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ON THE ECONOMETRIC ESTIMATION OF A
VARIABLE RATE OF DEPRECIATION

José A. Hernández and Ignacio Mauleón

ABSTRACT

Measuring the capital stock is crucial in some fields of economic research.
Capital stock is not observable, and its estimation requires the knowledge of
its rate of depreciation. In most of the cases, econometric is not used for this
task. However this methodology is adecuate to generate measures consistent
with its productivity and the technology of the economy. If we assume that the
depreciation rate is not constant, its estimation poses some technical difficulties.
In principle, it is not possible to use standard econometric packages. In this
note we suggest two estimation methods of a variable rate of depreciation which
are easily implementable in standard packages by means of NLS or ML. The
formalization of these methods and empirical evidence on its implementation is
shown.

KEYWORDS: Capital stock; Variable Depreciation Rate, Production
Function Estimation.
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1 INTRODUCTION

The stock of physical capital of an economy - a region, an industry or a whole
country - is one of the basic economic aggregates. Among other uses it lies at
the heart of potential GDP and total employment calculations, it is required to
break down total output among contributing factors, it is necessary to provide
a measure of the evolution of the productivity of the capital and it enters
also as an argument in the labor productivity function. Yet, this variable is
hard to measure directly, part of the problem deriving from the difficulty in
assessing capital consumption1. The depreciation of physical capital is also
important to set differences between net and gross measures of a macroeconomic
variable - see, for instance Mauleón and Sardá (2000) for an application to
the case of a welfare measure based on net, rather than gross income. In
Nationals Accounts, measurement of capital consumption is usually solved by
some ad-hoc method based on accounting regulations at the firm level. This
is a crude measure, not linked with the technology of the economy neither
with the productivity associated to the capital. It would be interesting, then,
to devise alternative methods. Some of the alternative ways are based in the
measurement of the weighted coefficients of present and past investment values
for the stock of physical capital - see Hulten (1991) and Jorgenson (1991). This
methodology does not produce satisfactory results when econometric is in use
to identify a depreciation pattern — see Hulten and Wykoff (1981) — and poses
serious difficulties. Some of these are solved by ad-hoc methods to calculate the
mentioned weighted coefficients of the past investment based on age-efficiency
and age-price functions. In this paper it is suggested an alternative method
based on the econometric estimation of the stock of capital by mean of the
estimation of the depreciation rate and the initial capital stock. In the end, the
capital stock is computed as the weighted sum of current and lagged investment
values, but the weights are derived in a more systematic way than previously
(see also Dadkiah et. al. (1990), Nadiri et. al. (1993), Prucha (1995) and
Prucha et. al. (1996) for related work along the same lines).
The way the econometric analysis is introduced in the problem of measuring
the capital stock is based on the fact that the capital stock is one of the basic
arguments of the production function. Thus, the capital stock can be estimated
indirectly by mean of the estimation of the rate of depreciation -unknown pa-
rameter - jointly with the rest of parameters of the production function itself.
It could be argued that, since the capital stock enters other economic relations
(for example, demand for labour and capital stock), they could also be used to
estimate the depreciation rate. However, these relations, being more behavioral
in nature than the production function itself, are more subject to specification
errors of several kinds, and therefore, would perhaps lead to less robust results.
The idea of the estimation of the capital stock based in the estimation of the
production function is the following: since the depreciation rate is unknown, the
capital stock is not known either. Then, in econometric terms the problem can

