between them. We then consider a variation

of it where two players can play the game if they are directly or indirectly

linked. Our results show that, in both settings, equilibrium networks have

simple architectures. In the former model the unique equilibrium architecture

is the complete network, while in the latter model, the unique equilibrium

architecture is a star. We show that network formation is intimately re-

lated to equilibrium selection in both settings: at low costs of forming links,

individuals coordinate on the risk-dominant action, while for high costs of

forming links individuals coordinate on the e±cient action. Thus in each of

these settings, while the network architecture remains the same, the nature

of coordination varies with the cost of forming links. These results suggest

that the process of network formation per se has powerful implications for

the nature of social coordination.

An important aspect of our model is that link formation is one-sided. This

formulation has the advantage that it allows us to study the social process of

link formation and coordination as a non-cooperative game. In some settings,

it is perhaps more natural to think of link formation as a two-sided process,

i.e. any link being formed leads to both of the players involved incurring

some costs. Naturally, this must have as well both players acquiesce in the

formation of the link.

In independent work, Jackson andWatts (1999) study such a two-sided model

with direct links, i.e. they focus on the case where two players can play a

game only if they are directly connected. They ¯nd, just like us, that the

equilibrium network is complete. However their results on social coordination

are quite di®erent. For instance, they ¯nd that, if the costs of link formation

are high, both classes of states where players choose a common action are

stochastically stable. In contrast, we have found that, when the costs are high
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(but below the maximum achievable payo®), the only stable states involve

players choosing the e±cient action. This di®erence arises out of di®erences

in the way we model the link formation process as well as the accompanying

assumptions on the timing of moves. Speci¯cally, Jackson and Watts postu-

late that individuals choose links and actions separately, i.e., players choose

links taking actions as given while they choose actions taking the links as

a given. By contrast, in our setting, any individual undertaking a revision

is allowed to impinge on every dimension of her choice and change both her

action and her supported links. This suggests that it should be interesting to

study the e®ects of varying levels of °exibility in the two choice dimensions,

links and actions{ for example, it seems natural to allow for the possibility

that link revision be more rigid than action change, or even vice versa.

Another possible route of generalization of the present framework pertains to

the nature and implications of links. Our analysis has examined the two polar

cases with regard to the value of indirect links: either only directly linked

players can interact (and indirect links are irrelevant), or indirect links are

as good as direct links, irrespective of the length of the path between the

players. In the future, we would like to examine a more general formulation

which allows for `distant' links to be less valuable (e.g. depreciate at a given

rate) as compared to `near by' links.

Finally, an additional interesting issue concerns the number of links allowed

or, relatedly, the shape (e.g. concavity or convexity) of the underlying cost

function. In our model, we have imposed no limit on the number of links a

player can support and the marginal cost of any additional link has been as-

sumed constant. However, it seems interesting to contemplate the possibility

that players might be constrained in the number of links they can support.

This could be imposed directly on the model (by establishing a ¯xed upper
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bound) or indirectly derived from a su±ciently convex cost function. In ei-

ther case, one may conjecture that it might have important e®ects on some

aspects of the model. For example, it could destroy the full connectivity

of stochastically stable states by creating disjoint components (\islands") of

players. Building upon insights gleaned from existing evolutionary literature

(recall the Introduction), this should in turn have signi¯cant implications in

at least two respects. On the one hand, it should favor the long-run selection

of e±ciency by allowing the creation of isolated havens or beachheads, from

which e±cient behavior can spread throughout the whole population. On the

other hand, it should also speed up convergence to the long-run (stochasti-

cally stable) states by dispensing with the need of resorting to a large number

of simultaneous mutations to trigger the required transitions.

6 APPENDIX A

Proof of Proposition 1: The proof of part (a) follows directly from the

fact that c < f and is omitted. We provide a proof of part (b). In this

case f < c < b. We ¯rst show that ai = aj = a, if i; j belong to the

same component. Suppose not. If ¹gij = 1, then it follows that the player

forming a link can pro¯tably deviate by deleting the link, since c > f. Similar

arguments apply if i and j are indirectly connected. We next show that if

i 2 g0 and j 2 g00, where g0 and g00 are two components in an equilibrium

network g, then ai 6= aj. If ai = aj then the minimum payo® to i from playing
the coordination game with j is b. Since c < b, player i gains by forming

a link gij = 1. Thus g is not an equilibrium network. The ¯nal step is to

note that since there are only two actions in the coordination game, there

can be at most two distinct components. We note that the completeness of

each component follows from the assumption that c < b.