1This is one of the four main problems pointed out by the OECD in the elaboration of the
National Accounts - see OECD (1992).
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be solved as one of estimation with unobservable variables. Put it simply, this
would amount to trying several values for the depreciation rate, calculating
the corresponding capital stock variables, and finally, fitting the production
function under every capital stock so derived: the depreciation rate and the
capital stock, would then be selected on the basis of the best econometric fit.
As some authors have pointed out - see Prucha (1995), the econometric ap-
proach imposes some methodological restrictions and it is not immediate to
apply the standard estimation methods, part of the problem deriving from the
fact that the expression of the capital stock, in terms of the current and lagged
investment values, have a time dependent number of arguments, what make
unfeasible the use of standard packages like TSP. If additional assumptions are
made related to the rate of depreciation parameter, as assuming variability in
it, then the weights of lagged investment have more complex specifications and
the use of standard packages becomes even more complicated. Yet, as theory
suggest, it seems natural to consider that the rate of depreciation varies with
technical shocks, with the induced economic depreciation associated to techni-
cal progress, with changes in the relative price of inputs, in the level of output -
see Prucha and Nadiri, (1996), or in the interest rates or with the maintenance
cost of capital stock or the capital utilization level - see Burnside and Eichen-
baum, (1994). Dynamic factor demand models provide a context in which the
methods could be applied, since the optimal demand of capital explicitly de-
pend on the interest rate and on relative prices of inputs. The depreciation rate
then has the role of driving the economic depreciation required to adjust the
actual capital stock to its optimal level.
The demand for more sophisticated methods to measure the capital consump-
tion, in order to estimate the capital stock, in the case that a variable rate of
depreciation is considered, is the key argument that motivates the goals of this
paper: first we describe two econometric-based estimation methods of a vari-
able rate of depreciation that are easily implementable in standard econometric
packages. The variability of the rate of depreciation rate is modelled as a linear
dependence with the explanatory variable. In second place, an additional ex-
ercise is done by using prior information on the rate of depreciation, modelled
as a stochastic restriction. This information is included in the estimation of
the complete model following Theil and Goldberger (1961) procedure adapted
to maximum likelihood (ML) estimation, and brings more acceptable results in
the estimates and in the performance of the convergence when ML estimation
is in use.
The effectiveness of the proposed methods is given by simulated and real data
estimation results. It is applied to the Spanish economy for the period 1970
to 1997, yielding results in line with other international research, and rather
different for those currently accepted. The validation of the proposed methods
is also tested in a simulation exercise in which estimation results are statistically
close to real values of the parameters.
The plan of this paper is as follows: In Section 2 we describe the baseline
method of estimation of a constant rate of depreciation δ. In Section 3 we
describe the methods proposed to estimate a variable rate of depreciation. In
Section 4 estimation methods are extended to the general case in which the rate
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of depreciation depends on m variables. Empirical and simulation results are
presented in Section 5 and 6. Finally, in the Appendix 1, some technical results
are shown.

2 ESTIMATION OF A CONSTANT RATE OF DE-
PRECIATION

In this section we present the original method suggested by Prucha (1995) to
estimate a constant rate of depreciation. It is the benchmark of the meth-
ods we later introduce in the following sections to estimate a variable rate of
depreciation.
Consider a standard production function given by

Yt = F (Lt,Kt, θ) (1)

where Yt, Lt and Kt denote respectively output, labor and capital stock at
the end of period t, and θ represents a vector of unknown parameters of the
technology. The capital stock accumulates according to the perpetual inventory
method equation:

Kt = It + φKt−1 (2)

where It denotes gross investment at period t, φ = 1− δ and δ is the unknown
rate of depreciation. Repeated substitution of the lagged capital stock in the
original equation of Kt yields

Kt =
t−1

i=0

φiIt−i + φtK0 = Gt(I1, ..., It,K0,δ) (3)

which is a function of t, since the number of arguments of this function depends
on the period index. Now we can substitute (3) into (1) to obtain:

Yt = Ht(Lt, I1, ..., It,K0, δ, θ) (4)

which is also a function of t, because of K. Note that L1, ..., LT and I1, ..., IT are
observable variables, and, in principle,K0, δ and θ can be estimated by nonlinear
least squeares (NLS) or maximum likelihood (ML), for instance. However, it
is not possible to use directly standard econometric packages to estimate (4)
because of the fact that the number of arguments on each period change with
the period. This difficulty can be easily overcome if we rewrite Kt with the use
of dummy variables. First, taking j = t− i,

Kt =
t

j=1

φt−jIj + φtK0 (5)

Now, for a given t, we define T new variables Ijt , j = 1, ..., T as follows

Ijt = IjD
j
t , (6)

Djt =
1 j ≤ t
0 j > t
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This allows us to rewrite (5) as

Kt =
T

i=1

φt−iIit + φtK0 = G(I
1
t , ..., I

T
t ,K0,δ) (7)

To illustrate what this transformation imply, vector K = (K1, ..,KT ) can be
written as

K1
K2
K3
.
.
.
KT


=



I1 K0 0 . . . 0 0
I2 I1 K0 . . . 0 0
I3 I2 I1 0 0
. . . . .
. . . . .
. . . . .
IT IT−1 IT−2 . . . I1 K0





1
φ
φ2

.

.

φT−1

φT


Substitution of (7) into (1) yields

Yt = H(Lt, I
1
t , ..., I

T
t ,K0, δ, θ)

Now the number of variables for each period is constant and the parameters
can be estimated using standard econometric packages like TSP. Note that Kt
depends on T variables, but this does not give rise to multicollinearity, since
the number of parameters is fix and the model is therefore identified. In linear
model, this point was stressed by Greene and Seaks (1991).

3 ESTIMATION OF A VARIABLE RATE OF DE-
PRECIATION

In this section we describe two new methods proposed to estimate the parame-
ters of the rate of depreciation equation, and hence to estimate the capital stock
so determined. As in the previous case, this estimation is carried out together
with the estimation of a set of parameters θ of the production function. The
rate of depreciation is assumed to depend linearly on a variable x. Initially the
two methods are described for a simple case given by a rate of depreciation that
has two components: a constant term and a variable term that depends on the
explanatory variable x. This feature does not impose any restriction on the val-
idation of the methods, which can be described for more complex specifications
— see Section 4 the description of the multidimensional case —. Variable x is
suggested by the economic theory, and some examples were given in Section 1.
Again, to solve the problem of the estimation of the capital stock we consider
a production function

Yt = F̃ (Lt,Kt, θ)

where Kt now depends on a variable rate of depreciation. By assuming a
linear equation for δ we have δt = d1 + d2xt. Note that since the goal of the
method described below is the econometric estimation of d1, d2 and θ, one of
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the advantages of it is the possibility of testing the null hypothesis H0 : d2 = 0
to conclude whether δ is constant or not. Calling f1 = 1 − d1, and f2 = −d2,
we have φt = 1 − δt = f1 + f2xt. If we substitute recursively Kt−s for all
s = 1, ..., t− 1, into (2), then, since φt is not constant, we have

Kt = It + φtIt−1 + ...+ φt.φt−1...φ2φ1K0 (8)

Let Ct,s be the coefficient of the gross investment at period t− s for all 0 ≤ s ≤
t− 1 and Ct,t the coefficient of K0. Then,

Ct,s =


s−1

j=0
φt−j 1 ≤ s ≤ t
1 s = 0

(9)

Now (8) can be written as

Kt =
t−1

s=0

Ct,sIt−s + Ct,tK0 (10)

= G̃t(I1, ..., It, d0, d1,K0)

Note that when δt = δ for all t, then Ct,s = φs and G̃t(.) = Gt(.) which
is the case described in Section 2. Again, as shown in the δ constant case,
equation (10) has a period-dependent number of arguments. We next describe
two methods to solve this problem.

3.1 Method 1

This method is the complete extension to the variable case of the original
method presented in Section 2. First taking j = t− s,

Kt =
t

i=1

Ct,t−jIj + Ct,tK0

and now using Ijt as stated in (6),

Kt =
T

i=1

Ct,t−iIit + Ct,tK0 (11)

Since now we have the same number of arguments for each period in the capital
stock equation, also has the production function. Hence, parameters θ, d0 and
d1 can be estimated by ML or NLS using standard packages.