We next prove part (c). There are two subcases to consider: c > maxfb; fg or
b < c < f: (Note, of course, that the former subcase is the only one possible if
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b > f:) Suppose ¯rst that c > maxfb; fg, and let g be an equilibrium network
which is non-empty but also incomplete. from above arguments in (b) it

follows that if ¹gi;j = 1; then ai = aj = ®. Moreover, if aj = ¯; then player

j can have no links in the network. (These observations follow directly from

the hypothesis that c > maxfb; fg.) However, since g is assumed incomplete,
there must exist a pair of agents i and j such that gij = 0. First, suppose

that ai = aj = ®. Then, since c < d; it is clearly pro¯table for either of the

two players to deviate and form a link with the other player. Suppose next

that ai = aj = ¯. Then, players i and j can have no links and, furthermore,

since g is non-empty, there must be at least two other players k; l 2 N such

that ak = al = ®. But then player i can increase her payo® by choosing

action ® and linking to player k. Finally, consider the case where ai 6= aj
and let player i choose ¯. Then, if this player deviates to action ® and forms

a link with player j she increases her payo® strictly. We have thus shown

that gij = 0 cannot be part of an equilibrium network. This proves that a

non-empty but incomplete network cannot be an equilibrium network in the

¯rst subcase considered.

Consider now the case b < c < f and suppose, for the sake of contradiction,

that g is an equilibrium network which is non-empty but incomplete. Since

b < c < d, it follows directly that not every player chooses action ® or

¯. Moreover, in the mixed con¯guration, all the players who choose ® are

directly linked (since c < d), there is a link between every pair of players who

choose dissimilar actions (since c < f), but there are no links between players

choosing ¯ (since b < c). But then it follows that every player choosing ¯ can

increase her payo® by switching to action ®. This contradicts the hypothesis

that the mixed con¯guration is an equilibrium. This completes the argument

for part (c).

Part (d) is immediate from the hypothesis that c > d. 2
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Proof of Proposition 2: We start proving Part (a). In view of Part (a)

of Proposition 1 and the fact that the underlying game is of a coordination

type, the inclusion S®[ S¯ ½ S¤ is obvious. To show the converse inclusion,

take any pro¯le s such that the sets A(s) ´ fi 2 N : ai = ®g and B(s) ´
fj 2 N : aj = ¯g are both non-empty. We claim that such an s cannot be

an equilibrium.

Assume, for the sake of contradiction, that such a state s is a Nash equilib-

rium of the game and denote u ´ jA(s)j ; 0 < u < n: Recall from Proposition
1 that every Nash network in this parameter range is complete. This implies

that for any player i 2 A(s); we must have:

(u¡ 1)d + (n¡ u)e ¡ ºd(i; g) ¢ c ¸ (u¡ 1)f + (n¡ u)b¡ ºd(i; g) ¢ c (11)

and for players j 2 B(s) :

(n¡ u ¡ 1)b+ uf ¡ ºd(j ; g) ¢ c ¸ (n¡ u ¡ 1)e+ ud ¡ ºd(j; g) ¢ c: (12)

It is easily veri¯ed that (11) and (12)are incompatible.

Now, we turn to Part (b). The inclusion S® [ S¯ ½ S¤ is trivial, in view of

Part (b) of Proposition 1. To show that the inclusion S¤ ½ S®¯ holds strictly

for large enough n; consider a state s where both A(s) and B(s); de¯ned

as above, are both non-empty and complete components. Speci¯cally, focus

attention on those con¯gurations that are symmetric within each component,

so that every player in A(s) supports u¡1
2
links and every player in B(s)

supports n¡u¡1
2 links. (As before, u stands for the cardinality of A(s) and

we implicitly assume, for simplicity, that u and n¡u are odd numbers.) For
this con¯guration to be a Nash equilibrium, we must have that the players

in A(s) satisfy:

d(u¡ 1) ¡ u ¡ 1
2
c ¸ f

u¡ 1
2

+ b(n¡ u) ¡ c(n¡ u) (13)
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where we use the fact that, in switching to action ¯; any player formerly

in A(s) will have to support herself all links to players in B(s) and will

no longer support any links to other players in A(s) { of course, she still

anticipate playing with those players from A(s) who support links with her.

On the other hand, the counterpart condition for players in B(s) is:

(n¡ u ¡ 1)b¡ n¡ u ¡ 1
2

c ¸ du+ e
n¡ u¡ 1

2
¡ cu (14)

where, in this case, we rely on considerations for players in B(s) that are

analogous to those explained before for players in A(s): Straightforward al-

gebraic manipulations show that (13) is equivalent to:

u

n
¸ 1

n

2d¡ c¡ f
2b+ 2d ¡ 3c¡ f +

2(b¡ c)
2b+ 2d ¡ 3c¡ f (15)

and (14) is equivalent to:

u

n
� 1

n

c+ e ¡ 2b
2b+ 2d ¡ 3c¡ e +

2b¡ c¡ e
2b +2d ¡ 3c¡ e : (16)

We now check that, under the present parameter conditions:

2b¡ c ¡ e
2b+ 2d ¡ 3c¡ e >

2(b¡ c)
2b+ 2d¡ 3c¡ f : (17)

Denote Y ´ 2b¡ c, Z ´ 2b + 2d ¡ 3c, and rewrite the above inequality as
follows:

Y ¡ e
Y ¡ c >

Z ¡ e
Z ¡ f (18)

which is weaker than:
Y ¡ e
Y ¡ f >

Z ¡ e
Z ¡ f (19)

since c > f: The function ³(z) ´ z¡e
z¡f is uniformly decreasing in z since

b > f > e: Therefore; since Y < Z; (19) obtains, which implies (18). Hence
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it follows that, if n is large enough, one can ¯nd suitable values of u such

that (15) and (16) jointly apply. This completes the proof of Part (b).

We now present the proof for part (c). We know from Proposition 1 that

the complete and the empty network are the only two possible equilibrium

networks. Since c > b > f > e, it is immediate that, in the complete network,

every player must choose ® and this is a Nash equilibrium. First note that

for the empty network to be an equilibrium, it should be the case that no

player has an incentive to form a link. This implies that every player chooses

¯. On the other hand, it is easy to see that the empty network with everyone

choosing ¯ is a Nash equilibrium.

The proof of part (d) follows directly from the hypothesis c > maxfd; b; f; eg.
2

Proof of Proposition 3: It is enough to show that, from any given state

!0, there is a ¯nite chain of positive-probability events (bounded above zero,

since the number of states is ¯nite) that lead to a rest point of the best

response dynamics.

Choose one of the two strategies, say ¯; and denote by B(0) the set of

individuals adopting action ¯ at !0. Order these individuals in some pre-

speci¯ed manner and starting with the ¯rst one suppose that they are given in

turn the option to revise their choices (both concerning strategy and links).

If at any given stage ¿ , the player i in question does not want to change

strategies, we set B(¿ + 1) = B(¿ ) and proceed to the next player if some

are still left. If none is left, the ¯rst phase of the procedure stops. On the

other hand, if the player i considered at stage ¿ switches from ¯ to ®; then

we make B(¿ +1) = B(¿ )nfig and, at stage ¿ +1; re-start the process with
the ¯rst-ranked individual in B(¿ + 1); i.e. not with the player following i:

Clearly, this ¯rst phase of the procedure must eventually stop at some ¯nite

¿1.
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Then, consider the players choosing strategy ® at ¿1 and denote this set

by A(¿1) ´ N nB(¿1): Proceed as above with a chain of unilateral revision
opportunities given to players adopting ® in some pre-speci¯ed sequence,

restarting the process when anyone switches from ® to ¯: Again, the second

phase of the procedure ends at some ¯nite ¿2:

By construction, in this second phase, all strategy changes involve an increase

in the number of players adopting ¯, i.e. B(¿2) ¶ B(¿1): Thus, if the network

links a®ecting players in B(¿1) remain unchanged throughout, it is clear that

no player in this set would like to switch to ® if given the opportunity at ¿2+1.

However, in general, their network links will also evolve in this second phase,

because individual players in A(¿1) may form or delete links with players in

B(¿1). In principle, this could alter the situation of individual members of

B(¿1) and provide them with incentives to switch from ¯ to ®. It can be

shown, however, that this is not the case. To show it formally, consider any

given typical individual in B(¿1) and denote by r̂h; h = ®; ¯; the number

of links received (but not supported) by this player from players choosing

action h. On the other hand, denote û ´ jA(¿1)j. Then, since the ¯rst phase
of the procedure stops at ¿1; one must have:

max
q®;q¯

b(q¯ + r̂¯) + f(q® + r̂®) ¡ c(q®+ q¯)

¸ max
q®;q¯

e(q¯ + r̂¯) + d(q®+ r̂®) ¡ c(q®+ q¯)
(20)

for all q®; q¯ such that 0 � q® � û¡r̂®; 0 � q¯ � n¡ û¡1¡ r̂¯ : Now denote
by ~rh and ~u the counterpart of the previous magnitudes (r̂h and û) prevailing

at ¿2: By construction, we have ~u � û; ~r® � r̂®, and ~r¯ ¸ r̂¯ : We note that

~u � û by construction of the process. Next note that if ~r® > r̂® then this

implies that some player who chooses action ® has formed an additional link

with player i in the interval between ¿1 and ¿2. This is only possible if c < e.

It also implies that player i did not have a link with this player at ¿1. This

is only possible if c > f , a contradiction. Thus ~r® � r̂®. Finally note that
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~r¯ ¸ r̂¯ follows from the fact that the all the players choosing ¯ at ¿1 do not

revise their decisions in the interval between ¿1 and ¿2.