3.2 Method 2

Note that the number of terms in Ct,s is s and that for each t such elements
are different. This fact together with the highly nonlinearities in the original
parameters could bring some difficulties in the convergence of the estimation
procedure, possibly due to the intractability of the criteria used to optimize —

7



NLS or ML, for instance. In that case it would be interesting to investigate an
expression for Kt where the weights of the current and lagged investment values
has a simpler form and where the cost in terms of efficiency of the estimates
were low. In this context another method is proposed, with the mentioned
properties, as we see in the Monte Carlo experiment - see Section 6. This
method is based on the substitution of the set of coefficients given by (9) by their
linear approximation around x = 0 in the capital stock equation. The idea is
to simplify the nonlinearities associated to the cross products of the coefficients
f1 and f2. It is shown in the Appendix 1 that the linear approximation yields

C̃t,s = f
s
1 + f

s−1
1 f2

s−1

j=0

xt−j

and back to (11) we have

Kt = It + (f1 + f2xt)It−1 + f1(f1 + f2(xt + xt−1))It−2 + ...

...+ f t−21 (f1 + f2

t−2

j=0

xt−j)I1 + f t−11 (f1 + f2

t−1

j=0

xt−j)K0

Now, taking j = t− s, we can rewrite the above equation as

Kt =
t

j=1

C̃t,t−jIj + C̃t,tK0

Again, using Ijt as defined in (6),

Kt =
T

i=1

C̃t,t−iIit + C̃t,tK0 = G̃(C̃t,t, ...C̃t,t−T , I
1
t , ..., I

T
t ,K0)

where C̃t,t−i and xt−i are arbitrary numbers if i > t since for this case we have Iit
equals zero. Finally, the above equation is plugged into the production function
to estimate the parameters of the model.

4 MULTIDIMENSIONAL CASE

If variable x has dimension m > 2, the suggested Methods 1 and 2 can also
be extended to estimate the parameters involved in the production function
together with those behind the rate of depreciation. Method 1 extension is im-
mediate, since the modification to take into account is simply to write down the
full coefficients in terms of the lagged investment and then apply the dummy
variable approach to fix the number of arguments in the equation of the cap-
ital stock. Method 2 is also easy to extend, simply by computing the linear
approximation of Ct,s when δ has dimension m.
When x ∈ Rm the rate of depreciation is given by

δt = δ1 + δ2x2t + ...+ δmxmt
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and the term φt = 1 − δt = f1 + f2x2t + ... + fmxmt, where f1 = 1 − δ1 and
fj = −δj , j = 2, ...,m. The original coefficients of lagged investment is given by

Ct,s =
s−1

j=0

φt−j =
s−1

j=0

(f1 + f2x2,t−j + ...+ fmxm,t−j)

for all s = 1, ..., t and Ct,0 = 1. The first order linear approximation of Ct,s
around x = 0 yields -see Appendix 1 -

C̃t,s = f
s−1
1 (f1 + f2

s−1

j=0

x2,t−j + ...+ fm
s−1

j=0

xm,t−j)

Replacing Ct,s by C̃t,s in the equation of Kt and at the same time calling
j = t− s, we have,

Kt =
t

i=j

C̃t,t−jIj + C̃t,tK0

At this point, again, it is applied the dummy variable transformation described
in Section 2 to have the same number of argument for Kt for all t. Then it is
included in the production function to finally estimate the parameters under a
standard estimation method.