Therefore, (20) implies:

max
q®;q¯

b(q¯ + ~r¯) + f(q® + ~r®) ¡ c(q®+ q¯)

¸ max
q®;q¯

e(q¯ + ~r¯) + d(q®+ ~r®) ¡ c(q®+ q¯)

for all q®; q¯ such that 0 � q® � ~u ¡ ~r®; 0 � q¯ � n¡ ~u ¡ 1 ¡ ~r¯ : This

allows us to conclude that the concatenation of the two phases will lead the

process to a rest point of the best response dynamics, as desired. 2

Proof of Lemma 5: The proof is constructive. Let s 2 Sh, h = ®; ¯; and
order in some arbitrary fashion all other states in Shnfsg: Also order in some
discretionary manner all pairs (i; j) 2 P £ P with i 6= j: For the ¯rst state
in Shnfsg; say s1; proceed in the pre-speci¯ed sequence across pairs (i; j)
reversing the links of those of them whose links are di®erent from what they

are in s: This produces a well-de¯ned path joining s1 to s; whose constituent

states de¯ne a set denoted by Q1: Next, consider the highest ranked state in

ShnQ1; say s2: Proceed as before, until state s2 is joined to either state s or a
state already included inQ1. Denote the states included in the corresponding

path by Q2: Clearly, when a stage n is reached such that Shn([n`=1Q`) = ;;
the procedure described has fully constructed the desired s-tree restricted to

Sh: 2

Proof of Lemma 6: Let s® and s¯ be generic states in S® and S¯, respec-

tively. We want to determine the minimum number of mutations needed to

transit across a pair of them in either direction.

(1). First, consider a transition from s¯ to s® and let k be the number of

mutations triggering it. If this transition is to take place via the best-response

dynamics after those many mutations, there must be some player currently
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choosing ¯ (i.e. who has not mutated) that may then voluntarily switch to

®. As before, denote by qh the number of active links this player supports to

players choosing h (h = ®; ¯) and let rh stand for the number of passive links

she receives from players choosing h (h = ®; ¯): The payo® from choosing ®

for that player is given by:

¼® = r
®d+ r¯e + q®(d ¡ c) + q¯(e¡ c): (21)

On the other hand, the payo® to choosing ¯ is given by:

¼¯ = r̂
®f + r̂¯b + q̂®(f ¡ c) + q̂¯(b¡ c); (22)

where q̂h and r̂h have the same interpretation of active and passive links as

before, now associated to the possibility that the player chooses ¯: Clearly,

we have qh = q̂h and rh = r̂h for each h = ®; ¯: Concerning the passive links,

this is immediate; for active links, it follows from the fact that, since c < e;

a player will want to create links to all unconnected players, independently

of what they do. Analogous considerations also ensure that (i). r® + q® = k

and (ii). r¯ + q¯ = n¡ k¡ 1: Thus, in sum, for a transition from some state
in S¯ to a state in S® to be triggered, one must have:

¼® ¡ ¼¯ = (r®+ q®)(d¡ f )¡ (r¯ + q¯)(b¡ e)
= k(d ¡ f) ¡ (n¡ k ¡ 1)(b¡ e) ¸ 0

Let m¯;® stand for the minimum number of mutations which lead to such a

transition. The above considerations imply that

m¯;® ¸ b¡ e
(d¡ f ) + (b¡ e) (n¡ 1); (23)

which gives us the minimum number of mutations that are necessary for a

transition from any state s¯ to some s®. However, denote by dze the smallest
integer no smaller than z and suppose that the strategies of d b¡e

(d¡f)+(b¡e)(n¡
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1)e players undergo a simultaneous mutation from any particular state s¯

(i.e. these players maintain their links but switch from ¯ to ®). Thereafter,

the repeated operation of the best-response dynamics is su±cient to induce a

transition to a state s®. Thus the necessary number of mutations computed

above is also su±cient to induce a transition from any s¯ to some s®: That

is, the inequality in (23) holds with equality.

(2). Consider on the other hand, the transition s® to s¯ : Using the expressions

(21) and (22), we can deduce that the minimum number of mutations m®;¯

needed to transit from some state in S® to a state in S¯ satis¯es:

m®;¯ ¸ d ¡ f
(d¡ f ) + (b¡ e) (n¡ 1): (24)

As in the ¯rst case, this gives us the minimum number of mutations needed for

a transition. However, consider any state s® and suppose that the strategies

of d d¡f
(d¡f )+(b¡e)(n ¡ 1)e players undergo a simultaneous mutation (i.e. they

maintain their links but switch from ® to ¯). It again follows that the

operation of the best-response dynamics su±ces to induce a transition to a

state s¯ . That is, (24) holds with equality.

To conclude, simply note that, if n is large enough,

»
b¡ e

(d¡ f ) + (b¡ e) (n¡ 1)
¼
<

»
d ¡ f

(d ¡ f) + (b¡ e)(n¡ 1)
¼

since d¡ f < b¡ e. 2

Proof of Lemma 8 (Sketch): The proof proceeds in the same way as the

proof of Lemma 7. We therefore only spell out the main computations.

(1). First, consider transitions from state s¯ to state s® and let k be the

number of mutations triggering it. We focus on a player currently choosing

¯ and aim at ¯nding the most favorable (i.e. least mutation-costly) conditions
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that would induce her to switch to ®. Along the lines explained in the proof

of Lemma 7, this leads to the following lower bound:

m¯;® ¸ b¡ c
(d¡ f) + (b¡ c)(n¡ 1) ´H; (25)

which again can be seen to be tight in the sense that, in fact, m¯;® = hHi {
recall that dze stands for the smallest integer no smaller than z:
(2). Analogous considerations for a transition from state s® to state s¯ leads

to the lower bound

m®;¯ ¸ d¡ c
(b¡ e) + (d ¡ c) (n¡ 1) ´ H 0; (26)

which is also tight, i.e. m¯;® = dH 0e :
(3). Finally, to study how the sign of m¯;® ¡m®;¯ changes for large n as a

function of c; note that

H ¡H 0 ´ ¢(c) =
(b¡ c)(b¡ e)¡ (d ¡ f)(d ¡ c)

[(d ¡ f) + (b ¡ c)] [(b¡ e) + (d ¡ c)](n¡ 1): (27)

Observe that the denominator of ¢(c) is always positive, the numerator is

decreasing in c; and is moreover negative at c = b. This completes the proof.

2

Proof of Lemma 9: Fix some s 2 S®¯ , with the players A(s) and B(s) of
the ® and ¯ components displaying respective cardinalities jA(s)j ´ u > 0

and jB(s)j ´ n¡u > 0, respectively. To address the ¯rst part of the Lemma,
suppose that a player i 2 B(s) experiences a mutation, which has the e®ect
of switching her action from ¯ to ® and the deletion of all her links with

players in B(s). Now consider the players in the set B(s)nfig. There are two
possibilities: either all of them wish to retain action ¯, or there is a player

who wishes to switch actions.
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In the former case, let all of them move and they will retain their earlier

strategy except for one change: they will each delete their link with player

i, since f < c < b. We now get players in A(s) to move and they all form

a link with player i, since f < c < b < d. It may be checked that we have

reached an equilibrium state s0, with A(s0) ¸ A(s) + 1.
Consider now the second possibility. Pick a player j 2 B(s)nfig, who wishes
to switch actions from ¯ to ®. It follows that this player will delete all

her links with players in B(s) and form links with all players in A(s) (since

e < f < c < b < d). We then examine the incentives of the players still

choosing action ¯, i.e., players in the set B(s)nfi; jg. If there are no players
who would like to switch actions then we repeat step above and arrive at a

new state with a larger ®-component. If there are players who wish to switch

actions from ¯ to ® then we get them to move one at a time. Eventually, we

arrive at either a new state s0 2 S®¯, or we arrive at a state s0 2 S®.
In either case, we have shown that starting from a state s 2 S®¯ , we can move
with a single mutation to a state s0 such that A(s0) ¸ A(s)+1. Since s 2 S®¯
was arbitrary, the proof is complete for the ¯rst part. The second conclusion

concerning some new equilibrium state s00 with j A(s00) j�j A(s) j ¡1 is
analogous. 2

7 APPENDIX B

Proof of Proposition 4.1: We ¯rst show that ai = aj, if i and j belong

to the same component. Suppose not and let ai = ® while aj = ¯. Let

there be k players in this component with k® players choosing action ® and

k¯ (= k ¡ k®) players choosing action ¯. The payo® to player i from action
® is given by (k® ¡ 1)d + k¯e. Similarly, the payo® to player i from action

¯ is given by (k® ¡ 1)f + k¯b. Since, in equilibrium, player i prefers action

® it follows that (k® ¡ 1)(d ¡ f ) ¸ k¯(b ¡ e). Similar calculations show

47



that since, in equilibrium, player j prefers action ¯ it must be true that

(k¯ ¡ 1)(b ¡ e) ¸ k®(d ¡ f). Given that d > f and b > e, this generates a

contradiction.