5 EMPIRICAL RESULTS

In this section we present the empirical results obtained fitting a Cobb-Douglas
production function to the Spanish economy data. Results are given in Table
1.
Returns to scale are assumed constant on theoretical grounds, and because they
yield the most coherent empirical fit. Taking logs the function becomes,

yt = c+ dD1t + αlt + (1− α)kt + ut (12)

where yt is GDP, c, the constant term, lt, employment, kt, the capital stock,
and ut, a random shock. A dummy variable D1t = 0, t ≤ 1983, and D1t =
1, t > 1983, is detected to be significant. The breaking point is picked selecting
the best fit among all possible dates, but it seems reasonable to argue that
since technological progress is not included in the model and returns are as-
sumed to be constant, the structural change in the constant term captures the
modernization process initialized in the Spanish economy started in the early
eighties. As a key element of this process, could be named the strong industrial
restructuring initialized by the government at 1982.
The agricultural sector is excluded, since it only accounts for a small fraction
of GDP (less than 5%), and investment is negligible (according to input-output
tables). We only consider non residential investment, and data are measured
at 1986 prices (where relevant). The sample data spans from 1970 to 1997,
and is taken from the Spanish National Statistical Institute (the Tempus data
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base, available in the internet). The data require to allow the random error to
follow an AR(1) in some specifications, which could be understood as a result
of productivity shocks. The notation is as follows,

ut = ρut−1 + εt (13)

εt ∼ N(0,σε)

A variable depreciation rate has been considered in order to test the validity of
the method proposed. Since convergence were achieved in the estimation and
results were satisfactory only method 1 was used. Two possible explanatory
variables have been tested, a dummy, and the GDP growth rate. The notation
follows:

Kt = It + (1− δt)Kt (14)

δt = d0 + d1zt

and two cases were considered: firs taking zt = ∆yt, and second, zt = D2t,
(D2t = 0, t ≤ 1989,D2t = 1, t > 1989). Again, the breaking point is picked
selecting the best fit among all possible dates and its economic interpretation
is given next. The main empirical results are presented in Table 1. The es-
timation method used in all models is full maximum likelihood, assuming a
Gaussian distribution 2. The initial capital stock could be understood as a fur-
ther parameter (see the previous section), so that beyond entering the model in
a non linear way, it does not pose any special technical problem. Nevertheless,
it is not identified (see Appendix 2), so that it has been judged a more sensible
solution to estimate it from alternative accounting sources. Accordingly, it has
been set equal to 1.3x107 millions of ptas. at 1986 prices.
We turn now to the discussion of the results themselves. The average depreci-
ation rate is calculated and given in the last line of Table 1 for all of the cases.
Column I provides the first results, with an estimated value for the constant
depreciation rate of 3.74%. Since this value must be greater than zero, a one
sided significance test is in order, and it turns out to be significant at the 95%
level (this also applies to the remaining results in columns II to III). This value
is rather low when compared to international estimates, and to conventional
values (see Corrales et.al.(1989)). Therefore, more complex specifications seem
in order. The remaining results pursue this point, making the depreciation rate
dependent on some variables. Column II shows the results obtained allowing for
a dummy variable, D2t (see above). The dummy is statistically significant, and
it points to an increased depreciation rate in the second sub sample, yielding an
average value for the whole sample of 4.61%. This is more admissible on a priori
grounds, as commented above. An specially significant economic argument to
explain the selected breaking year ofD2 is the fact that the interest rate changes
its growing trend in 1990, year in which reached the 14.7 per cent. From that
year on, the interest rate decreases to 10 per cent in 1994. This changing trend
explains the change in the user cost of capital, that start to decrease in the early

2 In particular, in models involving an AR(1), the first observation is never dropped (see,
for example, Hamilton (1994)).
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nineties and hence in the intensification of the amortization process, due to the
obsolescence of the vintage stock of capital. As it is shown in Table 1, the sign
of d1 verifies this conjecture to explain the structural change in the value of the
estimates of the depreciation rate. It is also worth noticing, that the AR(1)
becomes non significant, and that the fit improves (σ decreases). This may
suggest that the AR(1) in column I captures a structural break, rather than
a genuine productivity shock. However, it must be admitted that a dummy,
although required by the data, precludes a full economic explanation. That is
why it was considered appropriate to replace it by some variable, notably the
GDP growth rate. Column III gives the results of this procedure. The growth
rate is significant, yielding an average value for the depreciation rate of 5.48%,
higher than previously. The AR(1) is now significant, although the value of the
coefficient is smaller than in column I. It is interesting to note that the growth
rate coefficient is negative, meaning that a decrease in the GDP growth rate
increases the depreciation rate (and conversely), or in other words, that old cap-
ital is scrapped when production and demand decrease: investment has, thus, a
cost saving feature, rather than being focused only on capacity increases. Since
the GDP growth rate decreased in the second subsample, implying an increased
depreciation rate, it should be pointed out that this is coherent with the previ-
ous result of column II (the dummy points to an increased depreciation rate in
the second subsample, as well). This is a perturbing result and, unfortunately,
one that fully matches other evidence related to the almost nil investment on
R&D conducted by Spanish private firms.
The final and complementary aspect of the results concerns the statistical check-
ing of the estimated equations. Several tests have been conducted to that end:
a) functional form, b) dynamic specification, c) cointegration, d) stability, e)
heteroscedasticity, and, f) omitted variables. They are discussed next in more
detail.
The Cobb-Douglas specification has been tested against a more general CES
production function, given by

Y = A γK−ρ + (1− γ)L−ρ −ν/ρ

Since ρ = 0 yields a Cobb-Douglas function, a maximum likelihood ratio test is
easily conducted estimating both forms of the function. Under the null of ρ = 0
the test follows a χ2(1). The estimate ρ̂ = 0.0025 and P (ρ̂ ≤ 0.0025) = 0.004.
ThenH0 is not rejected at the confidence level 0.95 since the critical value χ2α(1)
is 3.84. Then, the Cobb-Douglas specification is accepted.
Several tests have been conducted to check the integration order of all variables.
Overall, and after accounting for possible breaks, and stochastic and determin-
istic trends, all variables involved seem to be I(1) (see Perron, 1989). The
errors of the estimated models do not have a unit root, so that the estimated
equations are cointegrated, as required (in all cases). Finally, and as for the
number of cointegrated vectors, the usual analysis yields only one such a vector
(besides, it would not make any economic sense if there were two, since there
is no economic link, behavioral, technical, or otherwise, among the variables
considered).
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The estimated equations are stable, once the constant dummy is added. This
has been tested by means of two type of tests: a) estimating the model after
splitting the sample in two equal subsamples, and, b) testing the forecasting
ability of the equations for the last two observations. With the a) type test,
the null of constancy is accepted, although the parameters apparently change
somewhat. This can be due to a lack of power, because of the small size of both
sub samples, and as a result of a changing depreciation rate (the parameters
are more stable, once this feature is incorporated into the model; see columns
II and III in Table 1).
Heteroscedasticity has been tested and rejected in several ways (ARCH tests,
and making the variance depend on a set of assorted explanatory variables).
As for omitted variables, there are more complex theoretical specifications that
would grant their introduction (for example, demand shocks). However, they
are of second order explanatory power, and could make the estimation results
less robust.
The main empirical results given in this section can be summarized as follows:
1) the method 1 proposed and implemented in this paper work well, and yield
sensible values for the depreciation rate - around 5.5% -, more in line with
international results, than are accepted by current practice; 2) the deprecia-
tion rate seems to depend on the GDP growth rate inversely: i.e., it increases
with decreased GDP growth rates, implying that old capital is scrapped when
production and demand decrease; investment has, thus, a cost saving feature,
rather than being focused only on capacity increases.