We next show that if an equilibrium network is non-empty then there is

only one component, i.e., the network is connected. Fix some equilibrium

and suppose g is the corresponding (non-empty) network, and g0 is a non-

singleton component in g. Suppose without loss of generality that ai = ®

for every i 2 g0. Suppose player j 2 g00, with g0 6= g00, and let aj = ¯. Let
k0 and k00 be, respectively, the cardinality of the two components and let

k0 ¸ k00. Suppose, without loss of generality, that player i forms some links

in g0. The payo® to i is given by (k0 ¡ 1)d ¡ lic, where li is the number

of links that she forms. Since g is part of an equilibrium, it follows that

(k0 ¡ 1)d ¡ lic ¸ k00b¡ c. We note next that since k0 ¸ 2, and g is part of an

equilibrium it must be the case that k00 ¸ 2. Let (k00¡ 1)d¡ ljc be the payo®
to player j , where lj ¸ 1 is the number of links that she forms. It follows from

the de¯nition of equilibrium that (k00¡ 1)b¡ ljc ¸ k0d¡c. Putting these two
inequalities together yields a contradiction. The argument is analogous in

case aj = ®. This proves that a non-empty equilibrium network is connected.

The minimality of the equilibrium network follows from the assumption that

c > 0. 2

Proof of Proposition 4.2: From Proposition 4.1, we know that an equilib-

rium network is either empty or minimally connected. Consider a minimally

connected equilibrium network g. Suppose that player i has a link with player

j in this network, i.e. gi;j = 1. We show that in a strict Nash equilibrium,

this implies that player j does not have a link with any other player, i.e.,

g j;k = 0 for all k 6= i. Suppose there is some player k such that gj;k = 1. In
this case, individual i can simply interchange her link with j for a link with

k and get the same payo®s. Thus, the strategy of forming a link with j is

not a strict best response. Hence g is not a strict Nash network. The above
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argument also implies that, since g is connected, player i must be linked to

every other player directly. The resulting network is therefore a star. More-

over, it also follows that this link must be formed by player i himself. For

otherwise, if there is a player k such that gk;i = 1; then this player is again

indi®erent between the link with i and some other agent in the star. This

implies that the star must be center-sponsored and completes the proof. 2

Proof of Proposition 4.3: First, consider case (a). We know from Propo-

sition 4.1 that every player in a component chooses the same action. We also

know that there are only two possible equilibrium architectures, g 2 Gcs and
ge. Clearly, the empty network cannot be part of a strict Nash equilibrium

(see also arguments for part (c) below). Thus the only candidates for strict

Nash equilibrium are s 2 Gcs £ f(®; ®; :::; ®)g or s 2 Gcs £ f(¯; ¯; :::; ¯)g. It
is easily checked that any of those are indeed strict Nash equilibria.

Consider case (b) next. Again, the empty network is not sustainable by a

strict Nash equilibrium. Then the only candidates are s 2 Gcs£f(®; ®; :::; ®)g
or s 2 Gcs £ f(¯; ¯; :::; ¯)g. It is immediate to see that none of the latter
is sustainable as an equilibrium since c > b, which implies that the central

player does not have an incentive to form a link with isolated players. Thus

the only remaining candidates are the former states, which are easily checked

to be strict Nash equilibria.

Finally, consider case (c). If c > d; then the center-sponsored star cannot

be an equilibrium network. Thus, the only candidate for a strict equilibrium

network is the empty one. However, if a network is empty, the choice of

actions is irrelevant. This means that there is no strict Nash equilibrium in

this case. The proof is complete. 2

Proof of Lemma 15: Let s® and s¯ be generic states in ~S® and ~S¯; respec-

tively.
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Step 1: First, we focus on the transitions from s¯ and s®. Let g be the

network associated to s¯ and choose any given player i 2 N . Consider

the network g ¡ gi derived from g by the deletion of all of player i's links.

Suppose that this latter network has L components, C1; C2; :::; CL; with C1

corresponding to the component of player i. Furthermore, denote by x(h)

the total number of players in C1 who choose action h = ®; ¯ in s¯ : Similarly,

let y(h) stand for the total number of players in N nC1 = [Ll=2Cl who choose
action h = ®; ¯ in s®: Assume now that, starting from s¯; player i is given

a revision opportunity. With the above notation in hand, we may write her

maximum payo® from choosing ® as follows:

¼® = x(®)d + x(¯)e + y(®)d+ y(¯)e ¡ (L¡ 1)c; (28)

where we use the fact that c < e and, therefore, player i must ¯nd it opti-

mal to link to all components. On the other hand, the maximum payo® to

choosing ¯ is given by:

¼¯ = x(®)f + x(¯)b + y(®)f + y(¯)b¡ (L ¡ 1)c: (29)

To initiate a transition towards s®; we must have that player i prefers action

®. This may be written as follows:

¼® ¡ ¼¯ = (x(®) + y(®))(d ¡ f) ¡ (x(¯) + y(¯))(b¡ e) > 0: (30)

We are interested in a network structure which requires the minimum

number of players who are choosing ®. Let x(®) + y(®) = k and, there-

fore, x(¯) + y(¯) = n ¡ k ¡ 1. From the above expression it follows that

the minimum value of k for which (30) holds is insensitive to the particular

network structure and only depends on the number of players choosing dif-

ferent actions. This leads to the conclusion that the minimum number ~m¯®
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of simultaneous mutations required to move from any s¯ 2 ~S¯ to some state

s® 2 ~S® must satisfy:

~m¯® ¸ b¡ e
(d ¡ f) + (b¡ e)(n¡ 1): (31)

In fact, the above considerations also imply that any such number of muta-

tions is su±cient to trigger the desired transition.