6 MONTE CARLO EXERCISE

In this section we describe and implement a simulation exercise designed to
validate the effectiveness of the methods proposed. The fitted model is the one
that generates the relation between labor, investment and total output. The
goal of this exercise is to evaluate the effectiveness of using the tools described
above in the task of estimating such model. In order to do it, a simulated
exercise is designed in such a way that the real simulated capital stock series
is generated by a variable rate of depreciation, but is not observable and then
not used directly in the estimation process. In fact, this is the restriction
that the methods proposed are designed to overcome. Once a simulated path is
generated, only observable series — output, labor, investment and x — are taking
into account in the estimation. This is carried out by both methods described
in Section 3.
We generate labor and gross investment vectors of size T = 30. Labor series
follows a process given by a lagged component, a trend and a white noise error.
Gross investment was generated with a trend and a lagged component. For these
variables, values of the coefficients were taken to be close to values estimated
in similar models and the variance of the white noise processes involved was to
bring a R2 close to 0.6, a reasonable value for empirical works. The variable
rate of depreciation was generated by setting d0 = 0.05 and d1 = 0.002. The
explanatory variable is x = log(t). Finally, the endogenous rate of depreciation
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is given by δt = d0 + d1xt. After that, from It and δt, the capital stock series is
generated following the perpetual inventory method. Finally, taking c = −10
and α = 0.4,we generate S = 1000 simulated yt vectors from the technology
specification. Each replicated output vector is given by a simulated disturbance
ust as shown in the following equation

yst = c+ αlt + (1− α)kt + u
s
t

Here lt and kt are labor and capital stock in logarithms, ust and y
s
t are respec-

tively the simulated error and the corresponding output at the period t, for
simulation s. Note that in each simulation path the disturbance is included
only in the production function error term. It means that labor and capital
stock remain constant across simulations and hence across each estimation of
the model.

Next step, once simulated values have been generated is estimation of the model,
whose equations are, simply, the production function and the capital stock
equation. Parameters of the model are (c,α, d0, d1), and have been estimated
by Methods 1 and 2. Results are shown in Table 2.
The estimation of the simulated data leads to estimates of the model close to
the real value of the parameters. In average, Method 1 estimates has smaller
bias and bigger standard deviation, than method 2 estimates and the quadratic
error is smaller in Method 1, as expected since the method 1 estimation is
based on the complete specification of the model. Note that the bias — taking
the average of the estimates as the estimate — of d0 by method 2 seems to
capture the variability not detected by estimates of d1, since the average of this
parameter is smaller than real value 0.002. Finally, this results test the feasibility
and effectiveness of the proposed methods, although a natural bias should be
admitted when method 2 is used, due to the fact that such method is based
on an approximation to the real weights of lagged investment. Nevertheless,
this method is still useful where convergence is hard to achieve due to the high
nonlinearities of the function to optimize in the parameters.

7 CONCLUSIONS

In this note we show two methods to estimate a variable rate of depreciation
of the capital stock with standard econometric packages. Models in which the
depreciation rate is an endogenous variable require estimation techniques for
this parameter non feasible in principle in standard econometric packages. To
illustrate the applicability of such methods simulated exercise and real data
estimation are carried out and provide good results. In particular, it has been
estimated the rate of depreciation of the capital stock of the Spanish economy
and results leads to values of this parameter between 5 and 6 percent, values
that are rather different from the traditional national account based measures.
Also a simulated exercise is designed and implemented, and results lead to good
results in terms of the effectiveness of the methods proposed.
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APPENDIX 1: Linear approximation of Ct,s
The first order linear approximation of a function Ct,s = c(xt, ..xt−j+1) around
x = x0 yields

Ct,s c(x0) + c (x)|x=x0 (x− x0)
When δ ∈ R2, we want to approximate the coefficient of the lagged investment:

Ct,s(xt, ..., xt−j+1) =
s−1

j=0

(f1 + f2xt−j)

First, valued at x = 0, we have,

Ct,s(0) = f
s−1
1

and for all j = 0, ..., s− 1,
∂Ct,s
∂xt−j

|x=x0= f2
s−1

i=0

(f1 + f2xt−i)|x=x0 = f2fs−11

Then,

∂Ct,s
∂x

= (f2f
s−1
1 , s)..., f2f

s−1
1 )

and,

C̃t,s = f
s−1
1 (1 + f2

s−1

j=0

xt−j)