Step 2: Consider, on the other hand, the transition from s® to s¯: Using again

the expressions (28) and (29), we can deduce that the minimum number of

mutations required (also su±cient) is given by:

~m®¯ ¸ d ¡ f
(d ¡ f) + (b¡ e)(n¡ 1): (32)

Combining (31) and (32), the desired conclusion follows. 2

Proof of Lemma 16: First, we extend former notation. Let g be some

arbitrarily given network and i 2 N a given player in the population. Again,

we focus on the network g¡ gi derived from g by the deletion of all of player
i's links, and let C1 be the component of player i in g¡ gi, denoting by x(h)
the number of players who choose action h in C1. Now, however, it is use-

ful to classify the remaining L¡ 1 components, C2;C3; :::; CL; into di®erent
categories depending on the mix of actions they display. Speci¯cally, let Chl
(h = ®; ¯) stand for a generic ®-component in network g ¡ gi (i.e. a com-
ponent in which every player chooses action h) and, similarly, let C®¯l , refer

to an ®¯-component in which some players choose ® while others choose ¯.

These components Chl are indexed by l = 1; 2; :::; L
h, where h = ®; ¯; ®¯ {

naturally, L®+ L¯ + L®¯ = L ¡ 1: And, for each these components Chl , the
number of players choosing action h0 (h0 = ®; ¯) is denoted by yhl (h

0) (hence,

for example, y®l (¯) = 0 for all l): Finally, we aggregate across di®erent com-

ponents and make yh(h0) ´ P
l=1;2;:::;Lh y

h
l (h

0) and y(h0) ´ yh
0
(h0) + y®¯(h0)
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Let s® and s¯ be generic states in ~S® and ~S¯ ; respectively.

Step 1: We start by focusing on the transitions from s¯ to s®. Let g be

the network associated to s¯ and consider any given player i: Suppose that,

starting at s¯ ; player i receives a revision opportunity. Then note that,

since we assume that c > e; there exists some number z ¸ 2 such that

(z ¡ 1)e < c � ze and, therefore, if player i chooses action ®; she will not

form any links with components C¯l 6= C1 whose cardinality
¯̄
¯C¯l

¯̄
¯ < z: This

motivates dividing the set ofC¯l components into two groups, small and large,

depending on whether their cardinality falls or not below the number z: We

number the small C¯l components from 1 to �L¯ , while the large components

are indexed from 1 to L̂¯. Furthermore, we de¯ne �y¯(¯) =
P

l=1;:::;�L¯ y
¯
l (¯)

and ŷ¯(¯) =
P

l=1;:::;L̂¯ y
¯
l (¯). With this notation in place, the payo® to

player i of choosing ® may be written as follows:

¼® = x(®)d+x(¯)e+[y
®(®)+y®¯(®)]d+[y®¯(¯)+ŷ¯(¯)]e¡ [L®+L®¯+ L̂¯]c:

(33)

On the other hand, the payo® from choosing ¯ is equal to:

¼¯ = x(®)f+x(¯)b+[y
®(®)+y®¯(®)]f+[y®¯(¯)+ŷ¯(¯)+�y¯(¯)]b¡[L®+L®¯+L̂¯+�L¯ ]c:

(34)

To initiate the transition towards s®; player i must prefer action ® to ¯;

i.e. ¼® ¡ ¼¯ > 0. Using (33)-(34) and making k = x(®) + y®(®) + y®¯(®),
this inequality can be rewritten as follows:

k(d ¡ f )¡ x(¯)(b¡ e) ¡ [y®¯(¯) + ŷ¯(¯)](b¡ e)¡ [�y¯(¯)b¡ �L¯c] > 0: (35)

As before we wish to minimize the value of k, conceived as the number

of simultaneous mutations towards action ® that perturb the state s®: This

in turn means that we aim at minimizing the value of the negative terms in

(35). We begin by noting that, for a ¯xed value of �y¯(¯), the value of the
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term [�y¯(¯)b ¡ �L¯c] is minimized when �L¯ = �y¯(¯), i.e. when each of the

small components is a singleton. This allows us to rewrite (35) as follows:

k(d ¡ f) ¡ x(¯)(b ¡ e)¡ [y®¯(¯) + ŷ¯(¯)](b¡ e) ¡ �y¯(¯)[b¡ c] > 0: (36)

We next note that for any ¯xed value of x(¯)+y®¯(¯)+ŷ¯(¯)+�y¯(¯), the

value of k is minimized when we set the number x(¯)+y®¯(¯)+ŷ¯(¯) = 0; i.e.

if �y¯(¯) = n¡k¡1. This follows from the fact that b¡e > b¡ c. Combining
these observations, we ¯nd that the minimum number of mutations ~m¯®

required for the contemplated transition must satisfy:

~m¯® ¸ b ¡ c
(d ¡ f) + (b¡ c) (n¡ 1): (37)

We now show that a number of mutations satisfying the above inequality

is also su±cient, if appropriately chosen. Recall that s¯ 2 ~S¯ is a center-

sponsored star. Let player n be the center of the star. and suppose that the

following simultaneous mutations occur. On the one hand, ~m¯® ¡ 1 players
at the spokes switch their action from ¯ to ®. On the other hand, player n's

strategy also undergoes a mutation: she switches to ® and retains her links

with the ~m¯® ¡ 1 players who have switched actions but deletes all her links
with the remaining n¡ ~m¯® players (who are still playing action ¯). This

pattern of ~m¯® mutations results in a network where the players choosing

action ® form a center-sponsored star, while all the players choosing ¯ are

rendered as singleton components. If these players are then picked for a

revision opportunity, the computations leading to (37) imply that they will

all choose action ® and become linked to the ®-component. Subsequently,

by Proposition 13, the unperturbed dynamics alone is enough to lead the

process a.s. to a center-sponsored star with everyone choosing action ®.

Thus, in sum, we conclude that ~m¯® mutations satisfying (37) are su±cient

for a transition from any s¯ 2 ~S¯ to some s® 2 ~S®.
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Step 2: Consider next the transition from s® to s¯. Then, we would like to

have the player i who receives a revision opportunity to choose ¯: Again, her

payo®s ¼® and ¼¯ from choosing either action are given by (33) and (34).

Thus, the required inequality ¼¯ ¡ ¼® > 0 can be rewritten as follows:

¡[x(®)+y®(®)+y®¯(®)](d¡f)+[x(¯)+y®¯(¯)+ŷ¯(¯)](b¡e)+[�y¯(¯)b¡�L¯c] > 0:
(38)

Let k = x(¯)+y®¯(¯)+ ŷ¯(¯)+�y¯(¯). As before, we wish to minimize the

value of k. This, on the one hand, amounts to the minimization of the ¯rst

negative term in (38). But, since the value of [x(®)+y®(®)+y®¯(®)] = n¡k¡
1 is insensitive to the precise links of the ®-players, these considerations are

irrelevant and may be simpli¯ed by setting x(®) = y®¯(®) = 0. Next, we take

up the other terms, for which we must identify the \best distribution" of the

¯-players leading to a minimum k in (38). First, we focus on the number �L¯

of small ¯-components. Since only if player i chooses ¯ will she link to any of

these components, the net payo® gain she would enjoy through each of them

by choosing ¯ rather than ® is rb¡c; where r stands for the cardinality of the
(small) component in question. On the other hand, if those r players were

instead part of a large component, player i would link to them both if she plans

to play ® or ¯: Consequently, the net gain obtained through them by choosing

¯ rather than ® would be r(b¡ e). Combining both considerations, we ¯nd

that the di®erence between these net gains (corresponding to the alternative

possibilities that the r players under consideration belong to either a small or

a large ¯-component) is re¡c: Since, by de¯nition, r � z¡1 and (z¡1)e < c;
we conclude that the latter di®erence is negative and therefore the sought-

after distribution of ¯-players involves no small components, i.e. �L¯ = 0.

Hence, introducing this fact in (38), the minimum number of mutations ~m®¯

is found to satisfy :
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~m®¯ ¸ d ¡ f
(d ¡ f) + (b¡ e)(n¡ 1): (39)

Finally, we show that this number of mutations is also su±cient for the

transition. Suppose that, starting from s® (whose associated network is a

center-sponsored star), there is a simultaneous mutation in the strategy of

some ~m®;¯ players whereby they switch their action from ® to ¯ without

altering their links. Since, in particular, the central player retains her links,

those mutations result in a network where all players are still connected

through a center-sponsored star. Thus, if those who are still playing action

® are subsequently provided with a revision opportunity, the computations

leading to (39) imply that they will choose action ¯. Thereafter, by Proposi-

tion 13, the unperturbed dynamics will lead the system (almost surely) to a

center-sponsored star with everyone choosing action ¯, i.e. a state in ~S¯ . In

sum, therefore, we con¯rm that ~m®¯ mutations are su±cient for a transition

from any state s® 2 ~S® to some state s¯ 2 ~S¯. 2

Proof of Lemma 17: The proof is analogous to that of Lemma 16 and is

thus omitted. 2
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