The omitted part is fs2
s−1

j=0
xt−j + f1fs−12 (

s−1

i,j=0
xt−ixt−j), negligible when corre-

lation in xt is low.
The multidimensional case is given by the assumption δt = d1 + d2x2t + ... +
dmxmt. Now Ct,s is

Ct,s =
s−1

j=0

(f1 + f2x2,t−j + ...+ fmxm,t−j)

where notation follows that used in the simple case. Since Ct,s(0) = fs−11 we
only need to compute the derivative of Ct,s with respect to each variable in x
at period t− j, which is

∂Ct,s
∂xh,t−j x=x0

= fs−11 (fh, ..., fh)

and has dimension s, where h = 2, ...,m. It is easy to check that

∂Ct,s
∂x x=x0

x = fs−11 f2
s−1
j=0x2,t−j + ...+ fm

s−1
j=0xm,t−j

and

C̃t,s fs−11 (1 + f2

s−1

j=0

x2,t−j + ...+ fm
s−1

j=0

xm,t−j)

as shown in Section 4.
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APPENDIX 2: The lack of identification of the initial capital
stock
Consider the simple model

yt = aφ
t + ut

where a is an unknown parameter, φ is a given constant, and ut is a white noise
error. It is immediate that,

V ar(aOLS) = σ2u φ2(1− φ2T )/(1− φ2)
−1

If |φ| > 1, then this variance tends to zero as the sample size increases. But
if |φ| < 1, it approaches a positive constant larger than zero. In both cases
the estimator is unbiased, i.e., E(aOLS) = a, although in the second case the
parameter cannot be consistently estimated, and is not identified: in other
words, as the sample size gets larger, the information about the parameter does
not, just because the associated regressor, φt, goes to zero (see Schmidt (1976)).
Consider, now, the slightly more complex model

yt = a(φ
t/t) + ut

It is easily checked that,

V ar(aOLS) = σ2u.
T

t=1

(φt/t)2
−1

(A1)

so that the parameter a is less identifiable (loosely speaking), because the re-
gressor goes to zero at a faster rate than in the previous case.
Finally, consider the simple production function,

log(yt) = A+ α. log(Kt) + ut

where the stock of capital, Kt, is given by,

Kt = K0φ
t +

t

s=0

φsIt−s

and φ = (1− δ). From asymptotic theory, and after straightforward manipula-
tions one obtains,

V ar(K0OLS) ≈ σ2u


∂2

T

t=1
u2t

∂2 (K0)


−1

= σ2u. 2α2
T

t=1

(φt/Kt)
2

−1

Since Kt is a trending variable, and from the discussion following (A1), we
conclude that the stock of initial capital, K0, is not identified, in the sense that,
although it can be estimated, its variance does not approach zero as the sample
size increases. In practice, what this result means is that we can expect poor
estimates for this value.
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TABLES

I II III
c 5.6 5.56 5.33

(20.7) (20.3) (18.4)
d .03 .045 .032

(2.56) (4.42) (3.26)
α .71 .71 .68

(19.8) (19.2) (17.4)
δ0 .0374 .0384 .0597

(1.64) (1.52) (2.66)
δ1 .0077 -.178

() (3.95) (1.96)
ρ .51 .39

(2.89) (n.s) (2.1)
σ .0102 .00938 .00973

δ 3.74% 4.03% 5.48%

Table 1: Estimation results

Method 1 Method 2
c̄ -10.0342 -9.8991
std (-0.0468) (-0.0289)
qe 0.0033659 0.011007
ᾱ 0.4010 0.4238
std (0.0090) (0.0057)
qe 0.000083040 0.00060087
δ̄0 0.0456 0.0743
std (0.0074) (0.0049)
qe 0.000074918 0.00061626
δ̄1 0.0019 0.0016
std (1.3547e-4) (1.0608e-4)
qe 2.15359e-08 1.61180e-07

Table 2: Simulation results
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